Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating The Effect of Alkali Modification on Morphological and Chemical Structures of Vegetable Fibers Utilizable in Composite Material Production

Yıl 2017, Cilt: 24 Sayı: 108, 222 - 232, 31.12.2017

Öz

Cellulose based
materials such as vegetable fibers draw attention to be utilizable as filler or
reinforcement material particularly for polymers due to their ecologically
friendly structure, low density and sustainability. The studies which are
performed in order to enhance the usability of cellulose based fibers as
reinforcement materials become essential. In this study, commonly used vegetable
fibers for composite materials production such as flax, hemp, coir, sisal,
banana and jute fibers were treated with alkali, then chemical composition of
the fibers were tested, and structural properties of the fibers were analyzed
by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy
(SEM) and fluorescence microscopy. In case of the analysis results, it is
determined that alkali modification reduced the content of the non-cellulosic
components, changed the fluorescence color of the fibers regarding to the
change in  fiber chemical composition and
also roughened the fiber surface by creating cleaning effect on fiber surface. 

Kaynakça

  • Reddy, N., Yang, Y. (2005), Biofibers from Agricultural by Products for Industrial Applications, Trends in Biotechnology, 23(1), 22-7.
  • Fiore, V., Scalici, T., Valenza, A. (2014), Characterization of A New Natural Fiber from Arundodonax L. as Potential Reinforcement of Polymer Composites, Carbohydrate Polymers, 106, 77-83.
  • Sarıkanat, M., Seki, Y., Sever, K., Durmuşkahya, C. (2014), Determination of Properties of Althaea Officinalis L. (Marshmallow) Fibres as A Potential Plant Fibre in Polymeric Composite Materials, Composites Part B: Engineering, 57,180-186.
  • Seki, Y., Sarıkanat, M., Sever, K., Durmuşkahya, C. (2013), Extraction and Properties of Ferula Communis (Chakshir) Fibers as Novel Reinforcement for Composites Materials, Composites Part B: Engineering, 44, 517–523.
  • Indran, S., Raj, R.E. (2015), Characterization of New Natural Cellulosic Fiber from Cissus Quadrangularis Stem, Carbohydrate Polymers, 117, 392-399.
  • Haameem, J.A.M, Abdul Majid, M.S., Afendi, M., Marzuki, H.F.A., Fahmi, I., Gibson, A.G. (2016), Mechanical Properties of Napier Grass Fibre/Polyester Composites, Composite Structures, 136, 1-10.
  • Ridzuan, M., Majid, M.A., Afendi, M., Kanafiah, S.A., Zahri, J., Gibson, A. (2016), Characterisation of Natural Cellulosic Fibre from Pennisetum Purpureum Stem as Potential Reinforcement of Polymer Composites, Materials & Design, 89, 839-47.
  • Seki, Y., Seki, Y., Sarikanat, M., Sever, K., Durmuşkahya, C., Bozaci, E. (2016), Evaluation of Linden Fibre as A Potential Reinforcement Material for Polymer Composites, Journal of Industrial Textiles, 45(6), 1221-1238.
  • Bulut, Y., Erdoğan, Ü.H. (2011), Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı, Tekstil ve Mühendis, 18(82), 26-35.
  • Lewin, M. (2006), Handbook of Fiber Chemistry, 3. Baskı, Newyork: CRC Press.
  • Seki, Y. (2016), Doğal Lif Takviyeli Kompozit Liflerin Üretim ve Kullanım Özelliklerinin Araştırılması, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Belouadah, Z., Ati, A., Rokbi, M. (2015), Characterization of New Natural Cellulosic Fiber from Lygeum Spartum L., Carbohydrate Polymers, 134, 429-37.
  • Baiardo, M., Frisoni, G., Scandola, M., Licciardello, A. (2002), Surface Chemical Modification of Natural Cellulose Fibers, Journal of Applied Polymer Science, 83(1), 38-45.
  • Kalia, S., Kaith, B.S., Kaur, I. (2009), Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites—A Review, Polymer Engineering & Science, 49(7), 1253-1272.
  • Sever, K., Sarikanat, M., Seki, Y., Erkan, G., Erdogan, Ü.H., Erden, S. (2012). Surface Treatments of Jute Fabric: The Influence of Surface Characteristics on Jute Fabrics and Mechanical Properties of Jute/Polyester Composites, Industrial Crops and Products, 35(1), 22-30.
  • Bulut, Y., Aksit, A. (2013), A Comparative Study on Chemical Treatment of Jute Fiber: Potassium Dichromate, Potassium Permanganate and Sodium Perborate Trihydrate, Cellulose, 20(6), 3155-64.
  • Erdoğan, Ü.H., Seki, Y., Aydoğdu, G., Kutlu, B., Akşit, A. (2016), Effect of Different Surface Treatments on The Properties of Jute, Journal of Natural Fibers, 13, 158-171.
  • Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C., Zeng, H.M. (2001), The Effect of Fiber Treatment on The Mechanical Properties of Unidirectional Sisal-Reinforced Epoxy Composites, Composites Science and Technology, 61(10), 1437-1447.
  • Cao, Y., Shibata, S., Fukumoto, I. (2006),Mechanical Properties of Biodegradable Composites Reinforced with Bagasse Fibre Before and After Alkali Treatments, Composites Part A: Applied Science and Manufacturing, 37(3), 423-429.
  • Nam, T.H., Ogihara, S., Tung, N.H., Kobayashi, S. (2011), Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly(Butylene Succinate) Biodegradable Composites, Composites Part B: Engineering, 42(6), 1648-1656.
  • Kaewkuk, S., Sutapun, W., Jarukumjorn, K. (2013), Effects of Interfacial Modification and Fiber Content on Physical Properties of Sisal Fiber/Polypropylene Composites, Composites Part B: Engineering, 45(1), 544-549.
  • Andıç-Çakır, Ö., Sarıkanat, M., Tüfekçi, B.H., Demirci, C., Erdogan, Ü.H. (2014), Physical and Mechanical Properties of Randomly Oriented Coir Fiber–Cementitious Composites, Composites Part B: Engineering, 61, 49-54.
  • Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., Arbelaiz, A. (2016), The Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(Lactic Acid)/Sisal Fiber Composites, Composites Part A: Applied Science and Manufacturing, 84, 186-195.
  • Mwaikambo, L.Y., Ansell MP. (2002), Chemical Modification Of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization, Journal of Applied Polymer Science, 84, 2222–2234.
  • Islam, M.S., Pickering, K.L., Foreman, N.J. (2011), Influence of Alkali Fiber Treatment and Fiber Processing on The Mechanical Properties of Hemp/Epoxy Composites, Journal of Applied Polymer Science, 119(6), 3696-3707.
  • Cai, M., Takagi, H., Nakagaito, A.N., Li, Y., Waterhouse, G.I.N. (2016), Effect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-Reinforced Composites, Composites Part A: Applied Science and Manufacturing, 90, 589-597.
  • Orue, A., Jauregi, A., Pena-Rodriguez, C., Labidi, J., Eceiza, A., Arbelaiz, A. (2015), The Effect Of Surface Modifications On Sisal Fiber Properties And Sisal/Poly (Lactic Acid) Interface Adhesion, Composites Part B: Engineering, 73, 132–138.
  • Taib, R.M., Ariawan, D., Ishak, Z.A.M. (2014), Effects of Alkali Treatment on the Properties of Kenaf Fiber-Unsaturated Polyester Composites Prepared by Resin Transfer Molding, Molecular Crystals and Liquid Crystals, 603, 165-172.
  • Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D., Adhikari, B. (2010), Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment, Biosource Technology, 101(9), 3182-3187.
  • Boynard, C.A., Monteiro, S.N. ve d’Almeida, J.R.M. (2003), Aspects of Alkali Treatment of Sponge Gourd (Luffa cylindrica) Fibers on the Flexural Properties of Polyester Matrix Composites, Journal of Applied Polymer Science, 87(12), 1927-1932.
  • Ramadevi, P., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B. (2012). Effect of Alkali Treatment on Water Absorption of Single Cellulosic Abaca Fiber, Bioresources, 7(3), 3515-3524.
  • Edeerozey, A.M.M., Md Akil, H., Azhar, A.B., Zainal Ariffin, M.I. (2007), Chemical Modification of Kenaf Fibers, Materials Letters, 61(10), 2023-2025.
  • Corrales, F., Vilaseca, F., Llop, M., Gironès, J., Mendez, J.A., Mutje, P. (2007), Chemical Modification of Jute Fibers for The Production of Green-Composites, Journal of Hazardous Materials, 144(3), 730-735.
  • Masirek, R., Kulinski, Z., Chionna, D., Piorkowska, E., Pracella, M. (2007), Composites of Poly(L-Lactide) with Hemp Fibers: Morphology and Thermal and Mechanical Properties, Journal of Applied Polymer Science, 105(1), 255-268.
  • Xu, B., Cai, Z. (2008), Fabrication of A Superhydrophobic ZnO Nanorod Array Film on Cotton Fabrics via A Wet Chemical Route and Hydrophobic Modification, Applied Surface Science, 254(18), 5899-5904.
  • Frone, A.N., Berlioz, S., Chailan, J.F., Panaitescu, D.M. (2013), Morphology and Thermal Properties of PLA–Cellulose Nanofibers Composites, Carbohydrate Polymers, 91(1), 377-384.
  • Arbelaiz, A., Cantero, G., Fernández, B., Mondragon, I., Gañán, P., Kenny, J.M. (2005), Flax Fiber Surface Modifications: Effects on Fiber Physico Mechanical and Flax/Polypropylene Interface Properties, Polymer Composites, 26(3), 324-332. Basu, S., Saha, M.N., Chattopadhyay, D., Chakrabarti, K. (2009), Large-scale Degumming of Ramie Fibre Using a Newly Isolated Bacillus Pumilus DKS1 with High Pectate Lyase Activity, Journal of Industrial Microbiology & Biotechnology, 36(2), 239-245.
  • Yazıcıoğlu, G. (1996), Tekstil Mikroskopisi, Ege Üniversitesi, İzmir.
  • Davidson, M.W., Abramowitz, M. (2002), Optical Microscopy, Encyclopedia of Imaging Science and Technology,
  • Hafren, J. (2007), Excitation Wavelength-Specific Changes in Lignocellulosic Autofluorescence, Journal of Wood Science, 53, 358–360.
  • Fluorescent probes for plant imaging (2017). http://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/Fluorescent-Probes-for-Plant-Imaging.pdf, Ocak, 2017.
  • Sgriccia, N., Hawley, M.C., Misra. M. (2008), Characterization of Natural Fiber Surfaces and Natural Fiber Composites, Composites: Part A, 39, 1632–1637.
  • Sinha, E., Rout. S.K. (2009), Influence of Fiber Surface Treatment on Structural, Thermal and Mechanical Properties of Jute Fiber and Its Composite, Bulletin of Materials Science, 32(1), 35–76.
  • Zhang, J., Zhang, H., Zhang, J. (2014), Evaluation of Liquid Ammonia Treatment on Surface Characteristics of Hemp Fiber, Cellulose, 21, 569-579.
  • Duran, H. (2016), Bitkisel Lif Atıklarından Sürdürülebilir Selüloz Eldesi ve Karakterizasyonu, Yüksel lisans tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Bessadok, A., Langevin, D., Gouanvé, F., Chappey, C., Roudesli, S., Marais, S. (2009), Study of Water Sorption on Modified Agave Fibres, Carbohydrate Polymers, 76, 74–85.
  • Fan, M., Dail, D., Huang, B. (2012), Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform - Materials Analysis, Intech.
  • Zhou, F., Cheng, G., Jiang, B. (2014), Effect of Silane Treatment on Microstructure of Sisal Fibers, Applied Surface Science, 292, 806-812.
  • Kılınç, A.Ç., Atagür, M., Özdemir, O., Şen, I., Küçükdoğan, N., Sever, K., Seydibeyoğlu, O., Sarıkanat, M., Seki, Y. (2016), Manufacturing and Characterization of Vine Stem Reinforced High Density Polyethylene Composites, Composites Part B: Engineering, 91, 267-274.
  • Oh, S.Y., Yoo, D.I., Shin, Y., Seo, G. (2005), FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide, Carbohydrate Research, 340(3), 417-428.
  • Reddy, K.O., Uma Maheswari, C., Shukla, M., Song, J.I., Varada Rajulu, A. (2013), Tensile and Structural Characterization of Alkali Treated Borassus Fruit Fine Fibers, Composites Part B: Engineering, 44(1), 433-438.
  • Motaung, T.E., Anandjiwala, R.D. (2015), Effect of Alkali and Acid Treatment on Thermal Degradation Kinetics of Sugar Cane Bagasse, Industrial Crops and Products, 74, 472-477.
  • Yan, L., Chouw, N., Yuan, X. (2012), Improving the Mechanical Properties of Natural Fibre Fabric Reinforced Epoxy Composites by Alkali Treatment, Journal of Reinforced Plastics and Composites, 31(6), 425-437.
  • Akintayo, C.O., Azeez, M.A., Beuerman, S., Akintayo, E.T. (2016). Spectroscopic, Mechanical, and Thermal Characterization of Native and Modified Nigerian Coir Fibers, Journal of Natural Fibers, 13(5), 520-531.
  • Rokbi, M. (2011), Effect of Chemical Treatment on Flexure Properties of Natural Fiber-Reinforced Polyester Composite, Procedia Engineering, 10, 2092–2097.
  • Wambua, P., Ivens, J., Verpoest, I. (2003), Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics?, Composites Science and Technology, 63(9), 1259-1264.

Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi

Yıl 2017, Cilt: 24 Sayı: 108, 222 - 232, 31.12.2017

Öz

Yenilenebilir
ve sürdürülebilir üretimi, çevre dostu olması ve düşük yoğunluğu gibi
özellikleri nedeni ile selülozik liflerin özellikle polimerik malzemelerde takviye
materyali olarak kullanımı dikkat çekmektedir. Selüloz esaslı liflerin takviye
materyali olarak kullanılabilirliğini geliştirmek amacı ile yapılan çalışmalar
önem kazanmaktadır. Bu çalışma kapsamında, kompozit malzeme üretiminde yaygın
olarak kullanılan bitkisel liflerden keten, kenevir, Hindistan cevizi, sisal,
muz ve jüt liflerinin alkali ile modifikasyonu yapılmış, liflerin içerikleri
analiz edilmiş ve kimyasal yapıları fourier dönüşümlü kızılötesi spektroskopisi
(FTIR), morfolojik özellikleri ise taramalı elektron mikroskobu (SEM) ve
floresan mikroskop ile incelenmiştir. Analiz sonuçları incelendiğinde, alkali
işlemin lif yüzeyinde temizleme etkisi meydana getirerek lifteki selülozik
olmayan bileşenleri azalttığı, lif içeriğinde meydana gelen değişime bağlı
olarak verdiği floresan rengi değiştirdiği ve lif yüzeyini pürüzlendirdiği
belirlenmiştir.

Kaynakça

  • Reddy, N., Yang, Y. (2005), Biofibers from Agricultural by Products for Industrial Applications, Trends in Biotechnology, 23(1), 22-7.
  • Fiore, V., Scalici, T., Valenza, A. (2014), Characterization of A New Natural Fiber from Arundodonax L. as Potential Reinforcement of Polymer Composites, Carbohydrate Polymers, 106, 77-83.
  • Sarıkanat, M., Seki, Y., Sever, K., Durmuşkahya, C. (2014), Determination of Properties of Althaea Officinalis L. (Marshmallow) Fibres as A Potential Plant Fibre in Polymeric Composite Materials, Composites Part B: Engineering, 57,180-186.
  • Seki, Y., Sarıkanat, M., Sever, K., Durmuşkahya, C. (2013), Extraction and Properties of Ferula Communis (Chakshir) Fibers as Novel Reinforcement for Composites Materials, Composites Part B: Engineering, 44, 517–523.
  • Indran, S., Raj, R.E. (2015), Characterization of New Natural Cellulosic Fiber from Cissus Quadrangularis Stem, Carbohydrate Polymers, 117, 392-399.
  • Haameem, J.A.M, Abdul Majid, M.S., Afendi, M., Marzuki, H.F.A., Fahmi, I., Gibson, A.G. (2016), Mechanical Properties of Napier Grass Fibre/Polyester Composites, Composite Structures, 136, 1-10.
  • Ridzuan, M., Majid, M.A., Afendi, M., Kanafiah, S.A., Zahri, J., Gibson, A. (2016), Characterisation of Natural Cellulosic Fibre from Pennisetum Purpureum Stem as Potential Reinforcement of Polymer Composites, Materials & Design, 89, 839-47.
  • Seki, Y., Seki, Y., Sarikanat, M., Sever, K., Durmuşkahya, C., Bozaci, E. (2016), Evaluation of Linden Fibre as A Potential Reinforcement Material for Polymer Composites, Journal of Industrial Textiles, 45(6), 1221-1238.
  • Bulut, Y., Erdoğan, Ü.H. (2011), Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı, Tekstil ve Mühendis, 18(82), 26-35.
  • Lewin, M. (2006), Handbook of Fiber Chemistry, 3. Baskı, Newyork: CRC Press.
  • Seki, Y. (2016), Doğal Lif Takviyeli Kompozit Liflerin Üretim ve Kullanım Özelliklerinin Araştırılması, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Belouadah, Z., Ati, A., Rokbi, M. (2015), Characterization of New Natural Cellulosic Fiber from Lygeum Spartum L., Carbohydrate Polymers, 134, 429-37.
  • Baiardo, M., Frisoni, G., Scandola, M., Licciardello, A. (2002), Surface Chemical Modification of Natural Cellulose Fibers, Journal of Applied Polymer Science, 83(1), 38-45.
  • Kalia, S., Kaith, B.S., Kaur, I. (2009), Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites—A Review, Polymer Engineering & Science, 49(7), 1253-1272.
  • Sever, K., Sarikanat, M., Seki, Y., Erkan, G., Erdogan, Ü.H., Erden, S. (2012). Surface Treatments of Jute Fabric: The Influence of Surface Characteristics on Jute Fabrics and Mechanical Properties of Jute/Polyester Composites, Industrial Crops and Products, 35(1), 22-30.
  • Bulut, Y., Aksit, A. (2013), A Comparative Study on Chemical Treatment of Jute Fiber: Potassium Dichromate, Potassium Permanganate and Sodium Perborate Trihydrate, Cellulose, 20(6), 3155-64.
  • Erdoğan, Ü.H., Seki, Y., Aydoğdu, G., Kutlu, B., Akşit, A. (2016), Effect of Different Surface Treatments on The Properties of Jute, Journal of Natural Fibers, 13, 158-171.
  • Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C., Zeng, H.M. (2001), The Effect of Fiber Treatment on The Mechanical Properties of Unidirectional Sisal-Reinforced Epoxy Composites, Composites Science and Technology, 61(10), 1437-1447.
  • Cao, Y., Shibata, S., Fukumoto, I. (2006),Mechanical Properties of Biodegradable Composites Reinforced with Bagasse Fibre Before and After Alkali Treatments, Composites Part A: Applied Science and Manufacturing, 37(3), 423-429.
  • Nam, T.H., Ogihara, S., Tung, N.H., Kobayashi, S. (2011), Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly(Butylene Succinate) Biodegradable Composites, Composites Part B: Engineering, 42(6), 1648-1656.
  • Kaewkuk, S., Sutapun, W., Jarukumjorn, K. (2013), Effects of Interfacial Modification and Fiber Content on Physical Properties of Sisal Fiber/Polypropylene Composites, Composites Part B: Engineering, 45(1), 544-549.
  • Andıç-Çakır, Ö., Sarıkanat, M., Tüfekçi, B.H., Demirci, C., Erdogan, Ü.H. (2014), Physical and Mechanical Properties of Randomly Oriented Coir Fiber–Cementitious Composites, Composites Part B: Engineering, 61, 49-54.
  • Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., Arbelaiz, A. (2016), The Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(Lactic Acid)/Sisal Fiber Composites, Composites Part A: Applied Science and Manufacturing, 84, 186-195.
  • Mwaikambo, L.Y., Ansell MP. (2002), Chemical Modification Of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization, Journal of Applied Polymer Science, 84, 2222–2234.
  • Islam, M.S., Pickering, K.L., Foreman, N.J. (2011), Influence of Alkali Fiber Treatment and Fiber Processing on The Mechanical Properties of Hemp/Epoxy Composites, Journal of Applied Polymer Science, 119(6), 3696-3707.
  • Cai, M., Takagi, H., Nakagaito, A.N., Li, Y., Waterhouse, G.I.N. (2016), Effect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-Reinforced Composites, Composites Part A: Applied Science and Manufacturing, 90, 589-597.
  • Orue, A., Jauregi, A., Pena-Rodriguez, C., Labidi, J., Eceiza, A., Arbelaiz, A. (2015), The Effect Of Surface Modifications On Sisal Fiber Properties And Sisal/Poly (Lactic Acid) Interface Adhesion, Composites Part B: Engineering, 73, 132–138.
  • Taib, R.M., Ariawan, D., Ishak, Z.A.M. (2014), Effects of Alkali Treatment on the Properties of Kenaf Fiber-Unsaturated Polyester Composites Prepared by Resin Transfer Molding, Molecular Crystals and Liquid Crystals, 603, 165-172.
  • Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D., Adhikari, B. (2010), Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment, Biosource Technology, 101(9), 3182-3187.
  • Boynard, C.A., Monteiro, S.N. ve d’Almeida, J.R.M. (2003), Aspects of Alkali Treatment of Sponge Gourd (Luffa cylindrica) Fibers on the Flexural Properties of Polyester Matrix Composites, Journal of Applied Polymer Science, 87(12), 1927-1932.
  • Ramadevi, P., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B. (2012). Effect of Alkali Treatment on Water Absorption of Single Cellulosic Abaca Fiber, Bioresources, 7(3), 3515-3524.
  • Edeerozey, A.M.M., Md Akil, H., Azhar, A.B., Zainal Ariffin, M.I. (2007), Chemical Modification of Kenaf Fibers, Materials Letters, 61(10), 2023-2025.
  • Corrales, F., Vilaseca, F., Llop, M., Gironès, J., Mendez, J.A., Mutje, P. (2007), Chemical Modification of Jute Fibers for The Production of Green-Composites, Journal of Hazardous Materials, 144(3), 730-735.
  • Masirek, R., Kulinski, Z., Chionna, D., Piorkowska, E., Pracella, M. (2007), Composites of Poly(L-Lactide) with Hemp Fibers: Morphology and Thermal and Mechanical Properties, Journal of Applied Polymer Science, 105(1), 255-268.
  • Xu, B., Cai, Z. (2008), Fabrication of A Superhydrophobic ZnO Nanorod Array Film on Cotton Fabrics via A Wet Chemical Route and Hydrophobic Modification, Applied Surface Science, 254(18), 5899-5904.
  • Frone, A.N., Berlioz, S., Chailan, J.F., Panaitescu, D.M. (2013), Morphology and Thermal Properties of PLA–Cellulose Nanofibers Composites, Carbohydrate Polymers, 91(1), 377-384.
  • Arbelaiz, A., Cantero, G., Fernández, B., Mondragon, I., Gañán, P., Kenny, J.M. (2005), Flax Fiber Surface Modifications: Effects on Fiber Physico Mechanical and Flax/Polypropylene Interface Properties, Polymer Composites, 26(3), 324-332. Basu, S., Saha, M.N., Chattopadhyay, D., Chakrabarti, K. (2009), Large-scale Degumming of Ramie Fibre Using a Newly Isolated Bacillus Pumilus DKS1 with High Pectate Lyase Activity, Journal of Industrial Microbiology & Biotechnology, 36(2), 239-245.
  • Yazıcıoğlu, G. (1996), Tekstil Mikroskopisi, Ege Üniversitesi, İzmir.
  • Davidson, M.W., Abramowitz, M. (2002), Optical Microscopy, Encyclopedia of Imaging Science and Technology,
  • Hafren, J. (2007), Excitation Wavelength-Specific Changes in Lignocellulosic Autofluorescence, Journal of Wood Science, 53, 358–360.
  • Fluorescent probes for plant imaging (2017). http://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/Fluorescent-Probes-for-Plant-Imaging.pdf, Ocak, 2017.
  • Sgriccia, N., Hawley, M.C., Misra. M. (2008), Characterization of Natural Fiber Surfaces and Natural Fiber Composites, Composites: Part A, 39, 1632–1637.
  • Sinha, E., Rout. S.K. (2009), Influence of Fiber Surface Treatment on Structural, Thermal and Mechanical Properties of Jute Fiber and Its Composite, Bulletin of Materials Science, 32(1), 35–76.
  • Zhang, J., Zhang, H., Zhang, J. (2014), Evaluation of Liquid Ammonia Treatment on Surface Characteristics of Hemp Fiber, Cellulose, 21, 569-579.
  • Duran, H. (2016), Bitkisel Lif Atıklarından Sürdürülebilir Selüloz Eldesi ve Karakterizasyonu, Yüksel lisans tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Bessadok, A., Langevin, D., Gouanvé, F., Chappey, C., Roudesli, S., Marais, S. (2009), Study of Water Sorption on Modified Agave Fibres, Carbohydrate Polymers, 76, 74–85.
  • Fan, M., Dail, D., Huang, B. (2012), Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform - Materials Analysis, Intech.
  • Zhou, F., Cheng, G., Jiang, B. (2014), Effect of Silane Treatment on Microstructure of Sisal Fibers, Applied Surface Science, 292, 806-812.
  • Kılınç, A.Ç., Atagür, M., Özdemir, O., Şen, I., Küçükdoğan, N., Sever, K., Seydibeyoğlu, O., Sarıkanat, M., Seki, Y. (2016), Manufacturing and Characterization of Vine Stem Reinforced High Density Polyethylene Composites, Composites Part B: Engineering, 91, 267-274.
  • Oh, S.Y., Yoo, D.I., Shin, Y., Seo, G. (2005), FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide, Carbohydrate Research, 340(3), 417-428.
  • Reddy, K.O., Uma Maheswari, C., Shukla, M., Song, J.I., Varada Rajulu, A. (2013), Tensile and Structural Characterization of Alkali Treated Borassus Fruit Fine Fibers, Composites Part B: Engineering, 44(1), 433-438.
  • Motaung, T.E., Anandjiwala, R.D. (2015), Effect of Alkali and Acid Treatment on Thermal Degradation Kinetics of Sugar Cane Bagasse, Industrial Crops and Products, 74, 472-477.
  • Yan, L., Chouw, N., Yuan, X. (2012), Improving the Mechanical Properties of Natural Fibre Fabric Reinforced Epoxy Composites by Alkali Treatment, Journal of Reinforced Plastics and Composites, 31(6), 425-437.
  • Akintayo, C.O., Azeez, M.A., Beuerman, S., Akintayo, E.T. (2016). Spectroscopic, Mechanical, and Thermal Characterization of Native and Modified Nigerian Coir Fibers, Journal of Natural Fibers, 13(5), 520-531.
  • Rokbi, M. (2011), Effect of Chemical Treatment on Flexure Properties of Natural Fiber-Reinforced Polyester Composite, Procedia Engineering, 10, 2092–2097.
  • Wambua, P., Ivens, J., Verpoest, I. (2003), Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics?, Composites Science and Technology, 63(9), 1259-1264.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yasemin Seki Bu kişi benim

Figen Selli Bu kişi benim

Korhan Şen Bu kişi benim

Ümit Halis Erdoğan

Yayımlanma Tarihi 31 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 24 Sayı: 108

Kaynak Göster

APA Seki, Y., Selli, F., Şen, K., Erdoğan, Ü. H. (2017). Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi. Tekstil Ve Mühendis, 24(108), 222-232.
AMA Seki Y, Selli F, Şen K, Erdoğan ÜH. Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi. Tekstil ve Mühendis. Aralık 2017;24(108):222-232.
Chicago Seki, Yasemin, Figen Selli, Korhan Şen, ve Ümit Halis Erdoğan. “Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik Ve Kimyasal Yapılarındaki Değişimin İncelenmesi”. Tekstil Ve Mühendis 24, sy. 108 (Aralık 2017): 222-32.
EndNote Seki Y, Selli F, Şen K, Erdoğan ÜH (01 Aralık 2017) Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi. Tekstil ve Mühendis 24 108 222–232.
IEEE Y. Seki, F. Selli, K. Şen, ve Ü. H. Erdoğan, “Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi”, Tekstil ve Mühendis, c. 24, sy. 108, ss. 222–232, 2017.
ISNAD Seki, Yasemin vd. “Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik Ve Kimyasal Yapılarındaki Değişimin İncelenmesi”. Tekstil ve Mühendis 24/108 (Aralık 2017), 222-232.
JAMA Seki Y, Selli F, Şen K, Erdoğan ÜH. Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi. Tekstil ve Mühendis. 2017;24:222–232.
MLA Seki, Yasemin vd. “Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik Ve Kimyasal Yapılarındaki Değişimin İncelenmesi”. Tekstil Ve Mühendis, c. 24, sy. 108, 2017, ss. 222-3.
Vancouver Seki Y, Selli F, Şen K, Erdoğan ÜH. Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi. Tekstil ve Mühendis. 2017;24(108):222-3.