Araştırma Makalesi
BibTex RIS Kaynak Göster

Multi-Objective Optimization of Selected Mechanical Properties of Basalt, Carbon Fabric Reinforced Particle Additive Composites

Yıl 2024, Cilt: 34 Sayı: 3, 211 - 221, 30.09.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1260944

Öz

In this study, some of the mechanical properties of basalt fabric and carbon fabric reinforced particle additive composite materials were investigated. The effect of fabric additive ratios on tensile strength, Izod pendulum impact resistance, and three point bending properties has been tried to be revealed. In order to determine the composite material that gives the optimum mechanical properties, Taguchi Grey Relational Analysis (Taguchi based GRA) method was chosen as multi-objective optimization method and used L18 (Mixed 3-6 Level) experimental design. Input variables-factors were determined as fabric (6 levels), Al2O3 additive (3 levels) and SiC additive (3 levels) according to the design. Tensile strength, impact resistance, and three point bending were selected as response variables. These three tests were optimized. The optimum composite combination was determined and found 30% carbon fabric, 4% Al2O3 and 0% SiC. The improvement by using confirmation test was seen as 0,07 when the 3rd experiment plan was selected as the initial process parameter.

Destekleyen Kurum

University of Cukurova Scientific Research Department

Proje Numarası

FDK-2017-8490

Kaynakça

  • 1. Van de Velde K, Kiekens P, Van Langenhove L. 2003. Basalt fibres as reinforcement for composites. Proceedings of 10th International Conference on Composites/Nano Engineering, 20-26. Zwijnaarde, Belgium.
  • 2. Singha K. 2012. A Short Review on Basalt Fiber. International Journal of Textile Science, 1(4): 19-28.
  • 3. Gilewicz P, Dominiak J, Cichocka A, Frydrych, I. 2013. Change in structural and thermal properties of textile fabric packages containing basalt fibres after fatigue bending loading. Fibres & Textiles in Eastern Europe, 21, 5(101): 80-84.
  • 4. Dalinkevich AA, Gumargalieva KZ, Marakhovsky SS, Soukhanov, AV. 2009. Modern Basalt Fibrous Materials and Basalt Fiber-Based Polymeric Composites. Journal of Natural Fibers, 6:3, 248-271. doi: 10.1080/15440470903123173
  • 5. Fragassa C, Paola SD, Minak G. 2013. Improving Mechanical Properties of Green Composites by Hybridization. 4th Conference on Natural Fibre Composites, Rome 17-18 October 2013.
  • 6. Ovalı S. 2015. Bazalt Lifi ve Dolgu Malzemesi Takviyeli Termoplastik Esaslı Kompozit Yapıların Isı ve Ses Yalıtım Özelliklerinin İncelenmesi. Master's Thesis, University of Marmara, Institute of Science, Department of Textile Engineering (In Turkish).
  • 7. Chuvashov Y, Jashchenko O, Diduk I, Gulik, V. 2020. The Investigation of Fiber Surface Condition from Basalt-like Rocks for Enhanced Industrial Applications. Journal of Natural Fibers, doi: 10.1080/15440478.2020.1838987
  • 8. Liu J, Chen M, Yang J, Wu Z. 2022. Study on Mechanical Properties of Basalt Fibers Superior to E-glass Fibers, Journal of Natural Fibers, 19:3, 882-894.
  • 9. Gümülcine T, Bekem A, Doğu M, Gemici Z, Ünal A. 2013. İzoftalik Polyester Matrisli Sürekli E-Camı Ve Bazalt Fiber Takviyeli Kompozitlerin Mekanik Özellikleri Üzerine Deneysel Bir Çalışma. YTU Engineering and Science Journal, Volume: 5, Issue: 1, (APR 2013), 104-115.
  • 10. Nayak RK, Dasha A, Ray BC. 2014. Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites. Procedia Materials Science, 1359 – 1364.
  • 11. Agarwal G, Patnaik A, Sharma RK. 2013. Thermo-mechanical properties of silicon carbide-filled chopped glass fiber-reinforced epoxy composites. International Journal of Advanced Structural Engineering, 5:21.
  • 12. Bulut M. 2018. Vibration analysis of carbon and Kevlar fiber reinforced composites containing SiC particles. Sakarya University Journal of Science, 22 (5), 1423-1431.
  • 13. Prasanna SM, Vitala HR, Madhusudhan T, Raju BR. 2016. Evaluation of mechanical and tribological characterization of glass-basalt hybrid composites. International Journal of Engineering Research And Advanced Technology, Special Volume 02, Issue 01.
  • 14. Ramesh K, Nayak AD, Ray BC. 2014. Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass elyaf hybrid composites. Procedia Materials Science, 6, 1359–1364.
  • 15. Gün H, Asi D. 2017. Al2O3- TiO2 (%97-3) Seramik Tozparçacık İlaveli Cam Elyaf Takviyeli Epoksi Matrisli Kompozit Malzemelerin Mekaniksel Özelliklerinin İncelenmesi. Uşak University Journal of Science and Natural Sciences, 33-40.
  • 16. Vaidya RU, Rangaswamy T. 2017. A review on e-glass/ epoxy composite combined with various filler materials and its mechanical behaviour under different thermal conditions. American Journal of Materials Science, 7(4): 83-90.
  • 17. Kaybal HB, Ulus H, Avcı A. 2016. Characterization of tensile properties and toughness mechanisms on nano-Al2O3 epoxy nanocomposites. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Special Issue 12.
  • 18. Krzyzak A, Relich S, Kosicka E, Szczepaniak, R, Mucha, M. 2022. Selected Construction Properties of Hybrid Epoxy Composites Reinforced with Carbon Fabric and Alumina. Advances in Science and Technology Research Journal, 16 (2), 240–248.
  • 19. Akatsu T, Umehara Y, Shinoda Y, Wakai, F, Muto, H. 2022. Mechanical properties of alumina matrix composite reinforced with carbon nanofibers affected by small interfacial sliding shear stress. Ceramics International, 48. 8466–8472.
  • 20. Sanusi OM, Oyelaran OA, Badmus JA. 2020. Ballistic study of alumina ceramic-steel composite for structural applications. Journal of Ceramic Processing Research, Vol. 21, No. 4, 501-507.
  • 21. Lin JL, Su SM, He YB, Kang, FY. 2020. Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Materials, 35(1): 66-72.
  • 22. Kim SH, Park SJ. 2021. Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites. Composites Part B: Engineering, 227, 109387.
  • 23. Kim S, Rhee KY, Park SJ. 2020. Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: Thermal conductivity and fracture resistance. Composites Part B: Engineering, 192 ,107983.
  • 24. Özgür E., Sabır EC, Sarpkaya Ç. 2023. Multi-objective Optimization of Thermal and Sound Insulation Properties of Basalt and Carbon Fabric Reinforced Composites Using the Taguchi Grey Relations Analysis. Journal of Natural Fibers, 20:1, DOI: 10.1080/15440478.2023.2178580.
  • 25. Jamshaid H, Ahmad N, Hussain U, Mishra, R. 2022. Parametric optimization of durable sheeting fabric using Taguchi Grey Relational Analysis. Journal of King Saud University – Science, Volume 34, Issue 4,102004, ISSN 1018-3647.
  • 26. Minitab User’s Guide2, Minitab Inc., 2000.
  • 27. Sarpkaya Ç. 2014. Taguchi metoduna dayalı gri ilişkiler analizi ile haşıl prosesinin optimizasyonu, PhD Thesis, Institute of Natural and Applied Sciences, Department of Textile Engineering, University of Çukurova/Türkiye (in Turkish), 141.
  • 28. KuoY, Yang T, Huang GW. 2008. The Use of a Grey Based Taguchi Method for Optimizing Multi Response Simulation Problems. Engineering Optimization, Vol 40. No.6, 517-528.
  • 29. Khan ZA, Siddiquee AN, Kamaruddin S. 2012. Optimization of In-feed Centreless Cylindrical Grinding Process Parameters Using Grey Relational Analysis. Pertanika Journal of Science and Technology, Vol 20 (2), 257 – 268.
  • 30. Sarpkaya Ç, Sabır EC. 2016. Optimization of the sizing process with grey relational analysis. Fibres & Textiles in Eastern Europe, Vol. 24, 1(115). 49-55.
  • 31. Pawade RS, Joshi SS. 2011. Multi-objective Optimization of Surface Roughness and Cutting Forces in High-speed Turning of Inconel 718 Using Taguchi Grey Relational Analysis (TGRA). The International Journal of Advanced Manufacturing Technology, Volume 56, 47-62.
  • 32. Sarpkaya Ç, Özgür E, Sabır EC. 2015. The Optimization of woven fabric tensile strength with Taguchi method based on grey relational analysis, Tekstil ve Konfeksiyon, Year 25, Vol 4, 293-299.
  • 33. Palanikumar K, Latha B, Senthilkumar VS, Paulo Davim J. 2012. Analysis on Drilling of Glass Fiber–Reinforced Polymer (GFRP) Composites Using Grey Relational Analysis, Materials and Manufacturing Processes, 27:3, 297-305, DOI: 10.1080/10426914.2011.577865
  • 34. Tang L, Du YT. 2014. Multi-Objective Optimization of Green Electrical Discharge Machining Ti–6Al–4V in Tap Water via Grey-Taguchi Method, Materials and Manufacturing Processes, 29:5, 507-513, DOI: 10.1080/10426914.2013.840913
  • 35. Özgür E. 2022. Bazalt, karbon kumaş takviyeli parçacık katkılı kompozitlerin üretimi ve mekanik, isı ve ses yalıtım özelliklerinin optimizasyonu. PhD Thesis, Institute of Natural and Applied Sciences, Department of Textile Engineering, University of Çukurova/Türkiye (In Turkish).
  • 36. Kaybal HB, Ulus H, Avcı A. 2016. Characterization of Tensile Properties And Toughness Mechanisms on Nano-Al2O3 Epoxy Nanocomposites. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Special Issue 12.
  • 37. Özsoy N. 2015. Polimer esaslı fiber takviyeli kompozit malzemelerin tribolojik ve mekanik özelliklerinin incelenmesi. PhD Thesis, Sakarya University, Institute of Science, Department of Mechanical Engineering, Sakarya/ Türkiye (In Turkish).
Yıl 2024, Cilt: 34 Sayı: 3, 211 - 221, 30.09.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1260944

Öz

Proje Numarası

FDK-2017-8490

Kaynakça

  • 1. Van de Velde K, Kiekens P, Van Langenhove L. 2003. Basalt fibres as reinforcement for composites. Proceedings of 10th International Conference on Composites/Nano Engineering, 20-26. Zwijnaarde, Belgium.
  • 2. Singha K. 2012. A Short Review on Basalt Fiber. International Journal of Textile Science, 1(4): 19-28.
  • 3. Gilewicz P, Dominiak J, Cichocka A, Frydrych, I. 2013. Change in structural and thermal properties of textile fabric packages containing basalt fibres after fatigue bending loading. Fibres & Textiles in Eastern Europe, 21, 5(101): 80-84.
  • 4. Dalinkevich AA, Gumargalieva KZ, Marakhovsky SS, Soukhanov, AV. 2009. Modern Basalt Fibrous Materials and Basalt Fiber-Based Polymeric Composites. Journal of Natural Fibers, 6:3, 248-271. doi: 10.1080/15440470903123173
  • 5. Fragassa C, Paola SD, Minak G. 2013. Improving Mechanical Properties of Green Composites by Hybridization. 4th Conference on Natural Fibre Composites, Rome 17-18 October 2013.
  • 6. Ovalı S. 2015. Bazalt Lifi ve Dolgu Malzemesi Takviyeli Termoplastik Esaslı Kompozit Yapıların Isı ve Ses Yalıtım Özelliklerinin İncelenmesi. Master's Thesis, University of Marmara, Institute of Science, Department of Textile Engineering (In Turkish).
  • 7. Chuvashov Y, Jashchenko O, Diduk I, Gulik, V. 2020. The Investigation of Fiber Surface Condition from Basalt-like Rocks for Enhanced Industrial Applications. Journal of Natural Fibers, doi: 10.1080/15440478.2020.1838987
  • 8. Liu J, Chen M, Yang J, Wu Z. 2022. Study on Mechanical Properties of Basalt Fibers Superior to E-glass Fibers, Journal of Natural Fibers, 19:3, 882-894.
  • 9. Gümülcine T, Bekem A, Doğu M, Gemici Z, Ünal A. 2013. İzoftalik Polyester Matrisli Sürekli E-Camı Ve Bazalt Fiber Takviyeli Kompozitlerin Mekanik Özellikleri Üzerine Deneysel Bir Çalışma. YTU Engineering and Science Journal, Volume: 5, Issue: 1, (APR 2013), 104-115.
  • 10. Nayak RK, Dasha A, Ray BC. 2014. Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites. Procedia Materials Science, 1359 – 1364.
  • 11. Agarwal G, Patnaik A, Sharma RK. 2013. Thermo-mechanical properties of silicon carbide-filled chopped glass fiber-reinforced epoxy composites. International Journal of Advanced Structural Engineering, 5:21.
  • 12. Bulut M. 2018. Vibration analysis of carbon and Kevlar fiber reinforced composites containing SiC particles. Sakarya University Journal of Science, 22 (5), 1423-1431.
  • 13. Prasanna SM, Vitala HR, Madhusudhan T, Raju BR. 2016. Evaluation of mechanical and tribological characterization of glass-basalt hybrid composites. International Journal of Engineering Research And Advanced Technology, Special Volume 02, Issue 01.
  • 14. Ramesh K, Nayak AD, Ray BC. 2014. Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass elyaf hybrid composites. Procedia Materials Science, 6, 1359–1364.
  • 15. Gün H, Asi D. 2017. Al2O3- TiO2 (%97-3) Seramik Tozparçacık İlaveli Cam Elyaf Takviyeli Epoksi Matrisli Kompozit Malzemelerin Mekaniksel Özelliklerinin İncelenmesi. Uşak University Journal of Science and Natural Sciences, 33-40.
  • 16. Vaidya RU, Rangaswamy T. 2017. A review on e-glass/ epoxy composite combined with various filler materials and its mechanical behaviour under different thermal conditions. American Journal of Materials Science, 7(4): 83-90.
  • 17. Kaybal HB, Ulus H, Avcı A. 2016. Characterization of tensile properties and toughness mechanisms on nano-Al2O3 epoxy nanocomposites. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Special Issue 12.
  • 18. Krzyzak A, Relich S, Kosicka E, Szczepaniak, R, Mucha, M. 2022. Selected Construction Properties of Hybrid Epoxy Composites Reinforced with Carbon Fabric and Alumina. Advances in Science and Technology Research Journal, 16 (2), 240–248.
  • 19. Akatsu T, Umehara Y, Shinoda Y, Wakai, F, Muto, H. 2022. Mechanical properties of alumina matrix composite reinforced with carbon nanofibers affected by small interfacial sliding shear stress. Ceramics International, 48. 8466–8472.
  • 20. Sanusi OM, Oyelaran OA, Badmus JA. 2020. Ballistic study of alumina ceramic-steel composite for structural applications. Journal of Ceramic Processing Research, Vol. 21, No. 4, 501-507.
  • 21. Lin JL, Su SM, He YB, Kang, FY. 2020. Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Materials, 35(1): 66-72.
  • 22. Kim SH, Park SJ. 2021. Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites. Composites Part B: Engineering, 227, 109387.
  • 23. Kim S, Rhee KY, Park SJ. 2020. Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: Thermal conductivity and fracture resistance. Composites Part B: Engineering, 192 ,107983.
  • 24. Özgür E., Sabır EC, Sarpkaya Ç. 2023. Multi-objective Optimization of Thermal and Sound Insulation Properties of Basalt and Carbon Fabric Reinforced Composites Using the Taguchi Grey Relations Analysis. Journal of Natural Fibers, 20:1, DOI: 10.1080/15440478.2023.2178580.
  • 25. Jamshaid H, Ahmad N, Hussain U, Mishra, R. 2022. Parametric optimization of durable sheeting fabric using Taguchi Grey Relational Analysis. Journal of King Saud University – Science, Volume 34, Issue 4,102004, ISSN 1018-3647.
  • 26. Minitab User’s Guide2, Minitab Inc., 2000.
  • 27. Sarpkaya Ç. 2014. Taguchi metoduna dayalı gri ilişkiler analizi ile haşıl prosesinin optimizasyonu, PhD Thesis, Institute of Natural and Applied Sciences, Department of Textile Engineering, University of Çukurova/Türkiye (in Turkish), 141.
  • 28. KuoY, Yang T, Huang GW. 2008. The Use of a Grey Based Taguchi Method for Optimizing Multi Response Simulation Problems. Engineering Optimization, Vol 40. No.6, 517-528.
  • 29. Khan ZA, Siddiquee AN, Kamaruddin S. 2012. Optimization of In-feed Centreless Cylindrical Grinding Process Parameters Using Grey Relational Analysis. Pertanika Journal of Science and Technology, Vol 20 (2), 257 – 268.
  • 30. Sarpkaya Ç, Sabır EC. 2016. Optimization of the sizing process with grey relational analysis. Fibres & Textiles in Eastern Europe, Vol. 24, 1(115). 49-55.
  • 31. Pawade RS, Joshi SS. 2011. Multi-objective Optimization of Surface Roughness and Cutting Forces in High-speed Turning of Inconel 718 Using Taguchi Grey Relational Analysis (TGRA). The International Journal of Advanced Manufacturing Technology, Volume 56, 47-62.
  • 32. Sarpkaya Ç, Özgür E, Sabır EC. 2015. The Optimization of woven fabric tensile strength with Taguchi method based on grey relational analysis, Tekstil ve Konfeksiyon, Year 25, Vol 4, 293-299.
  • 33. Palanikumar K, Latha B, Senthilkumar VS, Paulo Davim J. 2012. Analysis on Drilling of Glass Fiber–Reinforced Polymer (GFRP) Composites Using Grey Relational Analysis, Materials and Manufacturing Processes, 27:3, 297-305, DOI: 10.1080/10426914.2011.577865
  • 34. Tang L, Du YT. 2014. Multi-Objective Optimization of Green Electrical Discharge Machining Ti–6Al–4V in Tap Water via Grey-Taguchi Method, Materials and Manufacturing Processes, 29:5, 507-513, DOI: 10.1080/10426914.2013.840913
  • 35. Özgür E. 2022. Bazalt, karbon kumaş takviyeli parçacık katkılı kompozitlerin üretimi ve mekanik, isı ve ses yalıtım özelliklerinin optimizasyonu. PhD Thesis, Institute of Natural and Applied Sciences, Department of Textile Engineering, University of Çukurova/Türkiye (In Turkish).
  • 36. Kaybal HB, Ulus H, Avcı A. 2016. Characterization of Tensile Properties And Toughness Mechanisms on Nano-Al2O3 Epoxy Nanocomposites. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Special Issue 12.
  • 37. Özsoy N. 2015. Polimer esaslı fiber takviyeli kompozit malzemelerin tribolojik ve mekanik özelliklerinin incelenmesi. PhD Thesis, Sakarya University, Institute of Science, Department of Mechanical Engineering, Sakarya/ Türkiye (In Turkish).
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler, Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Çiğdem Sarpkaya 0000-0001-7710-1035

Emel Ceyhun Sabır 0000-0002-2385-1524

Ertan Özgür 0000-0001-6293-0690

Proje Numarası FDK-2017-8490
Erken Görünüm Tarihi 30 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 6 Mart 2023
Kabul Tarihi 22 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 34 Sayı: 3

Kaynak Göster

APA Sarpkaya, Ç., Sabır, E. C., & Özgür, E. (2024). Multi-Objective Optimization of Selected Mechanical Properties of Basalt, Carbon Fabric Reinforced Particle Additive Composites. Textile and Apparel, 34(3), 211-221. https://doi.org/10.32710/tekstilvekonfeksiyon.1260944

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.