Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 33 Sayı: 2, 169 - 175, 30.06.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1166800

Öz

Kaynakça

  • [1] Simoncic B, Tomsic B. 2010. Structures of novel antimicrobial agents for textiles-A review. Textile Research Journal 80(16),1721-1737.
  • [2] Schindler WD, Hauser PJ. 2004. Chemical finishing of textiles. Woodhead Publishing Limited. Cambridge. England,165-174. ISBN 1 85573 905 4.
  • [3] Shahidi S, Wiener J. 2012. Antibacterial agents in textile industry. Bobbarala V. (Editor). Antimicrobial agents. IntechOpen, 387-406. DOI: 10.5772/46246
  • [4] Joshi M, Wazed Ali S, Purwar R, Rajendran S. 2009. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian Journal of Fibre & Textile Research, 34, 295-304.
  • [5] Landage SM, Wasif AI. 2012. Nanosilver – An effective antimicrobial agent for finishing of textiles. International Journal of Engineering Sciences & Emerging Technologies, 4(1), 66-78.
  • [6] Gupta D, Bhaumik S. 2007. Antimicrobial treatments for textiles. Indian Journal of Fibre & Textile Research, 32, 254-263.
  • [7] Singh R, Jain A, Panwar S, Gupta D, Khare SK. 2005. Antimicrobial activity of some natural dyes. Dyes and Pigments, 66 (2), 99-102.
  • [8] Szostak-Kotowa J. 2004. Biodeterioration of textiles. International Biodeterioration & Biodegradation, 53 (3), 165-170.
  • [9] Wöhrle D, Schnurpfeil G, Makarov SG, Kazarin A, Suvorova ON. 2012. Practical applications of phthalocyanines-from dyes and pigments to materials for optical, electronic and photo – electronic devices. Macroheterocycles, 5 (3), 191-202. DOI: 10.6060/mhc2012.120990w
  • [10] Gregory P. 2000. Industrial applications of phthalocyanines. Journal of Porphyrins and Phthalocyanines, 4(4), 432-437.
  • [11] Moser FH, Thomas AL. 1963. Phthalocyanine compounds (American Chemical Society Monograph Series Vol. No. 157.). Reinhold Publishing Corporation. New York, 292-307.
  • [12] Kadish KM, Smith KM, Guilard R (Editors). 2003. The porphyrin handbook: Volume 19 applications of phthalocyanines. Academic Press. San Diego. ISBN: 978-0-08-092393-2.
  • [13] Özgüney AT, Kantar C, Saral P, Seventekin N, Şaşmaz S. 2013. Investigation of fastness properties and antibacterial effect of metallophthalocyanine (M:Zn) containing eugenol printed on cotton fabric. Tekstil ve Konfeksiyon, 23 (3), 261-266.
  • [14] Özdemir Saral P, Özgüney AT, Kaya Kantar G, Şaşmaz S, Seventekin N. 2016. An investigation of fastness and antibacterial properties of cotton fabric coloured with water-soluble zinc phthalocyanine containing azo groups. Tekstil ve Konfeksiyon, 26 (1), 92-99.
  • [15] Kantar C, Atacı E, Şaşmaz S. 2014. Water-soluble phthalocyanines containing azo dye; microwave-assisted synthesis and photochemical properties of ZnPcs. Turkish Journal of Chemistry, 38 (6), 1185-1200.
  • [16] Rahimi S, Moradi M. 2021. Photo-induced antimicrobial agents for textile applications. Mondal Md IH (Editör). Antimicrobial textiles from natural resources (The Textile Institute Book Series). Woodhead Publishing, 217-258. ISBN 978-0-12-821485-5.
  • [17] Galstyan A. 2021. Turning photons into drugs: Phthalocyanine-based photosensitizers as efficient photoantimicrobials. Chemistry-A European Journal, 27 (6), 1903-1920.
  • [18] Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. 1996. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria. Journal of Photochemistry and Photobiology B: Biology, 32, 159–164.
  • [19] Ryskova L, Buchta V, Karaskova M, Rakusan J, Cerny J, Slezak R. 2013. In vitro antimicrobial activity of light-activated phthalocyanines. Central European Journal of Biology, 8 (2), 168–177.
  • [20] Masilela N, Kleyi P, Tshentu Z, Priniotakis G, Westbroek P, Nyokong T. 2013. Photodynamic inactivation of Staphylococcus aureus using low symmetrically substituted phthalocyanines supported on a polystyrene polymer fiber. Dyes and Pigments, 96, 500-508.
  • [21] Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. 2000. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrobial Agents and Chemotherapy, 44 (3), 522–527.
  • [22] Polony R, Reinert G, Hölzle G, Pugin A, Vonderwahl R. 1985. Phthalocyanine compounds and anti-microbial use. US Patent 4,530,924.
  • [23] Hölzle G, Reinert G, Polony R. 1984. Process for bleaching textiles and for combating microorganisms with sulphonated phthalocyanine carrying halogen or pseudohalogen substituents as photoactivator, US Patent 4,456,452.
  • [24] Polony R, Reinert G, Hölzle G, Pugin A, Vonderwahl R. 1982. Process for combating micro-organisms, and novel phthalocyanine compounds. US Patent 4,318,883.
  • [25] Donzello MP, Ercolani C, Novakova V, Zimcik P, Stuzhin PA. 2016. Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information. Coordination Chemistry Reviews, 309, 107-179.
  • [26] Zimcik P, Miletin M, Kostka M, Schwarz J, Musil Z, Kopecky K. 2004. Synthesis and comparison of photodynamic activity of alkylheteroatom substituted azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 163, 21-28.
  • [27] Park JM, Song CJ, Yao W, Jung CY, Hyun IH, Seong DH, Jaung JY. 2015. Synthesis of carbohydrate-conjugated azaphthalocyanine complexes for PDT. Tetrahedron Letters, 56, 4967-4970.
  • [28] Mørkved EH, Andreassen T, Novakova V, Zimcik P. 2009. Zinc azaphthalocyanines with thiophen-2-yl, 5-methylthiophen-2-yl and pyridin-3-yl peripheral substituents: Additive substituent contributions to singlet oxygen production. Dyes and Pigments, 82, 276-285.
  • [29] Kostka M, Zimcik P, Miletin M, Klemera P, Kopecky K, Musil Z. 2006. Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 178, 16–25.
  • [30] Kudrevich SV, Van Lier JE. 1996. Azaanalogs of phthalocyanine: syntheses and properties. Coordination Chemistry Reviews, 156, 163-182.
  • [31] Zimcik P, Miletin M, Ponec J, Kostka M, Fiedler Z. 2003. Synthesis and studies on photodynamic activity of new water-soluble azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 155, 127–131.
  • [32] Güzel E, Arslan BS, Atmaca GY, Nebioğlu M, Erdoğmuş A. 2019. High photosensitized singlet oxygen generating zinc and chloroindium phthalocyanines bearing (4-isopropylbenzyl) oxy groups as potential agents for photophysicochemical applications. ChemistrySelect, 4, 515-520.
  • [33] Rosenthal I. 1991. Phthalocyanines as photodynamic sensitizers. Photochemistry and Photobiology, 53 (6), 859-870.
  • [34] Swati, Ginni, Karnawat R, Sharma IK, Verma PS. 2011. Synthesis, characterisation and antimicrobial screening of some azo compounds. International Journal of Applied Biology and Pharmaceutical Technology, 2 (2), 332-338.
  • [35] Pagariya RF. 2018. Synthesis and in vitro antibacterial evaluation of 4- chlorophenol incorporated azo dyes molecules. International Journal of Universal Science and Technology, 3 (2), 112-117.
  • [36] Pandey G, Narang KK. 2005. Synthesis, characterization, spectral studies and antifungal activity of Mn (II), Fe (II), Co (II), Ni (II), Cu (ll) and Zn (II) complexes with 2-(4-sulphophenylazo)-l,8-dihydroxy-3,6-napthalene disulphonic acid trisodium salt. Bioinorganic Chemistry and Applications, 3 (3-4), 217-238.
  • [37] Patel AU. 2009. Synthesis, characterization and antimicrobial activity of metal chelates of 5-(4-N, N-diethylamino sulfonyl phenyl azo)-8-hydorxy quinoline. E-Journal of Chemistry 6 (4), 1247-1252.
  • [38] Kaya Kantar G, Kaya M, Şahin O, Şaşmaz S. 2018. Guaiacol substituted azaPCs: A novel synthesis method and investigation of photophysical properties. Journal of Structural Chemistry, 59 (3), 571-583.
  • [39] Kaya Kantar G, Faiz Ö, Şahin O, Şaşmaz S. 2017. Phthalocyanine and azaphthalocyanines containing eugenol: Synthesis, DNA interaction and comparison of lipase inhibition properties. Journal of Chemical Sciences, 129 (8), 1247-1256.
  • [40] Nakamura A, Ataka T, Segawa H, Takeuchi Y, Takematsu T. 1983. Structure-activity relationship of herbicidal 2,3-dicyano-5-substituted pyrazines. Agricultural and Biological Chemistry, 47 (7), 1555-1560.
  • [41] Ojala WH, Sudbeck EA, Lu LK, Richardson TI, Lovrien RE, Gleason W B. 1996. Complexes of lysine, histidine, and arginine with sulfonated azo dyes: Model systems for understanding the biomolecular recognition of glycosaminoglycans by proteins. Journal of the American Chemical Society, 118 (9), 2131-2142.
  • [42] Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28 (3), 603-661. Doi: 10.1128/CMR.00134-14.
  • [43] Balasubramanian D, Harper L, Shopsin B, Torres VJ. 2017. Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 75 (1), ftx005. doi: 10.1093/femspd/ftx005.
  • [44] Chung PY. 2016. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiology Letters, 363 (20), fnw219. Doi: 10.1093/femsle/fnw219.

A New Water-Soluble Zinc Azaphthalocyanine Containing Azo Groups: Synthesis, Characterization, Fastness and Antibacterial Properties on Cotton Fabric

Yıl 2023, Cilt: 33 Sayı: 2, 169 - 175, 30.06.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1166800

Öz

A novel water-soluble zinc azaphthalocyanine containing azo groups (Azo-ZnAzaPc) was synthesized and characterized using FT-IR, 1H NMR, 13C NMR, UV–vis, MS and elemental analysis. A dyeing experiment was performed on cationic cotton fabric with this dye via exhaustion process. The dyed fabric was examined for color fastness to light, water, washing, perspiration and rubbing according to ISO standards. Antibacterial properties of the fabric were evaluated against two types of bacteria: Staphylococcus Aureus (S. Aureus) and Klebsiella Pneumoniae (K. pneumoniae) according to ASTM E2149-01 and to AATCC 100 standards. Significant reduction of K. pneumoniae bacteria, rated as 95,91 %, was observed according to ASTM E2149-01 standard. Antibacterial activities and color fastness evalution results of the azaphthalocyanine and of the similar phthalocyanine structure were presented for comparison.

Kaynakça

  • [1] Simoncic B, Tomsic B. 2010. Structures of novel antimicrobial agents for textiles-A review. Textile Research Journal 80(16),1721-1737.
  • [2] Schindler WD, Hauser PJ. 2004. Chemical finishing of textiles. Woodhead Publishing Limited. Cambridge. England,165-174. ISBN 1 85573 905 4.
  • [3] Shahidi S, Wiener J. 2012. Antibacterial agents in textile industry. Bobbarala V. (Editor). Antimicrobial agents. IntechOpen, 387-406. DOI: 10.5772/46246
  • [4] Joshi M, Wazed Ali S, Purwar R, Rajendran S. 2009. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian Journal of Fibre & Textile Research, 34, 295-304.
  • [5] Landage SM, Wasif AI. 2012. Nanosilver – An effective antimicrobial agent for finishing of textiles. International Journal of Engineering Sciences & Emerging Technologies, 4(1), 66-78.
  • [6] Gupta D, Bhaumik S. 2007. Antimicrobial treatments for textiles. Indian Journal of Fibre & Textile Research, 32, 254-263.
  • [7] Singh R, Jain A, Panwar S, Gupta D, Khare SK. 2005. Antimicrobial activity of some natural dyes. Dyes and Pigments, 66 (2), 99-102.
  • [8] Szostak-Kotowa J. 2004. Biodeterioration of textiles. International Biodeterioration & Biodegradation, 53 (3), 165-170.
  • [9] Wöhrle D, Schnurpfeil G, Makarov SG, Kazarin A, Suvorova ON. 2012. Practical applications of phthalocyanines-from dyes and pigments to materials for optical, electronic and photo – electronic devices. Macroheterocycles, 5 (3), 191-202. DOI: 10.6060/mhc2012.120990w
  • [10] Gregory P. 2000. Industrial applications of phthalocyanines. Journal of Porphyrins and Phthalocyanines, 4(4), 432-437.
  • [11] Moser FH, Thomas AL. 1963. Phthalocyanine compounds (American Chemical Society Monograph Series Vol. No. 157.). Reinhold Publishing Corporation. New York, 292-307.
  • [12] Kadish KM, Smith KM, Guilard R (Editors). 2003. The porphyrin handbook: Volume 19 applications of phthalocyanines. Academic Press. San Diego. ISBN: 978-0-08-092393-2.
  • [13] Özgüney AT, Kantar C, Saral P, Seventekin N, Şaşmaz S. 2013. Investigation of fastness properties and antibacterial effect of metallophthalocyanine (M:Zn) containing eugenol printed on cotton fabric. Tekstil ve Konfeksiyon, 23 (3), 261-266.
  • [14] Özdemir Saral P, Özgüney AT, Kaya Kantar G, Şaşmaz S, Seventekin N. 2016. An investigation of fastness and antibacterial properties of cotton fabric coloured with water-soluble zinc phthalocyanine containing azo groups. Tekstil ve Konfeksiyon, 26 (1), 92-99.
  • [15] Kantar C, Atacı E, Şaşmaz S. 2014. Water-soluble phthalocyanines containing azo dye; microwave-assisted synthesis and photochemical properties of ZnPcs. Turkish Journal of Chemistry, 38 (6), 1185-1200.
  • [16] Rahimi S, Moradi M. 2021. Photo-induced antimicrobial agents for textile applications. Mondal Md IH (Editör). Antimicrobial textiles from natural resources (The Textile Institute Book Series). Woodhead Publishing, 217-258. ISBN 978-0-12-821485-5.
  • [17] Galstyan A. 2021. Turning photons into drugs: Phthalocyanine-based photosensitizers as efficient photoantimicrobials. Chemistry-A European Journal, 27 (6), 1903-1920.
  • [18] Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. 1996. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria. Journal of Photochemistry and Photobiology B: Biology, 32, 159–164.
  • [19] Ryskova L, Buchta V, Karaskova M, Rakusan J, Cerny J, Slezak R. 2013. In vitro antimicrobial activity of light-activated phthalocyanines. Central European Journal of Biology, 8 (2), 168–177.
  • [20] Masilela N, Kleyi P, Tshentu Z, Priniotakis G, Westbroek P, Nyokong T. 2013. Photodynamic inactivation of Staphylococcus aureus using low symmetrically substituted phthalocyanines supported on a polystyrene polymer fiber. Dyes and Pigments, 96, 500-508.
  • [21] Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. 2000. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrobial Agents and Chemotherapy, 44 (3), 522–527.
  • [22] Polony R, Reinert G, Hölzle G, Pugin A, Vonderwahl R. 1985. Phthalocyanine compounds and anti-microbial use. US Patent 4,530,924.
  • [23] Hölzle G, Reinert G, Polony R. 1984. Process for bleaching textiles and for combating microorganisms with sulphonated phthalocyanine carrying halogen or pseudohalogen substituents as photoactivator, US Patent 4,456,452.
  • [24] Polony R, Reinert G, Hölzle G, Pugin A, Vonderwahl R. 1982. Process for combating micro-organisms, and novel phthalocyanine compounds. US Patent 4,318,883.
  • [25] Donzello MP, Ercolani C, Novakova V, Zimcik P, Stuzhin PA. 2016. Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information. Coordination Chemistry Reviews, 309, 107-179.
  • [26] Zimcik P, Miletin M, Kostka M, Schwarz J, Musil Z, Kopecky K. 2004. Synthesis and comparison of photodynamic activity of alkylheteroatom substituted azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 163, 21-28.
  • [27] Park JM, Song CJ, Yao W, Jung CY, Hyun IH, Seong DH, Jaung JY. 2015. Synthesis of carbohydrate-conjugated azaphthalocyanine complexes for PDT. Tetrahedron Letters, 56, 4967-4970.
  • [28] Mørkved EH, Andreassen T, Novakova V, Zimcik P. 2009. Zinc azaphthalocyanines with thiophen-2-yl, 5-methylthiophen-2-yl and pyridin-3-yl peripheral substituents: Additive substituent contributions to singlet oxygen production. Dyes and Pigments, 82, 276-285.
  • [29] Kostka M, Zimcik P, Miletin M, Klemera P, Kopecky K, Musil Z. 2006. Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 178, 16–25.
  • [30] Kudrevich SV, Van Lier JE. 1996. Azaanalogs of phthalocyanine: syntheses and properties. Coordination Chemistry Reviews, 156, 163-182.
  • [31] Zimcik P, Miletin M, Ponec J, Kostka M, Fiedler Z. 2003. Synthesis and studies on photodynamic activity of new water-soluble azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 155, 127–131.
  • [32] Güzel E, Arslan BS, Atmaca GY, Nebioğlu M, Erdoğmuş A. 2019. High photosensitized singlet oxygen generating zinc and chloroindium phthalocyanines bearing (4-isopropylbenzyl) oxy groups as potential agents for photophysicochemical applications. ChemistrySelect, 4, 515-520.
  • [33] Rosenthal I. 1991. Phthalocyanines as photodynamic sensitizers. Photochemistry and Photobiology, 53 (6), 859-870.
  • [34] Swati, Ginni, Karnawat R, Sharma IK, Verma PS. 2011. Synthesis, characterisation and antimicrobial screening of some azo compounds. International Journal of Applied Biology and Pharmaceutical Technology, 2 (2), 332-338.
  • [35] Pagariya RF. 2018. Synthesis and in vitro antibacterial evaluation of 4- chlorophenol incorporated azo dyes molecules. International Journal of Universal Science and Technology, 3 (2), 112-117.
  • [36] Pandey G, Narang KK. 2005. Synthesis, characterization, spectral studies and antifungal activity of Mn (II), Fe (II), Co (II), Ni (II), Cu (ll) and Zn (II) complexes with 2-(4-sulphophenylazo)-l,8-dihydroxy-3,6-napthalene disulphonic acid trisodium salt. Bioinorganic Chemistry and Applications, 3 (3-4), 217-238.
  • [37] Patel AU. 2009. Synthesis, characterization and antimicrobial activity of metal chelates of 5-(4-N, N-diethylamino sulfonyl phenyl azo)-8-hydorxy quinoline. E-Journal of Chemistry 6 (4), 1247-1252.
  • [38] Kaya Kantar G, Kaya M, Şahin O, Şaşmaz S. 2018. Guaiacol substituted azaPCs: A novel synthesis method and investigation of photophysical properties. Journal of Structural Chemistry, 59 (3), 571-583.
  • [39] Kaya Kantar G, Faiz Ö, Şahin O, Şaşmaz S. 2017. Phthalocyanine and azaphthalocyanines containing eugenol: Synthesis, DNA interaction and comparison of lipase inhibition properties. Journal of Chemical Sciences, 129 (8), 1247-1256.
  • [40] Nakamura A, Ataka T, Segawa H, Takeuchi Y, Takematsu T. 1983. Structure-activity relationship of herbicidal 2,3-dicyano-5-substituted pyrazines. Agricultural and Biological Chemistry, 47 (7), 1555-1560.
  • [41] Ojala WH, Sudbeck EA, Lu LK, Richardson TI, Lovrien RE, Gleason W B. 1996. Complexes of lysine, histidine, and arginine with sulfonated azo dyes: Model systems for understanding the biomolecular recognition of glycosaminoglycans by proteins. Journal of the American Chemical Society, 118 (9), 2131-2142.
  • [42] Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28 (3), 603-661. Doi: 10.1128/CMR.00134-14.
  • [43] Balasubramanian D, Harper L, Shopsin B, Torres VJ. 2017. Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 75 (1), ftx005. doi: 10.1093/femspd/ftx005.
  • [44] Chung PY. 2016. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiology Letters, 363 (20), fnw219. Doi: 10.1093/femsle/fnw219.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler
Bölüm Makaleler
Yazarlar

Pinar Saral Özdemir 0000-0002-7503-4075

Günay Kaya Kantar 0000-0002-0259-0417

Arif Özgüney 0000-0003-3936-615X

Selami Şaşmaz 0000-0001-5311-7550

Erken Görünüm Tarihi 3 Temmuz 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 19 Eylül 2022
Kabul Tarihi 16 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 33 Sayı: 2

Kaynak Göster

APA Saral Özdemir, P., Kaya Kantar, G., Özgüney, A., Şaşmaz, S. (2023). A New Water-Soluble Zinc Azaphthalocyanine Containing Azo Groups: Synthesis, Characterization, Fastness and Antibacterial Properties on Cotton Fabric. Textile and Apparel, 33(2), 169-175. https://doi.org/10.32710/tekstilvekonfeksiyon.1166800

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.