Imidazolium and Ammonium-Based Ionic Liquids for Reactive Dyeing
Year 2023,
Volume: 33 Issue: 3, 269 - 276, 30.09.2023
Havva Nur Özdemir
,
Gülşah Ekin Kartal
,
Özgür Yasin Keskin
,
Yasemin Seki
Abstract
In this study, the effect of ionic liquids on the dyeing of cotton fabrics with reactive dyestuffs was investigated. For this purpose, 100% cotton fabrics were treated with imidazolium (1-ethyl-2,3-dimethylimidazolium ethyl sulfate- E) and ammonium (methyl-tri-n-butylammonium methyl sulfate- B) based ionic liquids with three different concentrations. To assess the effect of the treatments, the cotton fabrics were characterized by FT-IR, SEM and DSC. After this treatment, the cotton fibers were dyed with 1.0% o.w.f reactive dye. The K/S values were determined to evaluate the effect of ionic liquids on the dyeability of cotton fabrics and fastness analyses to washing, water and rubbing were conducted to examine the end-use properties of dyed fabrics. The results revealed that ionic liquids settled on the fabric surface and after each ionic liquid modification, the increasing intensity was observed with increasing ionic liquid concentrations at broad bands according to the FT-IR analysis. It was determined that the K/S value of the modified cotton fabric increased with increment in the concentration of ionic liquid E, especially. Considering the overall results, it is possible to state that ionic liquids which are implemented in this study are efficient in enhancing the dyeability of the cotton fabrics.
References
- 1. Andrade RS, Torres D, Ribeiro FR, Chiari-Andréo BG, Junior JAO, Iglesias M. 2017. Sustainable Cotton Dyeing in Nonaqueous Medium Applying Protic Ionic Liquids. ACS Sustainable Chemistry and Engineering 5 (10), 8756-8765.
- 2. Bianchini R, Cevasco G, Chiappe C, Pomelli CS, Douton MJR. 2015. Ionic Liquids Can Significantly Improve Textile Dyeing: An Innovative Application Assuring Economic and Environmental Benefits. ACS Sustainable Chemistry and Engineering 3 (9), 2303–2308.
- 3. Cheng D, Yu ZC, Lu S, Gong S, Li J, Wang B, Lu Y. 2017. Ultraviolet protection performance of cotton fabric modified by ionic liquid iron coordination complex. Textile Research Journal. 87 (8), 945-952.
- 4. Bentis A, Boukhriss A, Grancaric AN, Bouchti M, Achaby M, GmouhS. 2019. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 26, 2139-2153.
- 5. Seki Y, Altinisik A. 2020. Implementation of imidazolium and ammonium based ionic liquids and the effect on electrical conductivity of polypropylene fabrics. Polymer-Plastics Technology and Materials 59 (2), 130-140.
- 6. Seki Y, Altinisik A. 2020. Surface resistivity, surface wettability and thermal stability of the 1-ethyl-2,3-dimethylimidazolium ethyl sulfate and methyl-tri-n-butylammonium methyl sulfate modified polyethylene. Polymer-Plastics Technology and Materials 59 (7), 722-732.
- 7. Fang H, Li D, Xu L, Wang Y, Fei X, Tian J, Li Y. 2021. A reusable ionic liquid-grafted antibacterial cotton gauze wound dressing. Journal of Materials Science 56, 7598-7612.
- 8. Amalini AN, Haida MKN, Imran K, Haafiz MKM. 2019. Relationship between dissolution temperature and properties of oil palm biomass based-regenerated cellulose films prepared via ionic liquid. Materials Chemistry and Physics 221, 382-389.
- 9. Zhang J, Kitayam, H, Gotoh Y, Potthast A, Rosenau T. 2019. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydrate Polymers 226, 115258.
- 10. Zhou L, Kang Z, Nie Y, Li L. 2021. Fabrication of Regenerated Cellulose Fibers with Good Strength and Biocompatibility from Green Spinning Process of Ionic Liquid. Macromolecular Materials and Engineering 306 (4).
- 11. Yuan J, Wnag Q, Fan X. 2010. Dyeing behaviors of ionic liquid treated wool. Journal of Applied Polymer Science 117 (4), 2278-2283.
- 12. Li B, Zhang Q, Pan Y, Li Y, Huang Z, Li M, Xiao H. 2020. Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. International Journal of Biological Macromolecules 163, 309-316.
- 13. Ling C, Yimin D, Qi L, Chengqian F, Zhiheng W, Yaqi L, Ling C, Bo L, Yue-Fei Z, Yan L, Li W. 2022. Novel High-efficiency adsorbent consisting of magnetic Cellulose-based ionic liquid for removal of anionic dyes. Journal of Molecular Liquids 353, 118723.
- 14. Chen H. 2006. Recent advances in azo dye degrading enzyme research. Curr. Protein Pept. Sci. 7, 101.
- 15. Christie RM. 2007. Environmental Aspects of Textile Dyeing, 1st ed; Woodhead Publishing Ltd.: Manchester, England.
- 16. Ratna Padhi BS. 2012. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int. J. Environ. Sci. 3, 940.
- 17. Gunay M. 2013. Ed. Eco-Friendly Textile Dyeing and Finishing, 1st ed.; InTech: Rijeka.
- 18. Kumbasar EPA, Korlu AE. 2016. Eds. Textile Wastewater Treatment, 1st ed.; InTech: Rijeka.
- 19. Hou A, Chen B, Dai J, Zhang K. 2010. Using supercritical carbon dioxide as solvent to replace water in polyethylene terephthalate (PET) fabric dyeing procedures. J. Cleaner Prod. 18, 1009−1014.
- 20. Banchero M. 2013. Supercritical fluid dyeing of synthetic and natural textiles - a review. Color. Technol. 129, 2−17.
- 21. Moore SB, Ausley LW. 2004. Systems thinking and green chmistry in the textile industry: concepts, technologies and benefits. J. Cleaner Prod. 12, 585.
- 22. Cardozo-Filho L, Mazzer HR, Santos JC, Andreaus J, Feihrmann AC, Beninca C, Cabral VF, Zanoelo EF. 2014. Dyeing of polyethylene terephthalate fibers with a disperse dye in supercritical carbon dioxide. Text. Res. J. 84, 1279−1287.
- 23. Correia J, Rainert KT, Oliveira FR, Valle RCSC, Valle JA. 2020. Cationization of cotton fiber: an integrated view of cationic agents, processes variables, properties, market and future prospects. Cellulose 27, 8527–8550.
- 24. Roy Choudhury AK. 2014. Coloration of cationized cellulosicfibers—a review. AATCC J Res 1:11–19.
- 25. Portella EH, Romanzini D, Angrizani CC, Amico SC, Zattera AJ. 2016. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research 19, 542-547.
- 26. Vijay R, Singaravelu DL, Vinod A, Sanjay MR., Siengchin S, Jawaid M, Parameswaranpillai J. 2019. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International journal of biological macromolecules 125, 99-108.
- 27. De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116-122.
- 28. Larkin P. 2011. General Outline and Strategies for IR and Raman Spectral Interpretation. In Infrared and Raman Spectroscopy. Elsevier: Amsterdam, pp. 117–133.
- 29. Seki Y, Seki Y, Sarikanat M, Sever K, Durmuşkahya C, Bozacı E. 2016. Evaluation of linden fibre as a potential reinforcement material for polymer composites. Journal of Industrial Textiles 45 (6), 1221-1238.
- 30. Issa RM, Khedr AM.; Rizk, H. 1 H NMR, IR and UV/VIS Spectroscopic Studies of Some Schiff Bases Derived from 2-Aminobenzothiazole and 2-Amino-3-Hydroxypyridine. J. Chin. Chem. Soc. 2008, 55, 875–884. DOI: 10.1002/jccs.v55.4.
- 31. Seki Y, Köktaş S, Kılınç AÇ, Dalmis R. 2019. Green alternative treatment for cellulosic fibers: ionic liquid modification of Abelmoschus esculentus fibers with methyl-tri-n-butyl ammonium methyl sulphate. Materials Research Express 6 (8), 085104.
- 32. Dalmis R, Kilic GB, Seki Y, Koktas S, Keskin OY. 2020. Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose, 27 (15), 8621-8634.
- 33. Liang CY, Marchessault RH. 1959. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.− 1. Journal of Polymer Science, 39 (135), 269-278.
- 34. Keskin OY, Dalmis R, Balci Kilic G, Seki Y, Koktas S. 2020. Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose 27 (17), 9963-9974.
- 35. Kong J, Yu S. 2007. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 39 (8), 549–559.
- 36. Xia Z, Yao C, Zhou J, Ye W, Xu W. 2016. Comparative study of cotton, ramie and wool fiber bundles’ thermal and dynamic mechanical thermal properties. Textile Research Journal 86 (8).
Year 2023,
Volume: 33 Issue: 3, 269 - 276, 30.09.2023
Havva Nur Özdemir
,
Gülşah Ekin Kartal
,
Özgür Yasin Keskin
,
Yasemin Seki
References
- 1. Andrade RS, Torres D, Ribeiro FR, Chiari-Andréo BG, Junior JAO, Iglesias M. 2017. Sustainable Cotton Dyeing in Nonaqueous Medium Applying Protic Ionic Liquids. ACS Sustainable Chemistry and Engineering 5 (10), 8756-8765.
- 2. Bianchini R, Cevasco G, Chiappe C, Pomelli CS, Douton MJR. 2015. Ionic Liquids Can Significantly Improve Textile Dyeing: An Innovative Application Assuring Economic and Environmental Benefits. ACS Sustainable Chemistry and Engineering 3 (9), 2303–2308.
- 3. Cheng D, Yu ZC, Lu S, Gong S, Li J, Wang B, Lu Y. 2017. Ultraviolet protection performance of cotton fabric modified by ionic liquid iron coordination complex. Textile Research Journal. 87 (8), 945-952.
- 4. Bentis A, Boukhriss A, Grancaric AN, Bouchti M, Achaby M, GmouhS. 2019. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 26, 2139-2153.
- 5. Seki Y, Altinisik A. 2020. Implementation of imidazolium and ammonium based ionic liquids and the effect on electrical conductivity of polypropylene fabrics. Polymer-Plastics Technology and Materials 59 (2), 130-140.
- 6. Seki Y, Altinisik A. 2020. Surface resistivity, surface wettability and thermal stability of the 1-ethyl-2,3-dimethylimidazolium ethyl sulfate and methyl-tri-n-butylammonium methyl sulfate modified polyethylene. Polymer-Plastics Technology and Materials 59 (7), 722-732.
- 7. Fang H, Li D, Xu L, Wang Y, Fei X, Tian J, Li Y. 2021. A reusable ionic liquid-grafted antibacterial cotton gauze wound dressing. Journal of Materials Science 56, 7598-7612.
- 8. Amalini AN, Haida MKN, Imran K, Haafiz MKM. 2019. Relationship between dissolution temperature and properties of oil palm biomass based-regenerated cellulose films prepared via ionic liquid. Materials Chemistry and Physics 221, 382-389.
- 9. Zhang J, Kitayam, H, Gotoh Y, Potthast A, Rosenau T. 2019. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydrate Polymers 226, 115258.
- 10. Zhou L, Kang Z, Nie Y, Li L. 2021. Fabrication of Regenerated Cellulose Fibers with Good Strength and Biocompatibility from Green Spinning Process of Ionic Liquid. Macromolecular Materials and Engineering 306 (4).
- 11. Yuan J, Wnag Q, Fan X. 2010. Dyeing behaviors of ionic liquid treated wool. Journal of Applied Polymer Science 117 (4), 2278-2283.
- 12. Li B, Zhang Q, Pan Y, Li Y, Huang Z, Li M, Xiao H. 2020. Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. International Journal of Biological Macromolecules 163, 309-316.
- 13. Ling C, Yimin D, Qi L, Chengqian F, Zhiheng W, Yaqi L, Ling C, Bo L, Yue-Fei Z, Yan L, Li W. 2022. Novel High-efficiency adsorbent consisting of magnetic Cellulose-based ionic liquid for removal of anionic dyes. Journal of Molecular Liquids 353, 118723.
- 14. Chen H. 2006. Recent advances in azo dye degrading enzyme research. Curr. Protein Pept. Sci. 7, 101.
- 15. Christie RM. 2007. Environmental Aspects of Textile Dyeing, 1st ed; Woodhead Publishing Ltd.: Manchester, England.
- 16. Ratna Padhi BS. 2012. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int. J. Environ. Sci. 3, 940.
- 17. Gunay M. 2013. Ed. Eco-Friendly Textile Dyeing and Finishing, 1st ed.; InTech: Rijeka.
- 18. Kumbasar EPA, Korlu AE. 2016. Eds. Textile Wastewater Treatment, 1st ed.; InTech: Rijeka.
- 19. Hou A, Chen B, Dai J, Zhang K. 2010. Using supercritical carbon dioxide as solvent to replace water in polyethylene terephthalate (PET) fabric dyeing procedures. J. Cleaner Prod. 18, 1009−1014.
- 20. Banchero M. 2013. Supercritical fluid dyeing of synthetic and natural textiles - a review. Color. Technol. 129, 2−17.
- 21. Moore SB, Ausley LW. 2004. Systems thinking and green chmistry in the textile industry: concepts, technologies and benefits. J. Cleaner Prod. 12, 585.
- 22. Cardozo-Filho L, Mazzer HR, Santos JC, Andreaus J, Feihrmann AC, Beninca C, Cabral VF, Zanoelo EF. 2014. Dyeing of polyethylene terephthalate fibers with a disperse dye in supercritical carbon dioxide. Text. Res. J. 84, 1279−1287.
- 23. Correia J, Rainert KT, Oliveira FR, Valle RCSC, Valle JA. 2020. Cationization of cotton fiber: an integrated view of cationic agents, processes variables, properties, market and future prospects. Cellulose 27, 8527–8550.
- 24. Roy Choudhury AK. 2014. Coloration of cationized cellulosicfibers—a review. AATCC J Res 1:11–19.
- 25. Portella EH, Romanzini D, Angrizani CC, Amico SC, Zattera AJ. 2016. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research 19, 542-547.
- 26. Vijay R, Singaravelu DL, Vinod A, Sanjay MR., Siengchin S, Jawaid M, Parameswaranpillai J. 2019. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International journal of biological macromolecules 125, 99-108.
- 27. De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116-122.
- 28. Larkin P. 2011. General Outline and Strategies for IR and Raman Spectral Interpretation. In Infrared and Raman Spectroscopy. Elsevier: Amsterdam, pp. 117–133.
- 29. Seki Y, Seki Y, Sarikanat M, Sever K, Durmuşkahya C, Bozacı E. 2016. Evaluation of linden fibre as a potential reinforcement material for polymer composites. Journal of Industrial Textiles 45 (6), 1221-1238.
- 30. Issa RM, Khedr AM.; Rizk, H. 1 H NMR, IR and UV/VIS Spectroscopic Studies of Some Schiff Bases Derived from 2-Aminobenzothiazole and 2-Amino-3-Hydroxypyridine. J. Chin. Chem. Soc. 2008, 55, 875–884. DOI: 10.1002/jccs.v55.4.
- 31. Seki Y, Köktaş S, Kılınç AÇ, Dalmis R. 2019. Green alternative treatment for cellulosic fibers: ionic liquid modification of Abelmoschus esculentus fibers with methyl-tri-n-butyl ammonium methyl sulphate. Materials Research Express 6 (8), 085104.
- 32. Dalmis R, Kilic GB, Seki Y, Koktas S, Keskin OY. 2020. Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose, 27 (15), 8621-8634.
- 33. Liang CY, Marchessault RH. 1959. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.− 1. Journal of Polymer Science, 39 (135), 269-278.
- 34. Keskin OY, Dalmis R, Balci Kilic G, Seki Y, Koktas S. 2020. Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose 27 (17), 9963-9974.
- 35. Kong J, Yu S. 2007. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 39 (8), 549–559.
- 36. Xia Z, Yao C, Zhou J, Ye W, Xu W. 2016. Comparative study of cotton, ramie and wool fiber bundles’ thermal and dynamic mechanical thermal properties. Textile Research Journal 86 (8).