Araştırma Makalesi
BibTex RIS Kaynak Göster

Prediction of Air Permeability of Single Jersey Cotton Fabrics Related to Pressure Difference

Yıl 2017, Cilt: 24 Sayı: 108, 260 - 268, 31.12.2017

Öz

 Air
permeability has an important role among clothing comfort characteristics and
it is a complex feature that is affected by many parameters. It makes heat
transfer easier besides more comfortable feeling due to high breathability. The
aim of this study was the prediction of air permeability by both fabric
properties and pressure drop. For this purpose, an equation was presented by
linear regression method using fabric density, tightness factor and pressure
difference. The results of the variance analysis showed that the air
permeability could be estimated with high reliability. The study also tested
air permeability values ​​at increasing pressure differences in order to
investigate the behaviour of fabric structures related to pressure difference.
The results indicated that the applied pressure differences increased the air
permeability values ​​and the tendency of increment changed depending on the
fabric tightness. This situation was defined by the relation between air
permeability and porosity. A deformation in loose fabric structures at high air
pressure differences was revealed.



 

Kaynakça

  • Marmaralı, A., Oğlakcıoğlu, N., (2013), Giysilerde Isıl Konfor, 11. Ulusal Tesisat Mühendisliği Kongresi, 1957-1963, 17-20 Nisan, İzmir.
  • Kırcı, T., Kanat, Z.E., Gülümser, T., Tarakçıoğlu, I., Taşkın, C., Çay, A., (2007), Tekstil Materyallerinde Gözenekliliğin Önemi, Tekstil & Teknik, 23(271), 180-186.
  • Akkış, B., (2009), Farklı İplik Numaralarından Örülmüş Değişik Örgü Tiplerinin Kumaşın Fiziksel Özelliklerine Etkisi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Kaplan, S., Okur, A., (2005), Kumasın Geçirgenlik-İletkenlik Özelliklerinin Giysi Termal Konforu Üzerindeki Etkileri, Tekstil Maraton, 2, 56-65.
  • Çay, A., Vassiliadis, S., Rangoussi, M., Tarakçıoğlu, I., (2007), Prediction of the Air Permeability of Woven Fabrics Using Neural Networks, International Journal of Clothing Science and Technology, 19(1-2), 18-35.
  • Çay, A., Tarakçıoğlu, I., (2008), Relation Between Fabric Porosity And Vacuum Extraction Efficiency: Energy Issues, Journal of the Textile Institute, 99(6), 499-504.
  • Vassiliadis, S., Rangoussi, M., Çay, A., Provatidis, C., (2010), Artificial Neural Networks and Their Applications in the Engineering of Fabrics, in Woven Fabric Engineering, Dubrovski, P.D. (Ed.), Sciyo, Rijeka.
  • Turan, R.B., Okur, A. (2008), Kumaşlarda Hava Geçirgenliği, Tekstil ve Mühendis, 15(72), 16-25.
  • Bozdoğan, S., (2008), Poliester Lif Özelliklerinin Örme Kumaşların Isıl Konfor ve Mekanik Özelliklerine Etkisi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Bhattacharya, S.S., Ajmeri, J.R., (2013), Factors Affecting Air Permeability of Viscose & Excel Single Jersey Fabric, International Journal of Engineering Research and Development, 5(7), 48-54.
  • Gupta D., Kothari V.K., Jhanji Y., (2014), Heat and Moisture Transport in Single Jersey Plated Fabrics, Indian Journal of Fibre & Textile Research, 39, 115-121.
  • Oğulata R.T., Mavruz S., (2010), Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics, Fibres &Textiles in Eastern Europe, 18, 71-75.
  • Bivainytė, A., Mikučionienė, D., (2011), Investigation on the Air and Water Vapour Permeability of Double-Layered Weft Knitted Fabrics, Fibres & Textiles in Eastern Europe, 19(3), 69-73.
  • Çoruh, E., (2015), Optimization of Comfort Properties of Single Jersey Knitted Fabrics, Fibres & Textiles in Eastern Europe, 23(4), 66-72.
  • Kaynak, H.K., Babaarslan, O., (2012), Filament İnceliğinin Mikrolif Örgü Spor Giysiliklerin Performans Özelliklerine Etkisinin Araştırılması, Tekstil ve Mühendis, 17(78), 20-24.
  • Kaynak, H.K., Babaarslan, O., (2016), Effects of Filament Linear Density on the Comfort Related Properties of Polyester Knitted Fabrics, Fibres & Textiles in Eastern Europe, 24(1), 89-94.
  • Demiryürek, O., Uysaltürk, D., (2013), Thermal Comfort Properties of Viloft/Cotton and Viloft/Polyester Blended Knitted Fabrics, Textile Research Journal, 83(16), 1740–1753.
  • Cimilli, S., Nergis, B.U., Candan, C., Özdemir, M., (2010), A Comparative Study of Some Comfort-related Properties of Socks of Different Fiber Types, Textile Research Journal, 80(10), 948-957.
  • Demiröz Gün, A, (2011), Dimensional, Physical and Thermal Comfort Properties of Plain Knitted Fabrics Made from Modal Viscose Yarns Having Microfibers and Conventional Fibers, Fibers and Polymers, 12(2), 258-267.
  • Özkan, E.T., Meric, B., (2015), Thermophysiological Comfort Properties of Different Knitted Fabrics Used in Cycling Clothes, Textile Research Journal, 85(1), 62-70.
  • Chidambaram, P., Govind, R., Venkataraman, K.C., (2011), The Effect of Loop Length and Yarn Linear Density on the Thermal Properties of Bamboo Knitted Fabric, Autex Research Journal, 11(4), 102-105.
  • Liu, Y., Hu, H., (2011), Compression Property and Air Permeability of Weft Knitted Spacer Fabrics, Journal of the Textile Institute, 102 (4), 366-372.
  • Gülşen, G., Ala, D.M., (2015), An Investigation About Relation Between Comfort Features and Selected Structural Parameters of Knitted Fabrics, 15th AUTEX World Textile Conference, June 10-12, Bucharest, Romania.
  • Sitotaw, D., (2016), Effect of Twist Multipliers on Air Permeability of Single Jersey and 1x1 Rib Fabrics, Journal of Textile and Apparel, Technology and Management, 10(1), 1-8.
  • Wilbik-Hałgas, B., Danych, R., Więcek, B., Kowalski, K., (2006), Air and Water Vapour Permeability in Double-Layered Knitted Fabrics with Different Raw Materials, Fibres & Textiles in Eastern Europe, 14(3), 77-80.
  • Kanakaraj, P., Ramachandran, R., Dasaradan, B.S., (2014), Development of Multi-Layer Fabric on a Flat Knitting Machine, Journal of Engineered Fibers and Fabrics, 9(2), 25-31.
  • Kane, C.D., Patil, U.J., Sudhakar, P., (2007), Studies on the Influence of Knit Structure and Stitch Length on Ring and Compact Yarn Single Jersey Fabric Properties, Textile Research Journal, 77(8), 572-582.
  • Nazir, A., Hussain, T., Ahmad, F., Faheem, S., (2014), Effect of Knitting Parameters on Moisture Management and Air Permeability of Interlock Fabrics, Autex Research Journal, 14(1), 39-46.
  • Sarı, B., Oğlakcıoğlu, N., (2014), Effect of Production Parameters on Permeability Properties of Compression Stockings, 2nd International Congress on Healthcare and Medical Textiles, 117-118, September 25-26, Izmir.
  • Marmaralı, A., (2003), Dimensional and Physical Properties of Cotton/Spandex Single Jersey Fabrics, Textile Research Journal, 73(1), 11-14.
  • Bhattacharya, S.S., Ajmeri, J.R., (2014), Air Permeability of Knitted Fabrics Made From Regenerated Cellulosic Fibres, International Journal of Engineering Research and Development, 10(7), 16-22.
  • Bhattacharya, S.S., Ajmeri, J.R., (2013), Investigation of Air Permeability of Cotton & Modal Knitted Fabrics, International Journal of Engineering Research and Development, 6(12), 1-6.
  • Rahman, S., Smriti, S.A., Siddiqa, F., (2015), Investigate the Relation Among Thickness, Relative Porosity and Air Permeability of Different Types of Knitted Fabrics, International Journal of Current Engineering and Technology, 5(6), 3907-3910.
  • Ibrahim, N.A., Khalifa, T.F., El-Hossamy, M.B., Tawfik, T. M., (2010), Effect of Knit Structure and Finishing Treatments on Functional and Comfort Properties of Cotton Knitted Fabrics, Journal of Industrial Textiles, 40(1), 49-64.
  • Nazir, A., Hussain, T., Zia, Q., Afzal, M.A., (2014), Improving Thermo-Physiological Comfort of Polyester/Cotton Knits by Caustic and Cellulases Treatments, AUTEX Research Journal, 14(3), 200-204.
  • Ibrahim, N.A., Ibrahim, D.F., Elzairy, W.M., Eid, B.M., Tawfik, T.M., (2016), Options for Enhancing Functional Properties of Knitted Cotton Fabrics, Advance Research in Textile Engineering, 1(1), 1-7.
  • Mert, E., Oğlakcıoğlu, N., Bal, Ş., Marmaralı, A., (2014), Effects of Calendering and Milling Processes on Clothing Comfort Properties of Suit Fabrics, Tekstil ve Konfeksiyon, 24(2), 212-218.
  • Akçakoca Kumbasar, E.P., Marmaralı, A., Oğlakcıoğlu, N., (2011), Finishing Treatment Effects on Thermal Comfort Properties of Three-Yarn Fleece Fabrics, AATCC Review, 11(4), 46-51.
  • Mavruz, S., Oğulata, R.T., (2009), Investigation and Statistical Prediction of Air Permeability of Cotton Knitted Fabrics, Tekstil ve Konfeksiyon, 19(1), 29-38.
  • Oğulata, R. T., Mavruz, S., (2010), Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics, Fibres & Textiles in Eastern Europe, 18(5), 71-75.
  • Oğulata, R. T., Mavruz, S., (2011), Optimization of Air Permeability of Knitted Fabrics with the Taguchi Approach, Journal of the Textile Institute, 102(5), 395-404.
  • Mezarcıöz, S., Mezarcıöz, S., Oğulata, R.T., (2014), Prediction of Air Permeability of Knitted Fabrics by means of Computational Fluid Dynamics, Tekstil ve Konfeksiyon, 24(2), 202-211.
  • Oğlakcıoğlu, N., Kyosev, Y., (2011), Investigation About the Air Permeability of Weft Knitted Structures, Buletinul Institutului Politehnic Dın Iasi, LVII, 4, 23-31.
  • Gürkan Ünal, P., Üreyen, M.E., Mecit, D., (2012), Predicting Properties of Single Jersey Fabrics Using Regression and Artificial Neural Network Models, Fibers and Polymers, 13(1), 87-95.
  • Afzal, A., Hussain, T., Malik, M.H., Rasheed, A., Ahmad, S., Basit, A., Nazir, A., (2014), Investigation and Modeling of Air Permeability of Cotton/Polyester Blended Double Layer Interlock Knitted Fabrics, Fibers and Polymers, 15(7), 1539-1547.
  • Belkacemi, K., Broadbent, A.D., (1999), Air Flow through Textiles at High Differential Pressures, Textile Research Journal, 69(1), 52-58.
  • Gibson, P.W., Desabrais, K., Godfrey, T., (2012), Dynamic Permeability of Porous Elastic Fabrics, Journal of Engineered Fibers and Fabrics, Special Issue - July 2012- Fibers, 29-36.
  • Babaarslan, O., Kaynak, H.K., (2012), Air Permeability of Windproof Polyester Microfilament Fabrics at Different Pressure Drop Values, Fiber Society 2012 Spring Conference: Fiber Research for Tomorrow's Applications.
  • Brasquet, C., Le Cloirec, P., (2000), Pressure Drop Through Textile Fabrics-Experimental Data Modelling Using Classical Models And Neural Networks, Chemical Engineering Science, 55, 2767-2778.
  • Gibson, P., Elbaz Elsaiid, A., Kendrick, C.E., Rivin, D., Charmchi, M., (1997), A Test Method to Determine the Relative Humidity Dependence of The Air Permeability of Woven Textile Fabrics, Journal of Testing and Evaluation, 25, 416-423.
  • Hair, J.F., Black, W.C., Anderson, R.E., Babin, B.J., (2010), Multivariate Data Analysis (7th ed), Pearson Education Limited, UK.
  • Hsieh, Y. L., (1995), Liquid Transport in Fabric Structures, Textile Research Journal, 65(5), 299-307.
  • Hearle, J.W.S., (2007), Physical Structure and Properties of Cotton, in Cotton: Science and Technology, Woodhead Publishing Limited, Cambridge.

Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi

Yıl 2017, Cilt: 24 Sayı: 108, 260 - 268, 31.12.2017

Öz

Hava geçirgenliği,
giyim konfor özellikleri arasında önemli bir yere sahiptir. Hem ısı
transferinin daha kolay yapılmasını hem de nefes alabilirlik özelliği ile
kişinin daha konforlu hissetmesini sağlayan bu özellik, birçok parametreden
etkilenen kompleks bir niteliktir. Bu çalışma kapsamında hava geçirgenliği
kumaş özellikleri ile birlikte basınç farkı da dikkate alınarak öngörülmüştür.
Varyans analizi sonuçları, elde edilen modelin anlamlı
olduğunu ortaya koymuş ve hava geçirgenliğinin yüksek güvenilirlikte
tahminlenebildiğini göstermiştir. Çalışmada ayrıca, basınç farkının hava
geçirgenliği özelliğine etkisi detaylı olarak incelenerek ve kumaşların basınç
artışına bağlı davranışları analiz edilmiştir. Sonuçlar, uygulanan basınç farkı
artışı ile hava geçirgenliği değerlerinin arttığını ve kumaş sıklığına bağlı
olarak bu artıştaki eğilimin değiştiğini ortaya koymuştur. Bu durum, hava
geçirgenliği ve gözeneklilik arasındaki ilişkiye bağlı olarak irdelenmiştir.
Seyrek kumaşlarda, özellikle yüksek basınç farklarındaki hava akımlarında,
kumaş yapısının deforme olduğu
ortaya konmuştur. 

Kaynakça

  • Marmaralı, A., Oğlakcıoğlu, N., (2013), Giysilerde Isıl Konfor, 11. Ulusal Tesisat Mühendisliği Kongresi, 1957-1963, 17-20 Nisan, İzmir.
  • Kırcı, T., Kanat, Z.E., Gülümser, T., Tarakçıoğlu, I., Taşkın, C., Çay, A., (2007), Tekstil Materyallerinde Gözenekliliğin Önemi, Tekstil & Teknik, 23(271), 180-186.
  • Akkış, B., (2009), Farklı İplik Numaralarından Örülmüş Değişik Örgü Tiplerinin Kumaşın Fiziksel Özelliklerine Etkisi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Kaplan, S., Okur, A., (2005), Kumasın Geçirgenlik-İletkenlik Özelliklerinin Giysi Termal Konforu Üzerindeki Etkileri, Tekstil Maraton, 2, 56-65.
  • Çay, A., Vassiliadis, S., Rangoussi, M., Tarakçıoğlu, I., (2007), Prediction of the Air Permeability of Woven Fabrics Using Neural Networks, International Journal of Clothing Science and Technology, 19(1-2), 18-35.
  • Çay, A., Tarakçıoğlu, I., (2008), Relation Between Fabric Porosity And Vacuum Extraction Efficiency: Energy Issues, Journal of the Textile Institute, 99(6), 499-504.
  • Vassiliadis, S., Rangoussi, M., Çay, A., Provatidis, C., (2010), Artificial Neural Networks and Their Applications in the Engineering of Fabrics, in Woven Fabric Engineering, Dubrovski, P.D. (Ed.), Sciyo, Rijeka.
  • Turan, R.B., Okur, A. (2008), Kumaşlarda Hava Geçirgenliği, Tekstil ve Mühendis, 15(72), 16-25.
  • Bozdoğan, S., (2008), Poliester Lif Özelliklerinin Örme Kumaşların Isıl Konfor ve Mekanik Özelliklerine Etkisi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Bhattacharya, S.S., Ajmeri, J.R., (2013), Factors Affecting Air Permeability of Viscose & Excel Single Jersey Fabric, International Journal of Engineering Research and Development, 5(7), 48-54.
  • Gupta D., Kothari V.K., Jhanji Y., (2014), Heat and Moisture Transport in Single Jersey Plated Fabrics, Indian Journal of Fibre & Textile Research, 39, 115-121.
  • Oğulata R.T., Mavruz S., (2010), Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics, Fibres &Textiles in Eastern Europe, 18, 71-75.
  • Bivainytė, A., Mikučionienė, D., (2011), Investigation on the Air and Water Vapour Permeability of Double-Layered Weft Knitted Fabrics, Fibres & Textiles in Eastern Europe, 19(3), 69-73.
  • Çoruh, E., (2015), Optimization of Comfort Properties of Single Jersey Knitted Fabrics, Fibres & Textiles in Eastern Europe, 23(4), 66-72.
  • Kaynak, H.K., Babaarslan, O., (2012), Filament İnceliğinin Mikrolif Örgü Spor Giysiliklerin Performans Özelliklerine Etkisinin Araştırılması, Tekstil ve Mühendis, 17(78), 20-24.
  • Kaynak, H.K., Babaarslan, O., (2016), Effects of Filament Linear Density on the Comfort Related Properties of Polyester Knitted Fabrics, Fibres & Textiles in Eastern Europe, 24(1), 89-94.
  • Demiryürek, O., Uysaltürk, D., (2013), Thermal Comfort Properties of Viloft/Cotton and Viloft/Polyester Blended Knitted Fabrics, Textile Research Journal, 83(16), 1740–1753.
  • Cimilli, S., Nergis, B.U., Candan, C., Özdemir, M., (2010), A Comparative Study of Some Comfort-related Properties of Socks of Different Fiber Types, Textile Research Journal, 80(10), 948-957.
  • Demiröz Gün, A, (2011), Dimensional, Physical and Thermal Comfort Properties of Plain Knitted Fabrics Made from Modal Viscose Yarns Having Microfibers and Conventional Fibers, Fibers and Polymers, 12(2), 258-267.
  • Özkan, E.T., Meric, B., (2015), Thermophysiological Comfort Properties of Different Knitted Fabrics Used in Cycling Clothes, Textile Research Journal, 85(1), 62-70.
  • Chidambaram, P., Govind, R., Venkataraman, K.C., (2011), The Effect of Loop Length and Yarn Linear Density on the Thermal Properties of Bamboo Knitted Fabric, Autex Research Journal, 11(4), 102-105.
  • Liu, Y., Hu, H., (2011), Compression Property and Air Permeability of Weft Knitted Spacer Fabrics, Journal of the Textile Institute, 102 (4), 366-372.
  • Gülşen, G., Ala, D.M., (2015), An Investigation About Relation Between Comfort Features and Selected Structural Parameters of Knitted Fabrics, 15th AUTEX World Textile Conference, June 10-12, Bucharest, Romania.
  • Sitotaw, D., (2016), Effect of Twist Multipliers on Air Permeability of Single Jersey and 1x1 Rib Fabrics, Journal of Textile and Apparel, Technology and Management, 10(1), 1-8.
  • Wilbik-Hałgas, B., Danych, R., Więcek, B., Kowalski, K., (2006), Air and Water Vapour Permeability in Double-Layered Knitted Fabrics with Different Raw Materials, Fibres & Textiles in Eastern Europe, 14(3), 77-80.
  • Kanakaraj, P., Ramachandran, R., Dasaradan, B.S., (2014), Development of Multi-Layer Fabric on a Flat Knitting Machine, Journal of Engineered Fibers and Fabrics, 9(2), 25-31.
  • Kane, C.D., Patil, U.J., Sudhakar, P., (2007), Studies on the Influence of Knit Structure and Stitch Length on Ring and Compact Yarn Single Jersey Fabric Properties, Textile Research Journal, 77(8), 572-582.
  • Nazir, A., Hussain, T., Ahmad, F., Faheem, S., (2014), Effect of Knitting Parameters on Moisture Management and Air Permeability of Interlock Fabrics, Autex Research Journal, 14(1), 39-46.
  • Sarı, B., Oğlakcıoğlu, N., (2014), Effect of Production Parameters on Permeability Properties of Compression Stockings, 2nd International Congress on Healthcare and Medical Textiles, 117-118, September 25-26, Izmir.
  • Marmaralı, A., (2003), Dimensional and Physical Properties of Cotton/Spandex Single Jersey Fabrics, Textile Research Journal, 73(1), 11-14.
  • Bhattacharya, S.S., Ajmeri, J.R., (2014), Air Permeability of Knitted Fabrics Made From Regenerated Cellulosic Fibres, International Journal of Engineering Research and Development, 10(7), 16-22.
  • Bhattacharya, S.S., Ajmeri, J.R., (2013), Investigation of Air Permeability of Cotton & Modal Knitted Fabrics, International Journal of Engineering Research and Development, 6(12), 1-6.
  • Rahman, S., Smriti, S.A., Siddiqa, F., (2015), Investigate the Relation Among Thickness, Relative Porosity and Air Permeability of Different Types of Knitted Fabrics, International Journal of Current Engineering and Technology, 5(6), 3907-3910.
  • Ibrahim, N.A., Khalifa, T.F., El-Hossamy, M.B., Tawfik, T. M., (2010), Effect of Knit Structure and Finishing Treatments on Functional and Comfort Properties of Cotton Knitted Fabrics, Journal of Industrial Textiles, 40(1), 49-64.
  • Nazir, A., Hussain, T., Zia, Q., Afzal, M.A., (2014), Improving Thermo-Physiological Comfort of Polyester/Cotton Knits by Caustic and Cellulases Treatments, AUTEX Research Journal, 14(3), 200-204.
  • Ibrahim, N.A., Ibrahim, D.F., Elzairy, W.M., Eid, B.M., Tawfik, T.M., (2016), Options for Enhancing Functional Properties of Knitted Cotton Fabrics, Advance Research in Textile Engineering, 1(1), 1-7.
  • Mert, E., Oğlakcıoğlu, N., Bal, Ş., Marmaralı, A., (2014), Effects of Calendering and Milling Processes on Clothing Comfort Properties of Suit Fabrics, Tekstil ve Konfeksiyon, 24(2), 212-218.
  • Akçakoca Kumbasar, E.P., Marmaralı, A., Oğlakcıoğlu, N., (2011), Finishing Treatment Effects on Thermal Comfort Properties of Three-Yarn Fleece Fabrics, AATCC Review, 11(4), 46-51.
  • Mavruz, S., Oğulata, R.T., (2009), Investigation and Statistical Prediction of Air Permeability of Cotton Knitted Fabrics, Tekstil ve Konfeksiyon, 19(1), 29-38.
  • Oğulata, R. T., Mavruz, S., (2010), Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics, Fibres & Textiles in Eastern Europe, 18(5), 71-75.
  • Oğulata, R. T., Mavruz, S., (2011), Optimization of Air Permeability of Knitted Fabrics with the Taguchi Approach, Journal of the Textile Institute, 102(5), 395-404.
  • Mezarcıöz, S., Mezarcıöz, S., Oğulata, R.T., (2014), Prediction of Air Permeability of Knitted Fabrics by means of Computational Fluid Dynamics, Tekstil ve Konfeksiyon, 24(2), 202-211.
  • Oğlakcıoğlu, N., Kyosev, Y., (2011), Investigation About the Air Permeability of Weft Knitted Structures, Buletinul Institutului Politehnic Dın Iasi, LVII, 4, 23-31.
  • Gürkan Ünal, P., Üreyen, M.E., Mecit, D., (2012), Predicting Properties of Single Jersey Fabrics Using Regression and Artificial Neural Network Models, Fibers and Polymers, 13(1), 87-95.
  • Afzal, A., Hussain, T., Malik, M.H., Rasheed, A., Ahmad, S., Basit, A., Nazir, A., (2014), Investigation and Modeling of Air Permeability of Cotton/Polyester Blended Double Layer Interlock Knitted Fabrics, Fibers and Polymers, 15(7), 1539-1547.
  • Belkacemi, K., Broadbent, A.D., (1999), Air Flow through Textiles at High Differential Pressures, Textile Research Journal, 69(1), 52-58.
  • Gibson, P.W., Desabrais, K., Godfrey, T., (2012), Dynamic Permeability of Porous Elastic Fabrics, Journal of Engineered Fibers and Fabrics, Special Issue - July 2012- Fibers, 29-36.
  • Babaarslan, O., Kaynak, H.K., (2012), Air Permeability of Windproof Polyester Microfilament Fabrics at Different Pressure Drop Values, Fiber Society 2012 Spring Conference: Fiber Research for Tomorrow's Applications.
  • Brasquet, C., Le Cloirec, P., (2000), Pressure Drop Through Textile Fabrics-Experimental Data Modelling Using Classical Models And Neural Networks, Chemical Engineering Science, 55, 2767-2778.
  • Gibson, P., Elbaz Elsaiid, A., Kendrick, C.E., Rivin, D., Charmchi, M., (1997), A Test Method to Determine the Relative Humidity Dependence of The Air Permeability of Woven Textile Fabrics, Journal of Testing and Evaluation, 25, 416-423.
  • Hair, J.F., Black, W.C., Anderson, R.E., Babin, B.J., (2010), Multivariate Data Analysis (7th ed), Pearson Education Limited, UK.
  • Hsieh, Y. L., (1995), Liquid Transport in Fabric Structures, Textile Research Journal, 65(5), 299-307.
  • Hearle, J.W.S., (2007), Physical Structure and Properties of Cotton, in Cotton: Science and Technology, Woodhead Publishing Limited, Cambridge.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nida Oğlakcıoğlu

Ahmet Çay Bu kişi benim

Burak Sarı

Yayımlanma Tarihi 31 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 24 Sayı: 108

Kaynak Göster

APA Oğlakcıoğlu, N., Çay, A., & Sarı, B. (2017). Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi. Tekstil Ve Mühendis, 24(108), 260-268.
AMA Oğlakcıoğlu N, Çay A, Sarı B. Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi. Tekstil ve Mühendis. Aralık 2017;24(108):260-268.
Chicago Oğlakcıoğlu, Nida, Ahmet Çay, ve Burak Sarı. “Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi”. Tekstil Ve Mühendis 24, sy. 108 (Aralık 2017): 260-68.
EndNote Oğlakcıoğlu N, Çay A, Sarı B (01 Aralık 2017) Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi. Tekstil ve Mühendis 24 108 260–268.
IEEE N. Oğlakcıoğlu, A. Çay, ve B. Sarı, “Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi”, Tekstil ve Mühendis, c. 24, sy. 108, ss. 260–268, 2017.
ISNAD Oğlakcıoğlu, Nida vd. “Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi”. Tekstil ve Mühendis 24/108 (Aralık 2017), 260-268.
JAMA Oğlakcıoğlu N, Çay A, Sarı B. Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi. Tekstil ve Mühendis. 2017;24:260–268.
MLA Oğlakcıoğlu, Nida vd. “Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi”. Tekstil Ve Mühendis, c. 24, sy. 108, 2017, ss. 260-8.
Vancouver Oğlakcıoğlu N, Çay A, Sarı B. Pamuklu Süprem Kumaşlarda Hava Geçirgenliğinin Basınç Farkına Bağlı Olarak Tahminlenmesi. Tekstil ve Mühendis. 2017;24(108):260-8.