EFFECT OF THE GEOMETRICAL PARAMETERS IN A DOMESTIC BURNER WITH CRESCENT FLAME CHANNELS FOR AN OPTIMAL TEMPERATURE DISTRIBUTION AND THERMAL EFFICIENCY
Yıl 2019,
Cilt: 5 Sayı: 6 - Issue Name: Special Issue 10: International Conference on Progress in Automotive Technologies 2018, Istanbul, Turkey, 171 - 183, 08.10.2019
Ramazan Şener
,
Mehmed Özdemir
,
Murat Yangaz
Öz
Domestic cookers are common tools of house appliances in the world and they have significant share in global energy consumption. Therefore, a small amount of improvement in efficiency would result in a huge drop in total energy and resource activity. This study aims at presenting numerically the thermal efficiency of a domestic burner with crescent-shaped flame channels by changing the distance from the cooker to the burner head and the diameter of the burner. The energy efficiency parameter was evaluated analyzing temperature distribution along the bottom surface of the cooker and unburnt HC, CO and NO emissions. Simulations have been carried out with methane as fuel for three different diameter and distance parameters. The results showed that the temperature on the surface and the emission values of unburnt CO, NO and HC decreased with increasing the cooker diameter and distance parameter.
Kaynakça
- [1] F. Avdic, M. Adzic, F. Durst, Small scale porous medium combustion system for heat production in households, Appl. Energy. 87 (2010) 2148–2155. doi:10.1016/J.APENERGY.2009.11.010.
- [2] P. Boggavarapu, B. Ray, R. V. Ravikrishna, Thermal efficiency of LPG and PNG-fired burners: Experimental and numerical studies, Fuel. 116 (2014) 709–715. doi:10.1016/j.fuel.2013.08.054.
- [3] R. Akter Lucky, I. Hossain, Efficiency study of Bangladeshi cookstoves with an emphasis on gas cookstoves, Energy. 26 (2001) 221–237. doi:10.1016/S0360-5442(00)00066-9.
- [4] P. Muthukumar, P.I. Shyamkumar, Development of novel porous radiant burners for LPG cooking applications, Fuel. 112 (2013) 562–566. doi:10.1016/j.fuel.2011.09.006.
- [5] Y.-C. Ko, T.-H. Lin, Emissions and efficiency of a domestic gas stove burning natural gases with various compositions, Energy Convers. Manag. 44 (2003) 3001–3014. doi:10.1016/S0196-8904(03)00074-8.
- [6] S.-S. Hou, C.-Y. Lee, T.-H. Lin, Efficiency and emissions of a new domestic gas burner with a swirling flame, Energy Convers. Manag. 48 (2007) 1401–1410. doi:10.1016/J.ENCONMAN.2006.12.001.
- [7] H. Mistry, S. Ganapathisubbu, S. Dey, P. Bishnoi, J.L. Castillo, A methodology to model flow-thermals inside a domestic gas oven, Appl. Therm. Eng. 31 (2011) 103–111. doi:10.1016/J.APPLTHERMALENG.2010.08.022.
- [8] B. Liu, B. Bao, Y. Wang, H. Xu, Numerical simulation of flow, combustion and NO emission of a fuel-staged industrial gas burner, J. Energy Inst. 90 (2017) 441–451. doi:10.1016/j.joei.2016.03.005.
- [9] S. Panigrahy, N.K. Mishra, S.C. Mishra, P. Muthukumar, Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner, Energy. 95 (2016) 404–414. doi:10.1016/J.ENERGY.2015.12.015.
- [10] A. Kotb, H. Saad, Case study for co and counter swirling domestic burners, Case Stud. Therm. Eng. 11 (2018) 98–104. doi:10.1016/J.CSITE.2018.01.004.
- [11] İ.B. Özdemir, Simulation of turbulent combustion in a self-aerated domestic gas oven, Appl. Therm. Eng. 113 (2017) 160–169. doi:10.1016/J.APPLTHERMALENG.2016.10.205.
- [12] V. Yousefi-Asli, E. Houshfar, F. Beygi-Khosroshahi, M. Ashjaee, Experimental investigation on temperature field and heat transfer distribution of a slot burner methane/air flame impinging on a curved surface, Appl. Therm. Eng. 129 (2018) 761–771. doi:10.1016/J.APPLTHERMALENG.2017.10.084.
- [13] S. Panigrahy, S.C. Mishra, The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application, Energy. 150 (2018) 176–189. doi:10.1016/J.ENERGY.2018.02.121.
- [14] N.K. Mishra, P. Muthukumar, Development and testing of energy efficient and environment friendly porous radiant burner operating on liquefied petroleum gas, Appl. Therm. Eng. 129 (2018) 482–489. doi:10.1016/J.APPLTHERMALENG.2017.10.068.
- [15] M. Ilbas, S. Karyeyen, An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner, Fuel. 194 (2017) 274–290. doi:10.1016/J.FUEL.2017.01.016.
- [16] M. Strojnik, G. Paez, M. Scholl, Combustion initiation and evolution during the first 400 ms in a gas burner at 10 lm, Infrared Phys. Technol. (2013) 42–49.
- [17] M.U. Yangaz, CFD Modeling of Gas Burners using Renewable and Fossil Fuels, Marmara University, 2014.
- [18] S. Kakaç, A. Pramuanjaroenkij, X.Y. Zhou, A review of numerical modeling of solid oxide fuel cells, Int. J. Hydrog. Energy. (2007). doi:DOI 10.1016/j.ijhydene.2006.11.028.
- [19] H.K. (Henk K. Versteeg, W. (Weeratunge) Malalasekera, An introduction to computational fluid dynamics : the finite volume method, Pearson Education Ltd, 2007.
- [20] T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ϵ eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids. 24 (1995) 227–238. doi:10.1016/0045-7930(94)00032-T.
- [21] D.A. (Dale A. Anderson, R.H. Pletcher, J.C. Tannehill, Computational fluid mechanics and heat transfer, n.d. https://www.crcpress.com/Computational-Fluid-Mechanics-and-Heat-Transfer-Third-Edition/Anderson-Tannehill-Pletcher/p/book/9781591690375 (accessed May 10, 2018).
- [22] T. Rutar, J.C.Y. Lee, P. Dagaut, P.C. Malte, A.A. Byrne, NO x formation pathways in lean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between 0.25 and 0.88, Proc. Inst. Mech. Eng. Part A J. Power Energy. 221 (2007) 387–398. doi:10.1243/09576509JPE288.
- [23] F. BACHMAIER, K.H. EBERIUS, T. JUST, The Formation of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon-Air Flames at 1 Atmosphere, Combust. Sci. Technol. 7 (1973) 77–84. doi:10.1080/00102207308952345.
Yıl 2019,
Cilt: 5 Sayı: 6 - Issue Name: Special Issue 10: International Conference on Progress in Automotive Technologies 2018, Istanbul, Turkey, 171 - 183, 08.10.2019
Ramazan Şener
,
Mehmed Özdemir
,
Murat Yangaz
Kaynakça
- [1] F. Avdic, M. Adzic, F. Durst, Small scale porous medium combustion system for heat production in households, Appl. Energy. 87 (2010) 2148–2155. doi:10.1016/J.APENERGY.2009.11.010.
- [2] P. Boggavarapu, B. Ray, R. V. Ravikrishna, Thermal efficiency of LPG and PNG-fired burners: Experimental and numerical studies, Fuel. 116 (2014) 709–715. doi:10.1016/j.fuel.2013.08.054.
- [3] R. Akter Lucky, I. Hossain, Efficiency study of Bangladeshi cookstoves with an emphasis on gas cookstoves, Energy. 26 (2001) 221–237. doi:10.1016/S0360-5442(00)00066-9.
- [4] P. Muthukumar, P.I. Shyamkumar, Development of novel porous radiant burners for LPG cooking applications, Fuel. 112 (2013) 562–566. doi:10.1016/j.fuel.2011.09.006.
- [5] Y.-C. Ko, T.-H. Lin, Emissions and efficiency of a domestic gas stove burning natural gases with various compositions, Energy Convers. Manag. 44 (2003) 3001–3014. doi:10.1016/S0196-8904(03)00074-8.
- [6] S.-S. Hou, C.-Y. Lee, T.-H. Lin, Efficiency and emissions of a new domestic gas burner with a swirling flame, Energy Convers. Manag. 48 (2007) 1401–1410. doi:10.1016/J.ENCONMAN.2006.12.001.
- [7] H. Mistry, S. Ganapathisubbu, S. Dey, P. Bishnoi, J.L. Castillo, A methodology to model flow-thermals inside a domestic gas oven, Appl. Therm. Eng. 31 (2011) 103–111. doi:10.1016/J.APPLTHERMALENG.2010.08.022.
- [8] B. Liu, B. Bao, Y. Wang, H. Xu, Numerical simulation of flow, combustion and NO emission of a fuel-staged industrial gas burner, J. Energy Inst. 90 (2017) 441–451. doi:10.1016/j.joei.2016.03.005.
- [9] S. Panigrahy, N.K. Mishra, S.C. Mishra, P. Muthukumar, Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner, Energy. 95 (2016) 404–414. doi:10.1016/J.ENERGY.2015.12.015.
- [10] A. Kotb, H. Saad, Case study for co and counter swirling domestic burners, Case Stud. Therm. Eng. 11 (2018) 98–104. doi:10.1016/J.CSITE.2018.01.004.
- [11] İ.B. Özdemir, Simulation of turbulent combustion in a self-aerated domestic gas oven, Appl. Therm. Eng. 113 (2017) 160–169. doi:10.1016/J.APPLTHERMALENG.2016.10.205.
- [12] V. Yousefi-Asli, E. Houshfar, F. Beygi-Khosroshahi, M. Ashjaee, Experimental investigation on temperature field and heat transfer distribution of a slot burner methane/air flame impinging on a curved surface, Appl. Therm. Eng. 129 (2018) 761–771. doi:10.1016/J.APPLTHERMALENG.2017.10.084.
- [13] S. Panigrahy, S.C. Mishra, The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application, Energy. 150 (2018) 176–189. doi:10.1016/J.ENERGY.2018.02.121.
- [14] N.K. Mishra, P. Muthukumar, Development and testing of energy efficient and environment friendly porous radiant burner operating on liquefied petroleum gas, Appl. Therm. Eng. 129 (2018) 482–489. doi:10.1016/J.APPLTHERMALENG.2017.10.068.
- [15] M. Ilbas, S. Karyeyen, An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner, Fuel. 194 (2017) 274–290. doi:10.1016/J.FUEL.2017.01.016.
- [16] M. Strojnik, G. Paez, M. Scholl, Combustion initiation and evolution during the first 400 ms in a gas burner at 10 lm, Infrared Phys. Technol. (2013) 42–49.
- [17] M.U. Yangaz, CFD Modeling of Gas Burners using Renewable and Fossil Fuels, Marmara University, 2014.
- [18] S. Kakaç, A. Pramuanjaroenkij, X.Y. Zhou, A review of numerical modeling of solid oxide fuel cells, Int. J. Hydrog. Energy. (2007). doi:DOI 10.1016/j.ijhydene.2006.11.028.
- [19] H.K. (Henk K. Versteeg, W. (Weeratunge) Malalasekera, An introduction to computational fluid dynamics : the finite volume method, Pearson Education Ltd, 2007.
- [20] T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ϵ eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids. 24 (1995) 227–238. doi:10.1016/0045-7930(94)00032-T.
- [21] D.A. (Dale A. Anderson, R.H. Pletcher, J.C. Tannehill, Computational fluid mechanics and heat transfer, n.d. https://www.crcpress.com/Computational-Fluid-Mechanics-and-Heat-Transfer-Third-Edition/Anderson-Tannehill-Pletcher/p/book/9781591690375 (accessed May 10, 2018).
- [22] T. Rutar, J.C.Y. Lee, P. Dagaut, P.C. Malte, A.A. Byrne, NO x formation pathways in lean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between 0.25 and 0.88, Proc. Inst. Mech. Eng. Part A J. Power Energy. 221 (2007) 387–398. doi:10.1243/09576509JPE288.
- [23] F. BACHMAIER, K.H. EBERIUS, T. JUST, The Formation of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon-Air Flames at 1 Atmosphere, Combust. Sci. Technol. 7 (1973) 77–84. doi:10.1080/00102207308952345.