Review
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 6, 1715 - 1741, 19.11.2024

Abstract

References

  • [1] Kaygusuz K. Renewable energy: Power for a sustainable future. Energ Explor Exploit 2001;19:603–626. [CrossRef]
  • [2] Azzouz A, Platon N, Nousir S, Ghomari K, Nistor D, Shiao TC, et al. OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Sep Purif Technol 2013;108:181–188. [CrossRef]
  • [3] Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y. Carbon capture with ionic liquids: Overview and progress. Energ Environ Sci 2012;5:6668–6681. [CrossRef]
  • [4] Hassan B, Beshara M. Using renewable energy criteria for construction method selection in Syrian Buildings. JJMIE 2019;13:125–130.
  • [5] Heiman MK, Solomon BD. Power to the people: Electric utility restructuring and the commitment to renewable energy. Annals Assoc Am Geographers 2004;94:94–116. [CrossRef]
  • [6] Bürer MJ, Wüstenhagen R. Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energ Pol 2009;37:4997–5006. [CrossRef]
  • [7] Güdel M. The sun in time: Activity and environment living reviews in solar physics. Liv Rev Sol Phys 2007;4:3. [CrossRef]
  • [8] Azzouz A, Roy R. Innovative strategy for truly reversible capture of polluting gases—application to carbon dioxide. Int J Mol Sci 2023;24:16463. [CrossRef]
  • [9] Vidyanandan KV. An overview of factors affecting the performance of solar PV systems. Energ Scan 2017;27:2–8.
  • [10] Ilse K, Werner M, Naumann V, Figgis BW, Hagendorf C, Bagdahn J. Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates. Phys Stat Solidi Rapid Res Let 2016;10:525–529. [CrossRef]
  • [11] Kok JF, Parteli EJR, Michaels TI, Karam DB. The physics of wind-blown sand and dust. Rep Prog Phys 2012;75:106901. [CrossRef]
  • [12] Shao Y, Wyrwoll KH, Chappel A, Huang J, Lin Z, McTanish GH, et al. Dust cycle: An emerging core theme in Earth system science. Aeolian Res 2011;2:181–204. [CrossRef]
  • [13] Miller RL, Tegen I, Perlwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J Geophys Res Atmos 2004;109:D04203. [CrossRef]
  • [14] Gu Y, Liou KN, Jiang JH, Su H, Liu X. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos Chem Phys 2012;12:1667–1679. [CrossRef]
  • [15] Saidou Chaibou AA, Ma X, Sha T. Dust radiative forcing and its impact on surface energy budget over West Africa. Sci Rep 2020;10:12236. [CrossRef]
  • [16] Choobari OA, Zawar-Reza P, Sturman A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos Res 2014;138:152–165. [CrossRef]
  • [17] Zhang X, Zhao L, Tong DQ, Wu G, Dan M, Teng B. A systematic review of global desert dust and associated human health effects. Atmos 2016;7:158. [CrossRef]
  • [18] Morman SA, Plumlee GS. Dust and human health. In: Knippertz P, Stuut JBW, eds. Mineral Dust: A Key Player in the Earth System. Dordrecht: Springer Netherlands; 2014. pp. 385–409. [CrossRef]
  • [19] Middleton NJ. Desert dust hazards: A global review. Aeolian Res 2017;24:53–63. [CrossRef]
  • [20] Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 2012;50:RG000388. [CrossRef]
  • [21] Pabortsava K, Lampitt RS, Benson J, Crowe C, McLachan R, Le Moigne FAC, et al. Carbon sequestration in the deep Atlantic enhanced by Saharan dust. Nat Geosci 2017;10:189–194. [CrossRef]
  • [22] Li X, Mauzerall DL, Bergin MH. Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nat Sustain 2020;3:720–727. [CrossRef]
  • [23] Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew Sustain Energ Rev 2010;14:3124–3131. [CrossRef]
  • [24] Morman SA, Plumlee GS. The role of airborne mineral dusts in human disease. Aeolian Res 2013;9:203–212. [CrossRef]
  • [25] Kazem AA, Chaichan MT, Kazem HA. Dust effect on photovoltaic utilization in Iraq: Review article. Renew Sustain Energ Rev 2014;37:734–749. [CrossRef]
  • [26] Ravindra K, Mittal AK, Van Grieken R. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Rev Environ Health 2001;16:169–89. [CrossRef]
  • [27] Chaichan MT, Kazem HA. Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energ Source Part A 2020;46:7018–7039. [CrossRef]
  • [28] Salamah T, Ramahi A, Alamara K, Juaidi A, Abdallah R, Abdelkareem MA, et al. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Sci Total Environ 2022;827:154050. [CrossRef]
  • [29] Abdelsalam MAM, Ahmad FF, Hamid AK, Ghenai C, Rejeb O, Alchadirchy M, et al. Experimental study of the impact of dust on azimuth tracking solar PV in Sharjah. Int J Elec Comp Engineer 2021;11:3671–3681. [CrossRef]
  • [30] Khilar R, Suba GM, Kumar TS, Isaac S Shinde SK, Ramya S, et al. Improving the efficiency of photovoltaic panels using machine learning approach. Int J Photoenerg 2022:4921153. [CrossRef]
  • [31] Saidan M, Albaali AG, Alasis E, Kaldellis JK. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew Energ 2016;92:499–505. [CrossRef]
  • [32] Kazem HA, Chaichan MT. The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman. Sol Energ 2019;187:30–38. [CrossRef]
  • [33] Vaishak S, Bhale PV. Effect of dust deposition on performance characteristics of a refrigerant based photovoltaic/thermal system. Sustain Energ Technol Assess 2019;36:100548. [CrossRef]
  • [34] Paudyal BR, Shakya SR. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Sol Energ 2016;13:103–110. [CrossRef]
  • [35] Klugmann-Radziemska E. Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renew Energ 2015;78:418–426. [CrossRef]
  • [36] Abderrezek M, Fathi M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol Energ 2017;142:308–320. [CrossRef]
  • [37] Guan Y, Zhang H, Xiao B, Zhou Z, Yan X. In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renew Energ 2017;101:1273–1284. [CrossRef]
  • [38] Hachicha AA, Al-Sawafta I, Said Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew Energ 2019;141:287–297. [CrossRef]
  • [39] Gholami A, Khazaee I, Eslami S, Zandi M, Akrami E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol Energ 2018;159:346–352. [CrossRef]
  • [40] Tanesab J, Parlevliet D, Whale J, Urmee T. Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas. Renew Energ 2018;120:401–412. [CrossRef]
  • [41] Costa SCS, Diniz ASAC, Kazmerski LL. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012-2015. Renew Sustain Energ Rev 2016;63:33–61. [CrossRef]
  • [42] Vasiljev P, Borodinas S, Bareikis R, Struckas A. Ultrasonic system for solar panel cleaning. Sens Actuators A Phys 2013;200:74–78. [CrossRef]
  • [43] Gholami A, Ameri M, Zandi M, Ghoachani RG, Eslami S, Pierfederici S. Photovoltaic potential assessment and dust impacts on photovoltaic systems in Iran: Review paper. IEEE J Photovoltaics 2020:2978851. [CrossRef]
  • [44] Chaichan MT, Kazem HA. Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energ Source Part A 2020;46:7018–7039. [CrossRef]
  • [45] Darwish ZA, Kazem HA, Sopian K, Alghoul MA, Alawadhi H. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: an experimental study. Environ Dev Sustain 2018;20:155–174. [CrossRef]
  • [46] Farrokhi Derakhshandeh J, Nazif S, Gholami M, Kheshti M, Ahmadi P, Mofid M. A comprehensive review of automatic cleaning systems of solar panels. Sustain Energ Technol Assess 2021;47:101518. [CrossRef]
  • [47] Figgis B, Bermudez V. PV coating abrasion by cleaning machines in desert environments – measurement techniques and test conditions. Sol Energy 2021;225:252–258. [CrossRef]
  • [48] Yilbas BS, Abubakar AA, Al-Qahtani H, Mohammed AS, Al-Sharafi A. A novel method for dust mitigation from PV cell surfaces. Sol Energ 2021;225:708–717. [CrossRef]
  • [49] Sayyah A, Horenstein MN, Mazumder MK. Energy yield loss caused by dust deposition on photovoltaic panels. Sol Energy 2014;107:576–604. [CrossRef]
  • [50] Assi A, Hassan A, Al-Shamisi M, Hejase H. Removal of air blown dust from photovoltaic arrays using forced air flow of return air from air conditioning systems. 2012 International Conference on Renewable Energies for Developing Countries, REDEC 2012, Beirut, Lebanon, Nov 28-29 2012. [CrossRef]
  • [51] Park YB, Im H, Im M, Choi YK. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J Mater Chem 2011;21:633–636. [CrossRef]
  • [52] Lu X, Zhang Q, Hu J. A linear piezoelectric actuator based solar panel cleaning system. Energy 2013;60:401–406. [CrossRef]
  • [53] Vasiljev P, Borodinas S, Bareikis R, Struckas A. Ultrasonic system for solar panel cleaning. Sens Actuators A Phys 2013;200:74–78. [CrossRef]
  • [54] Parrott B, Carrasco Zanini P, Shehri A, Kotsovos K, Gereige I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol Energ 2018;171:526–533. [CrossRef]
  • [55] Du X, Jiang F, Liu E, Wu C, Ghorbel FH. Turbulent airflow dust particle removal from solar panel surface: Analysis and experiment. J Aerosol Sci 2019;130:32–44. [CrossRef]
  • [56] Chesnutt JKW, Ashkanani H, Guo B, Wu CY. Simulation of microscale particle interactions for optimization of an electrodynamic dust shield to clean desert dust from solar panels. Sol Energ 2017;155:1197–1207. [CrossRef]
  • [57] Deb D, Brahmbhatt NL. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew Sustain Energ Rev 2018;82:3306–3313. [CrossRef]
  • [58] Moharram KA, Abd-Elhady MS, Kandil HA, El-Sherif H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energ Conver Manage 2013;68:266–272. [CrossRef]
  • [59] Demenkova TA, Korzhova OA, Phinenko AA. Modelling of algorithms for solar panels control systems. Proc Comp Sci 2017;103:589–596. [CrossRef]
  • [60] Pan A, Lu H, Zhang LZ. Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings. Energy 2019;181:645–653. [CrossRef]
  • [61] Mondal AK, Bansal K. A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels. Adv Robot 2015;29:515–524. [CrossRef]
  • [62] Deb D, Brahmbhatt NL. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew Sustain Energ Rev 2018;82:3306–3313. [CrossRef]
  • [63] Moharram KA, Abd-Elhady MS, Kandil HA, El-Sherif H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energ Conver Manage 2013;68:266–272. [CrossRef]
  • [64] Ekinci F, Yavuzdeğer A, Nazlıgül H, Esenboğa B, Doğru Mert B, Demirdelen T. Experimental investigation on solar PV panel dust cleaning with solution method. Sol Energy 2022;237:1–10. [CrossRef]
  • [65] Wan L, Zhao L, Xu W, Guo F, Jiang X. Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems. Sol Energ 2024;268:112300. [CrossRef]
  • [66] Saravanan VS, Darvekar SK. Solar photovoltaic panels cleaning methods a review. Int J Pure Appl Math 2018;118:1–17.
  • [67] Farrokhi Derakhshandeh J, AlLuqmanet R, Mohammad S, AlHussain H, AlHendi G, AlEid D, et al. A comprehensive review of automatic cleaning systems of solar panels. Sustain Energ Technol Assess 2021;47:101518. [CrossRef]
  • [68] Rodríguez L. How to clean solar panels: 5 tried and tested ways. Available at: https://ratedpower.com/blog/clean-solar-panels/. Accessed Oct 16, 2024.
  • [69] Syafiq A, Pandey AK, Adzman NN, Rahim NA. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol Energ 2018;162:597–619. [CrossRef]
  • [70] Schönenberger UT, Simon J, Stamm C. Are spray drift losses to agricultural roads more important for surface water contamination than direct drift to surface waters? Sci Total Environ 2022;809:151102. [CrossRef]
  • [71] Zahedi R, Ranjbaran P, Gharehpetian GB, Mohammadi F, Ahmadiahangar R. Cleaning of floating photovoltaic systems: A critical review on approaches from technical and economic perspectives. Energies 2021;147:2018. [CrossRef]
  • [72] Jones RK, Rustom M, Michaelson L, Keith G, Rahoma U, Al-Abdallah S. Optimized cleaning cost and schedule based on observed soiling conditions for photovoltaic plants in central Saudi Arabia. IEEE J Photovolt 2016;6:730–738. [CrossRef]
  • [73] Jamil WJ, Abdul Rahman H, Shaari S, Salam Z. Performance degradation of photovoltaic power system: Review on mitigation methods. Renew Sustain Energ Rev 2017;67: 876–891. [CrossRef]
  • [74] He G, Zhou C, Li Z. Review of self-cleaning method for solar cell array. Proc Engineer 2011;16:640–645. [CrossRef]
  • [75] Altıntaş M, Arslan S. The study of dust removal using electrostatic cleaning system for solar panels. Sustainability 2021;13:9454. [CrossRef]
  • [76] Nahar Myyas R, Al-Dabbasa M, Tostado-Véliz M, Jurado F. A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Sol Energy 2022;237:19–28. [CrossRef]
  • [77] Liu G, Marshall JS. Particle transport by standing waves on an electric curtain. J Electrostat 2010;68:289–298. [CrossRef]
  • [78] Sims RA, Biris AS, Wilson JD, Yurteri CU, Mazumder MK, Calle CI, et al. Development of a transparent self-cleaning dust shield for solar panels. Available at: https://www.researchgate.net/publication/228561437_Development_of_a_transparent_self-cleaning_dust_shield_for_solar_panels. Accessed Oct 16, 2024.
  • [79] Kawamoto H, Shibata T. Electrostatic cleaning system for removal of sand from solar panels. J Electrostat 2015;73:65–70. [CrossRef]
  • [80] Mondal S, Mondal AK, Sharma A, Devalla V, Rana S, Kumar S, et al. An overview of cleaning and prevention processes for enhancing efficiency of solar photovoltaic panels. Curr Sci 2018;115:1065–1077. [CrossRef]
  • [81] Kawamoto H. Electrostatic cleaning equipment for dust removal from soiled solar panels. J Electrostat 2019;98:11–16. [CrossRef]
  • [82] Altıntaş M, Arslan S. The study of dust removal using electrostatic cleaning system for solar panels. Sustainability 2021;13:9454. [CrossRef]
  • [83] Liu Y, Liu X, Cui Y, Yuan W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrason Sonochem 2022;87:106054. [CrossRef]
  • [84] Al-Salaymeh AS, Al-Mansi NN, Muslih IM, Altaharwah YA, Al Smadi WY. Electrostatic cleaning effect on the performance of PV modules in Jordan. Clean Engineer Technol 2023;13:100606. [CrossRef]
  • [85] Tilmatine A, Kadous N, Yanallah K, Bellebna Y, Bendaoudi Z, Zouaghi A. Experimental investigation of a new solar panels cleaning system using ionic wind produced by corona discharge. J Electrostat 2023;124:103827. [CrossRef]
  • [86] Pickerel K. What are the different types of solar mounting systems for roofs? Available at: https://www.solarpowerworldonline.com/2017/02/different-types-solar-mounting-systems-roofs/. Accessed Oct 16, 2024.
  • [87] Anderson M, Grandy A, Hastie J, Sweezey A, Ranky R, Mavroidis C. Robotic device for cleaning photovoltaic panel arrays. Mob Robot 2009:367–377. [CrossRef]
  • [88] Kumar Mondal A, Bansal K. Structural analysis of solar panel cleaning robotic arm. Curr Sci 2015;108:1047–1052.
  • [89] Selvaganesh V, Manoharan PS, Seetharaman V. Cleaning solar panels using portable robot system. IJCTA 2017;10:195–203.
  • [90] Manju B, Bari A, Pavan CM. Automatic solar panel cleaning system. Int J Adv Sci Res Engineer 2018;4:26–31. [CrossRef]
  • [91] Kumar NM, Sudhakar K, Samykano M, Sukumaran S. Dust cleaning robots (DCR) for BIPV and BAPV solar power plants – A conceptual framework and research challenges. Proc Comp Sci 2018;133:746–754. [CrossRef]
  • [92] Cai S, Chen Y, Wang J, Lu L, Cao S. Parameters optimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experiment method. J Clean Prod 2019;217:724–731. [CrossRef]
  • [93] Hammoud M, Shokr B, Assi A, Hallal J, Khoury P. Effect of dust cleaning on the enhancement of the power generation of a coastal PV-power plant at Zahrani Lebanon. Sol Energ 2019;184:195–201. [CrossRef]
  • [94] Grando MN, Maletz ER, Martins D, Simas H, Simoni R. Robots for cleaning photovoltaic panels: State of the art and future prospects. Revista Tecnología y Ciencia 2019;35:137–150. [CrossRef]
  • [95] Chailoet K, Pengwang E. Assembly of modular robot for cleaning various lengths of solar panels. IOP Conf Ser Mater Sci Engineer 2019;639:012014. [CrossRef]
  • [96] Akyazı Ö, Şahin E, Özsoy T, Algül M. A solar panel cleaning robot design and application. Eur J Sci Technol 2019:343–348. [CrossRef]
  • [97] Ranganathan S, Raja A, Mohana Sundaram A, Selvamani AP. Amelioration of modular mobility by adopting split cell solar panel cleaning and cooling thereof. SAE Technical Paper 2019-28-007;2019. [CrossRef]
  • [98] Ghodki MK, Swarup A, Pal Y. A new IR and sprinkler-based embedded controller directed robotic arm for automatic cleaning of solar panel. J Engineer Des Technol 2020;18:905–921. [CrossRef]
  • [99] Patil DM, Patil NK, Patil MS, Patil SS. Easy implementation of solar panel cleaner. Int J Innov Technol Explor Engineer 2020;9:263–265. [CrossRef]
  • [100] Khadka N, Bista A, Adhikari B, Shrestha A, Bista D. Smart solar photovoltaic panel cleaning system. IOP Conf Ser Earth Environ Sci 2020;463:012121. [CrossRef]
  • [101] Noh FHM, Hassan MH, Ahmad MM, Jaafar J, Rahman AMA. Development of solar panel cleaning robot using Arduino. Indones J Electr Engineer Comp Sci 2020;19:1245–1250. [CrossRef]
  • [102] Gekko Solar. Mobile cleaning robot for solar panels on rooftop installations. Available from: www.serbot.ch. Accessed Oct 16, 2024.
  • [103] Ghodki MK. An infrared-based dust mitigation system operated by the robotic arm for performance improvement of the solar panel. Sol Energ 2022;244:343–361. [CrossRef]
  • [104] Syafiq A, Pandey AK, Adzman NN, Rahim NA. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol Energ 2018;162:597–619. [CrossRef]
  • [105] Alamri HR, Rezk H, Abd-Elbary H, Ziedan HA, Elnozahy A. Experimental investigation to improve the energy efficiency of solar PV panels using hydrophobic SiO2 nanomaterial. Coatings 2020;10:503. [CrossRef]
  • [106] Arabatzis I, Likodimos V, Stergiopoulos T, Falaras P. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol Energ 2018;159:251–259. [CrossRef]
  • [107] Luque EG, Antonanzas-Torres F, Escobar R. Effect of soiling in bifacial PV modules and cleaning schedule optimization. Energy Conver Manage 2018;174:615–625. [CrossRef]
  • [108] Piliougine M, Ocon P, Sidrach-de-Cardona M, Hernandez-Moro J, Gutierrez-Acuna A, Carretero J. Comparative analysis of energy produced by photovoltaic modules with anti- soiling coated surface in arid climates. Appl Energ 2013;112:626–634. [CrossRef]
  • [109] Kimber A. The effect of soiling on large grid-connected photovoltaic systems in California and the Southwest region of the United States. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 07-12 May 2006. [CrossRef]
  • [110] Son J, Kwak JK, Sung YJ, Kim S, Hong JP. A practical superhydrophilic self-cleaning and antireflective surface for outdoor photovoltaic applications. Sol Energ Mater Sol Cells 2012;98:46–51. [CrossRef]
  • [111] Kawamoto H, Shibata T. Electrostatic cleaning system for removal of sand from solar panels. J Electrostat 2015;73:65–70. [CrossRef]
  • [112] Hong Z, Yang H, Yuanhao W, Hongxing Y. TiO2/Silane coupling agent composed two layers structure: A novel stability super-hydrophilic self-cleaning coating applied in PV panels. Energ Proc 2017;105:1077–1083. [CrossRef]
  • [113] Saravanan VS, Darvekar SK. Solar photovoltaic panels cleaning methods a review. Int J Pure Appl Math 2018;118:1–17.
  • [114] Attia OH, Adam NM, As’Arry A, Md Rezali KA. Removal of dust from the solar panel surface using mechanical vibrator. J Phys Conf Ser 2019;1262:012021. [CrossRef]
  • [115] Alagoz S, Apak Y. Removal of spoiling materials from solar panel surfaces by applying surface acoustic waves. J Clean Prod 2020;253:119992. [CrossRef]
  • [116] Babu E, Yesudasan S, Chacko S. Cymatics inspired self-cleaning mechanism for solar panels. Microsys Technol 2021;27:853–861. [CrossRef]
  • [117] Gupta V, Sharma M, Pachauri R, Babu KND. Performance analysis of solar PV system using customize wireless data acquisition system and novel cleaning technique. Energ Source Part A 2022;44:2748–2769. [CrossRef]
  • [118] Ismail AA, Alzubi F, Al-Hajji LA, Alseidi M, Ahmad S, Alduweesh A. Self-cleaning coatings for minimizing the impact of dust precipitation on the power production of solar cells utilizing mesoporous TiO2/SiO2 and ZnO/SiO2 films. Ceram Int 2023;49:22788–22796. [CrossRef]
  • [119] Huang CH, et al. Development of intelligent solar panel cleaning system with fuzzy logic theorem. Appl Mech Mater 2014;479-480:565–569. [CrossRef]
  • [120] Halbhavi SB, Kulkarni SG, Kulkarni DB. Microcontroller based automatic cleaning of solar panel. Int J Latest Trends Engineer Technol 2015;5:99–103.
  • [121] Bohari ZH, Jamal SNASBA, Sidin SSBM, Nasir MNM. Solar tracker module with automated module cleaning system. Int J Engineer Sci 2015;4:66–69.
  • [122] Ballal VA, Autee RM. Dual axis solar panel and panel cleaning system. Int J Adv Technol Engineer Sci 2016;4:85–93.
  • [123] Al Shehri A, Parrott B, Carrasco P, Al Saiari H, Taie I. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Sol Energ 2016;135:317–324. [CrossRef]
  • [124] Samman FA, Latief S. Design of automatic control for surface cleaning systems of photovoltaic panel. IJIET 2017;8:1457–1464.
  • [125] Sinha A, Preet A. Automatic solar tracker with pre-installed panel cleaner. IJARIIT 2017;3:232–238.
  • [126] Sha Najeeb N, Kumar Soori P, Al Madanat I. Performance enhancement of solar photovoltaic panels using air-water mixture and sustainable solutions to off-grid electrification. Preprints 2018:2018100325. [CrossRef]
  • [127] Gupta N, Mankar A, Ghode G, Charmode K, Halmare A. The solar panel cleaning droid. IJRASET 2019;7:2007–2008. [CrossRef]
  • [128] Mariprasath T, Ramamohan Reddy K. Energy efficiency enhancement of solar PV panel by automatic cleaning technique. Int J Innov Technol Explor Engineer 2019;8:3591–3595. [CrossRef]
  • [129] Katakam SM, Atheaya D, Aligireddy SR, Guptaa Y, Bhukhari AA. Experimental investigation of photovoltaic module system coupled with solar panel cleaning system. Vibroengineer Proc 2019:219–224. [CrossRef]
  • [130] Sugiartha N, Ardana IGN, Sugina IM, Widiantara IBG, Suparta IN, Adi IK. Preliminary design and test of a water spray solar panel cleaning system. J Phys Conf Ser 2020;1450:012108. [CrossRef]
  • [131] Jaiganesh K, Bharath Simha Reddy K, Shobhitha BKD, Dhanush Goud B. Enhancing the efficiency of rooftop solar photovoltaic panel with simple cleaning mechanism. Mater Today Proc 2021;51:411–415. [CrossRef]
  • [132] Khalid HM, Khairi MM, Rezk H, Chaouachi A, Al-Zaidi S. Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Sol Energ 2023;251:261–285. [CrossRef]
  • [133] Grimaccia F, Aghaei M, Mussetta M, Leva S, Quater PB. Planning for PV plant performance monitoring by means of unmanned aerial systems (UAS). Int J Energy Environ Engineer 2015;6:47–54. [CrossRef]
  • [134] Al-Housani M, Bicer Y, Koç M. Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Conver Manage 2019;185:800–815. [CrossRef]
  • [135] Grando MN, Maletz ER, Martins D, Simas H, Simoni R. Robots for cleaning photovoltaic panels: State of the art and future prospects. Revista Tecnología y Ciencia 2019;35:137–150. [CrossRef]
  • [136] Mohandes M, Schulze F, Rehman S, Suliman W. Cleaning photovoltaic solar panels by drone aerodynamic. 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia, 2021. pp. 1–5. [CrossRef]
  • [137] Sarkis SS, Khanfar LA, Ghabour BN, Zaki L, Alahmed M, Jaradat MA. Novel design of a hybrid drone system for cleaning solar panels. 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 2022. pp. 1–6. [CrossRef]
  • [138] Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew Sustain Energ Rev 2010;14:3124–3131. [CrossRef]
  • [139] Mazumder MK, Horenstein MN, Joglekar NR, Sayyah A, Stark JW, Bernard AAR. Mitigation of dust impact on solar collectors by water-free cleaning with transparent electrodynamic films: Progress and challenges. IEEE J Photovolt 2017;7:1342–1353. [CrossRef]

A comprehensive investigation of solar panel cleaning technologies: A review study

Year 2024, Volume: 10 Issue: 6, 1715 - 1741, 19.11.2024

Abstract

This article explores the evolution and importance of photovoltaic (PV) panels, spanning from their inception to contemporary variations, emphasizing their critical role in addressing global concerns regarding climate change and carbon emissions. It underscores the necessity of maintaining clean photovoltaic panels to optimize efficiency and examines factors affecting dust accumulation and mitigation methods. The literature review highlights the substantial impact of dust accumulation on PV panel efficiency, documenting power output declines due to dust deposition globally. It also discusses the evolving landscape of cleaning methodologies, including robotic systems and surface treatments, to enhance solar PV performance in dusty environments. Dust’s multifaceted role in environmental processes, affecting climate, atmospheric interactions, and human health, is acknowledged. The complexity of dust deposition on PV systems, influenced by various factors, underscores the challenge of maintaining optimal panel efficiency. The diverse characteristics of dust, including size, composition, adhesion, and density, complicate understanding and emphasize the need for comprehensive research. Various cleaning techniques, from traditional methods to advanced ones like electrostatic precipitators and coatings, are explored, addressing dust accumulation with considerations for water conservation and energy efficiency. Innovative dust mitigation approaches like super-hydrophilic and super-hydrophobic coatings are presented. This article provides a comparative analysis of solar panel cleaning methods, emphasizing their advantages and limitations, to aid in method selection based on installation needs and environmental conditions. It also delves into active and passive self-cleaning techniques, assesses automated cleaning systems, underlines the role of these methods in obtaining the highest efficiency of photovoltaic panels shows the different mechanisms by which these methods are built, and reviews the latest studies in this area.

References

  • [1] Kaygusuz K. Renewable energy: Power for a sustainable future. Energ Explor Exploit 2001;19:603–626. [CrossRef]
  • [2] Azzouz A, Platon N, Nousir S, Ghomari K, Nistor D, Shiao TC, et al. OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Sep Purif Technol 2013;108:181–188. [CrossRef]
  • [3] Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y. Carbon capture with ionic liquids: Overview and progress. Energ Environ Sci 2012;5:6668–6681. [CrossRef]
  • [4] Hassan B, Beshara M. Using renewable energy criteria for construction method selection in Syrian Buildings. JJMIE 2019;13:125–130.
  • [5] Heiman MK, Solomon BD. Power to the people: Electric utility restructuring and the commitment to renewable energy. Annals Assoc Am Geographers 2004;94:94–116. [CrossRef]
  • [6] Bürer MJ, Wüstenhagen R. Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energ Pol 2009;37:4997–5006. [CrossRef]
  • [7] Güdel M. The sun in time: Activity and environment living reviews in solar physics. Liv Rev Sol Phys 2007;4:3. [CrossRef]
  • [8] Azzouz A, Roy R. Innovative strategy for truly reversible capture of polluting gases—application to carbon dioxide. Int J Mol Sci 2023;24:16463. [CrossRef]
  • [9] Vidyanandan KV. An overview of factors affecting the performance of solar PV systems. Energ Scan 2017;27:2–8.
  • [10] Ilse K, Werner M, Naumann V, Figgis BW, Hagendorf C, Bagdahn J. Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates. Phys Stat Solidi Rapid Res Let 2016;10:525–529. [CrossRef]
  • [11] Kok JF, Parteli EJR, Michaels TI, Karam DB. The physics of wind-blown sand and dust. Rep Prog Phys 2012;75:106901. [CrossRef]
  • [12] Shao Y, Wyrwoll KH, Chappel A, Huang J, Lin Z, McTanish GH, et al. Dust cycle: An emerging core theme in Earth system science. Aeolian Res 2011;2:181–204. [CrossRef]
  • [13] Miller RL, Tegen I, Perlwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J Geophys Res Atmos 2004;109:D04203. [CrossRef]
  • [14] Gu Y, Liou KN, Jiang JH, Su H, Liu X. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos Chem Phys 2012;12:1667–1679. [CrossRef]
  • [15] Saidou Chaibou AA, Ma X, Sha T. Dust radiative forcing and its impact on surface energy budget over West Africa. Sci Rep 2020;10:12236. [CrossRef]
  • [16] Choobari OA, Zawar-Reza P, Sturman A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos Res 2014;138:152–165. [CrossRef]
  • [17] Zhang X, Zhao L, Tong DQ, Wu G, Dan M, Teng B. A systematic review of global desert dust and associated human health effects. Atmos 2016;7:158. [CrossRef]
  • [18] Morman SA, Plumlee GS. Dust and human health. In: Knippertz P, Stuut JBW, eds. Mineral Dust: A Key Player in the Earth System. Dordrecht: Springer Netherlands; 2014. pp. 385–409. [CrossRef]
  • [19] Middleton NJ. Desert dust hazards: A global review. Aeolian Res 2017;24:53–63. [CrossRef]
  • [20] Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 2012;50:RG000388. [CrossRef]
  • [21] Pabortsava K, Lampitt RS, Benson J, Crowe C, McLachan R, Le Moigne FAC, et al. Carbon sequestration in the deep Atlantic enhanced by Saharan dust. Nat Geosci 2017;10:189–194. [CrossRef]
  • [22] Li X, Mauzerall DL, Bergin MH. Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nat Sustain 2020;3:720–727. [CrossRef]
  • [23] Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew Sustain Energ Rev 2010;14:3124–3131. [CrossRef]
  • [24] Morman SA, Plumlee GS. The role of airborne mineral dusts in human disease. Aeolian Res 2013;9:203–212. [CrossRef]
  • [25] Kazem AA, Chaichan MT, Kazem HA. Dust effect on photovoltaic utilization in Iraq: Review article. Renew Sustain Energ Rev 2014;37:734–749. [CrossRef]
  • [26] Ravindra K, Mittal AK, Van Grieken R. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Rev Environ Health 2001;16:169–89. [CrossRef]
  • [27] Chaichan MT, Kazem HA. Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energ Source Part A 2020;46:7018–7039. [CrossRef]
  • [28] Salamah T, Ramahi A, Alamara K, Juaidi A, Abdallah R, Abdelkareem MA, et al. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Sci Total Environ 2022;827:154050. [CrossRef]
  • [29] Abdelsalam MAM, Ahmad FF, Hamid AK, Ghenai C, Rejeb O, Alchadirchy M, et al. Experimental study of the impact of dust on azimuth tracking solar PV in Sharjah. Int J Elec Comp Engineer 2021;11:3671–3681. [CrossRef]
  • [30] Khilar R, Suba GM, Kumar TS, Isaac S Shinde SK, Ramya S, et al. Improving the efficiency of photovoltaic panels using machine learning approach. Int J Photoenerg 2022:4921153. [CrossRef]
  • [31] Saidan M, Albaali AG, Alasis E, Kaldellis JK. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew Energ 2016;92:499–505. [CrossRef]
  • [32] Kazem HA, Chaichan MT. The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman. Sol Energ 2019;187:30–38. [CrossRef]
  • [33] Vaishak S, Bhale PV. Effect of dust deposition on performance characteristics of a refrigerant based photovoltaic/thermal system. Sustain Energ Technol Assess 2019;36:100548. [CrossRef]
  • [34] Paudyal BR, Shakya SR. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Sol Energ 2016;13:103–110. [CrossRef]
  • [35] Klugmann-Radziemska E. Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renew Energ 2015;78:418–426. [CrossRef]
  • [36] Abderrezek M, Fathi M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol Energ 2017;142:308–320. [CrossRef]
  • [37] Guan Y, Zhang H, Xiao B, Zhou Z, Yan X. In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renew Energ 2017;101:1273–1284. [CrossRef]
  • [38] Hachicha AA, Al-Sawafta I, Said Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew Energ 2019;141:287–297. [CrossRef]
  • [39] Gholami A, Khazaee I, Eslami S, Zandi M, Akrami E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol Energ 2018;159:346–352. [CrossRef]
  • [40] Tanesab J, Parlevliet D, Whale J, Urmee T. Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas. Renew Energ 2018;120:401–412. [CrossRef]
  • [41] Costa SCS, Diniz ASAC, Kazmerski LL. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012-2015. Renew Sustain Energ Rev 2016;63:33–61. [CrossRef]
  • [42] Vasiljev P, Borodinas S, Bareikis R, Struckas A. Ultrasonic system for solar panel cleaning. Sens Actuators A Phys 2013;200:74–78. [CrossRef]
  • [43] Gholami A, Ameri M, Zandi M, Ghoachani RG, Eslami S, Pierfederici S. Photovoltaic potential assessment and dust impacts on photovoltaic systems in Iran: Review paper. IEEE J Photovoltaics 2020:2978851. [CrossRef]
  • [44] Chaichan MT, Kazem HA. Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energ Source Part A 2020;46:7018–7039. [CrossRef]
  • [45] Darwish ZA, Kazem HA, Sopian K, Alghoul MA, Alawadhi H. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: an experimental study. Environ Dev Sustain 2018;20:155–174. [CrossRef]
  • [46] Farrokhi Derakhshandeh J, Nazif S, Gholami M, Kheshti M, Ahmadi P, Mofid M. A comprehensive review of automatic cleaning systems of solar panels. Sustain Energ Technol Assess 2021;47:101518. [CrossRef]
  • [47] Figgis B, Bermudez V. PV coating abrasion by cleaning machines in desert environments – measurement techniques and test conditions. Sol Energy 2021;225:252–258. [CrossRef]
  • [48] Yilbas BS, Abubakar AA, Al-Qahtani H, Mohammed AS, Al-Sharafi A. A novel method for dust mitigation from PV cell surfaces. Sol Energ 2021;225:708–717. [CrossRef]
  • [49] Sayyah A, Horenstein MN, Mazumder MK. Energy yield loss caused by dust deposition on photovoltaic panels. Sol Energy 2014;107:576–604. [CrossRef]
  • [50] Assi A, Hassan A, Al-Shamisi M, Hejase H. Removal of air blown dust from photovoltaic arrays using forced air flow of return air from air conditioning systems. 2012 International Conference on Renewable Energies for Developing Countries, REDEC 2012, Beirut, Lebanon, Nov 28-29 2012. [CrossRef]
  • [51] Park YB, Im H, Im M, Choi YK. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J Mater Chem 2011;21:633–636. [CrossRef]
  • [52] Lu X, Zhang Q, Hu J. A linear piezoelectric actuator based solar panel cleaning system. Energy 2013;60:401–406. [CrossRef]
  • [53] Vasiljev P, Borodinas S, Bareikis R, Struckas A. Ultrasonic system for solar panel cleaning. Sens Actuators A Phys 2013;200:74–78. [CrossRef]
  • [54] Parrott B, Carrasco Zanini P, Shehri A, Kotsovos K, Gereige I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol Energ 2018;171:526–533. [CrossRef]
  • [55] Du X, Jiang F, Liu E, Wu C, Ghorbel FH. Turbulent airflow dust particle removal from solar panel surface: Analysis and experiment. J Aerosol Sci 2019;130:32–44. [CrossRef]
  • [56] Chesnutt JKW, Ashkanani H, Guo B, Wu CY. Simulation of microscale particle interactions for optimization of an electrodynamic dust shield to clean desert dust from solar panels. Sol Energ 2017;155:1197–1207. [CrossRef]
  • [57] Deb D, Brahmbhatt NL. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew Sustain Energ Rev 2018;82:3306–3313. [CrossRef]
  • [58] Moharram KA, Abd-Elhady MS, Kandil HA, El-Sherif H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energ Conver Manage 2013;68:266–272. [CrossRef]
  • [59] Demenkova TA, Korzhova OA, Phinenko AA. Modelling of algorithms for solar panels control systems. Proc Comp Sci 2017;103:589–596. [CrossRef]
  • [60] Pan A, Lu H, Zhang LZ. Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings. Energy 2019;181:645–653. [CrossRef]
  • [61] Mondal AK, Bansal K. A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels. Adv Robot 2015;29:515–524. [CrossRef]
  • [62] Deb D, Brahmbhatt NL. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew Sustain Energ Rev 2018;82:3306–3313. [CrossRef]
  • [63] Moharram KA, Abd-Elhady MS, Kandil HA, El-Sherif H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energ Conver Manage 2013;68:266–272. [CrossRef]
  • [64] Ekinci F, Yavuzdeğer A, Nazlıgül H, Esenboğa B, Doğru Mert B, Demirdelen T. Experimental investigation on solar PV panel dust cleaning with solution method. Sol Energy 2022;237:1–10. [CrossRef]
  • [65] Wan L, Zhao L, Xu W, Guo F, Jiang X. Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems. Sol Energ 2024;268:112300. [CrossRef]
  • [66] Saravanan VS, Darvekar SK. Solar photovoltaic panels cleaning methods a review. Int J Pure Appl Math 2018;118:1–17.
  • [67] Farrokhi Derakhshandeh J, AlLuqmanet R, Mohammad S, AlHussain H, AlHendi G, AlEid D, et al. A comprehensive review of automatic cleaning systems of solar panels. Sustain Energ Technol Assess 2021;47:101518. [CrossRef]
  • [68] Rodríguez L. How to clean solar panels: 5 tried and tested ways. Available at: https://ratedpower.com/blog/clean-solar-panels/. Accessed Oct 16, 2024.
  • [69] Syafiq A, Pandey AK, Adzman NN, Rahim NA. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol Energ 2018;162:597–619. [CrossRef]
  • [70] Schönenberger UT, Simon J, Stamm C. Are spray drift losses to agricultural roads more important for surface water contamination than direct drift to surface waters? Sci Total Environ 2022;809:151102. [CrossRef]
  • [71] Zahedi R, Ranjbaran P, Gharehpetian GB, Mohammadi F, Ahmadiahangar R. Cleaning of floating photovoltaic systems: A critical review on approaches from technical and economic perspectives. Energies 2021;147:2018. [CrossRef]
  • [72] Jones RK, Rustom M, Michaelson L, Keith G, Rahoma U, Al-Abdallah S. Optimized cleaning cost and schedule based on observed soiling conditions for photovoltaic plants in central Saudi Arabia. IEEE J Photovolt 2016;6:730–738. [CrossRef]
  • [73] Jamil WJ, Abdul Rahman H, Shaari S, Salam Z. Performance degradation of photovoltaic power system: Review on mitigation methods. Renew Sustain Energ Rev 2017;67: 876–891. [CrossRef]
  • [74] He G, Zhou C, Li Z. Review of self-cleaning method for solar cell array. Proc Engineer 2011;16:640–645. [CrossRef]
  • [75] Altıntaş M, Arslan S. The study of dust removal using electrostatic cleaning system for solar panels. Sustainability 2021;13:9454. [CrossRef]
  • [76] Nahar Myyas R, Al-Dabbasa M, Tostado-Véliz M, Jurado F. A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Sol Energy 2022;237:19–28. [CrossRef]
  • [77] Liu G, Marshall JS. Particle transport by standing waves on an electric curtain. J Electrostat 2010;68:289–298. [CrossRef]
  • [78] Sims RA, Biris AS, Wilson JD, Yurteri CU, Mazumder MK, Calle CI, et al. Development of a transparent self-cleaning dust shield for solar panels. Available at: https://www.researchgate.net/publication/228561437_Development_of_a_transparent_self-cleaning_dust_shield_for_solar_panels. Accessed Oct 16, 2024.
  • [79] Kawamoto H, Shibata T. Electrostatic cleaning system for removal of sand from solar panels. J Electrostat 2015;73:65–70. [CrossRef]
  • [80] Mondal S, Mondal AK, Sharma A, Devalla V, Rana S, Kumar S, et al. An overview of cleaning and prevention processes for enhancing efficiency of solar photovoltaic panels. Curr Sci 2018;115:1065–1077. [CrossRef]
  • [81] Kawamoto H. Electrostatic cleaning equipment for dust removal from soiled solar panels. J Electrostat 2019;98:11–16. [CrossRef]
  • [82] Altıntaş M, Arslan S. The study of dust removal using electrostatic cleaning system for solar panels. Sustainability 2021;13:9454. [CrossRef]
  • [83] Liu Y, Liu X, Cui Y, Yuan W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrason Sonochem 2022;87:106054. [CrossRef]
  • [84] Al-Salaymeh AS, Al-Mansi NN, Muslih IM, Altaharwah YA, Al Smadi WY. Electrostatic cleaning effect on the performance of PV modules in Jordan. Clean Engineer Technol 2023;13:100606. [CrossRef]
  • [85] Tilmatine A, Kadous N, Yanallah K, Bellebna Y, Bendaoudi Z, Zouaghi A. Experimental investigation of a new solar panels cleaning system using ionic wind produced by corona discharge. J Electrostat 2023;124:103827. [CrossRef]
  • [86] Pickerel K. What are the different types of solar mounting systems for roofs? Available at: https://www.solarpowerworldonline.com/2017/02/different-types-solar-mounting-systems-roofs/. Accessed Oct 16, 2024.
  • [87] Anderson M, Grandy A, Hastie J, Sweezey A, Ranky R, Mavroidis C. Robotic device for cleaning photovoltaic panel arrays. Mob Robot 2009:367–377. [CrossRef]
  • [88] Kumar Mondal A, Bansal K. Structural analysis of solar panel cleaning robotic arm. Curr Sci 2015;108:1047–1052.
  • [89] Selvaganesh V, Manoharan PS, Seetharaman V. Cleaning solar panels using portable robot system. IJCTA 2017;10:195–203.
  • [90] Manju B, Bari A, Pavan CM. Automatic solar panel cleaning system. Int J Adv Sci Res Engineer 2018;4:26–31. [CrossRef]
  • [91] Kumar NM, Sudhakar K, Samykano M, Sukumaran S. Dust cleaning robots (DCR) for BIPV and BAPV solar power plants – A conceptual framework and research challenges. Proc Comp Sci 2018;133:746–754. [CrossRef]
  • [92] Cai S, Chen Y, Wang J, Lu L, Cao S. Parameters optimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experiment method. J Clean Prod 2019;217:724–731. [CrossRef]
  • [93] Hammoud M, Shokr B, Assi A, Hallal J, Khoury P. Effect of dust cleaning on the enhancement of the power generation of a coastal PV-power plant at Zahrani Lebanon. Sol Energ 2019;184:195–201. [CrossRef]
  • [94] Grando MN, Maletz ER, Martins D, Simas H, Simoni R. Robots for cleaning photovoltaic panels: State of the art and future prospects. Revista Tecnología y Ciencia 2019;35:137–150. [CrossRef]
  • [95] Chailoet K, Pengwang E. Assembly of modular robot for cleaning various lengths of solar panels. IOP Conf Ser Mater Sci Engineer 2019;639:012014. [CrossRef]
  • [96] Akyazı Ö, Şahin E, Özsoy T, Algül M. A solar panel cleaning robot design and application. Eur J Sci Technol 2019:343–348. [CrossRef]
  • [97] Ranganathan S, Raja A, Mohana Sundaram A, Selvamani AP. Amelioration of modular mobility by adopting split cell solar panel cleaning and cooling thereof. SAE Technical Paper 2019-28-007;2019. [CrossRef]
  • [98] Ghodki MK, Swarup A, Pal Y. A new IR and sprinkler-based embedded controller directed robotic arm for automatic cleaning of solar panel. J Engineer Des Technol 2020;18:905–921. [CrossRef]
  • [99] Patil DM, Patil NK, Patil MS, Patil SS. Easy implementation of solar panel cleaner. Int J Innov Technol Explor Engineer 2020;9:263–265. [CrossRef]
  • [100] Khadka N, Bista A, Adhikari B, Shrestha A, Bista D. Smart solar photovoltaic panel cleaning system. IOP Conf Ser Earth Environ Sci 2020;463:012121. [CrossRef]
  • [101] Noh FHM, Hassan MH, Ahmad MM, Jaafar J, Rahman AMA. Development of solar panel cleaning robot using Arduino. Indones J Electr Engineer Comp Sci 2020;19:1245–1250. [CrossRef]
  • [102] Gekko Solar. Mobile cleaning robot for solar panels on rooftop installations. Available from: www.serbot.ch. Accessed Oct 16, 2024.
  • [103] Ghodki MK. An infrared-based dust mitigation system operated by the robotic arm for performance improvement of the solar panel. Sol Energ 2022;244:343–361. [CrossRef]
  • [104] Syafiq A, Pandey AK, Adzman NN, Rahim NA. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol Energ 2018;162:597–619. [CrossRef]
  • [105] Alamri HR, Rezk H, Abd-Elbary H, Ziedan HA, Elnozahy A. Experimental investigation to improve the energy efficiency of solar PV panels using hydrophobic SiO2 nanomaterial. Coatings 2020;10:503. [CrossRef]
  • [106] Arabatzis I, Likodimos V, Stergiopoulos T, Falaras P. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol Energ 2018;159:251–259. [CrossRef]
  • [107] Luque EG, Antonanzas-Torres F, Escobar R. Effect of soiling in bifacial PV modules and cleaning schedule optimization. Energy Conver Manage 2018;174:615–625. [CrossRef]
  • [108] Piliougine M, Ocon P, Sidrach-de-Cardona M, Hernandez-Moro J, Gutierrez-Acuna A, Carretero J. Comparative analysis of energy produced by photovoltaic modules with anti- soiling coated surface in arid climates. Appl Energ 2013;112:626–634. [CrossRef]
  • [109] Kimber A. The effect of soiling on large grid-connected photovoltaic systems in California and the Southwest region of the United States. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 07-12 May 2006. [CrossRef]
  • [110] Son J, Kwak JK, Sung YJ, Kim S, Hong JP. A practical superhydrophilic self-cleaning and antireflective surface for outdoor photovoltaic applications. Sol Energ Mater Sol Cells 2012;98:46–51. [CrossRef]
  • [111] Kawamoto H, Shibata T. Electrostatic cleaning system for removal of sand from solar panels. J Electrostat 2015;73:65–70. [CrossRef]
  • [112] Hong Z, Yang H, Yuanhao W, Hongxing Y. TiO2/Silane coupling agent composed two layers structure: A novel stability super-hydrophilic self-cleaning coating applied in PV panels. Energ Proc 2017;105:1077–1083. [CrossRef]
  • [113] Saravanan VS, Darvekar SK. Solar photovoltaic panels cleaning methods a review. Int J Pure Appl Math 2018;118:1–17.
  • [114] Attia OH, Adam NM, As’Arry A, Md Rezali KA. Removal of dust from the solar panel surface using mechanical vibrator. J Phys Conf Ser 2019;1262:012021. [CrossRef]
  • [115] Alagoz S, Apak Y. Removal of spoiling materials from solar panel surfaces by applying surface acoustic waves. J Clean Prod 2020;253:119992. [CrossRef]
  • [116] Babu E, Yesudasan S, Chacko S. Cymatics inspired self-cleaning mechanism for solar panels. Microsys Technol 2021;27:853–861. [CrossRef]
  • [117] Gupta V, Sharma M, Pachauri R, Babu KND. Performance analysis of solar PV system using customize wireless data acquisition system and novel cleaning technique. Energ Source Part A 2022;44:2748–2769. [CrossRef]
  • [118] Ismail AA, Alzubi F, Al-Hajji LA, Alseidi M, Ahmad S, Alduweesh A. Self-cleaning coatings for minimizing the impact of dust precipitation on the power production of solar cells utilizing mesoporous TiO2/SiO2 and ZnO/SiO2 films. Ceram Int 2023;49:22788–22796. [CrossRef]
  • [119] Huang CH, et al. Development of intelligent solar panel cleaning system with fuzzy logic theorem. Appl Mech Mater 2014;479-480:565–569. [CrossRef]
  • [120] Halbhavi SB, Kulkarni SG, Kulkarni DB. Microcontroller based automatic cleaning of solar panel. Int J Latest Trends Engineer Technol 2015;5:99–103.
  • [121] Bohari ZH, Jamal SNASBA, Sidin SSBM, Nasir MNM. Solar tracker module with automated module cleaning system. Int J Engineer Sci 2015;4:66–69.
  • [122] Ballal VA, Autee RM. Dual axis solar panel and panel cleaning system. Int J Adv Technol Engineer Sci 2016;4:85–93.
  • [123] Al Shehri A, Parrott B, Carrasco P, Al Saiari H, Taie I. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Sol Energ 2016;135:317–324. [CrossRef]
  • [124] Samman FA, Latief S. Design of automatic control for surface cleaning systems of photovoltaic panel. IJIET 2017;8:1457–1464.
  • [125] Sinha A, Preet A. Automatic solar tracker with pre-installed panel cleaner. IJARIIT 2017;3:232–238.
  • [126] Sha Najeeb N, Kumar Soori P, Al Madanat I. Performance enhancement of solar photovoltaic panels using air-water mixture and sustainable solutions to off-grid electrification. Preprints 2018:2018100325. [CrossRef]
  • [127] Gupta N, Mankar A, Ghode G, Charmode K, Halmare A. The solar panel cleaning droid. IJRASET 2019;7:2007–2008. [CrossRef]
  • [128] Mariprasath T, Ramamohan Reddy K. Energy efficiency enhancement of solar PV panel by automatic cleaning technique. Int J Innov Technol Explor Engineer 2019;8:3591–3595. [CrossRef]
  • [129] Katakam SM, Atheaya D, Aligireddy SR, Guptaa Y, Bhukhari AA. Experimental investigation of photovoltaic module system coupled with solar panel cleaning system. Vibroengineer Proc 2019:219–224. [CrossRef]
  • [130] Sugiartha N, Ardana IGN, Sugina IM, Widiantara IBG, Suparta IN, Adi IK. Preliminary design and test of a water spray solar panel cleaning system. J Phys Conf Ser 2020;1450:012108. [CrossRef]
  • [131] Jaiganesh K, Bharath Simha Reddy K, Shobhitha BKD, Dhanush Goud B. Enhancing the efficiency of rooftop solar photovoltaic panel with simple cleaning mechanism. Mater Today Proc 2021;51:411–415. [CrossRef]
  • [132] Khalid HM, Khairi MM, Rezk H, Chaouachi A, Al-Zaidi S. Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Sol Energ 2023;251:261–285. [CrossRef]
  • [133] Grimaccia F, Aghaei M, Mussetta M, Leva S, Quater PB. Planning for PV plant performance monitoring by means of unmanned aerial systems (UAS). Int J Energy Environ Engineer 2015;6:47–54. [CrossRef]
  • [134] Al-Housani M, Bicer Y, Koç M. Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Conver Manage 2019;185:800–815. [CrossRef]
  • [135] Grando MN, Maletz ER, Martins D, Simas H, Simoni R. Robots for cleaning photovoltaic panels: State of the art and future prospects. Revista Tecnología y Ciencia 2019;35:137–150. [CrossRef]
  • [136] Mohandes M, Schulze F, Rehman S, Suliman W. Cleaning photovoltaic solar panels by drone aerodynamic. 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia, 2021. pp. 1–5. [CrossRef]
  • [137] Sarkis SS, Khanfar LA, Ghabour BN, Zaki L, Alahmed M, Jaradat MA. Novel design of a hybrid drone system for cleaning solar panels. 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 2022. pp. 1–6. [CrossRef]
  • [138] Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew Sustain Energ Rev 2010;14:3124–3131. [CrossRef]
  • [139] Mazumder MK, Horenstein MN, Joglekar NR, Sayyah A, Stark JW, Bernard AAR. Mitigation of dust impact on solar collectors by water-free cleaning with transparent electrodynamic films: Progress and challenges. IEEE J Photovolt 2017;7:1342–1353. [CrossRef]
There are 139 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Reviews
Authors

Mustafa Tahir Akkoyunlu 0000-0001-5748-6759

Yousef Abdallatif 0000-0003-2073-7483

Publication Date November 19, 2024
Submission Date April 30, 2024
Acceptance Date August 11, 2024
Published in Issue Year 2024 Volume: 10 Issue: 6

Cite

APA Akkoyunlu, M. T., & Abdallatif, Y. (2024). A comprehensive investigation of solar panel cleaning technologies: A review study. Journal of Thermal Engineering, 10(6), 1715-1741.
AMA Akkoyunlu MT, Abdallatif Y. A comprehensive investigation of solar panel cleaning technologies: A review study. Journal of Thermal Engineering. November 2024;10(6):1715-1741.
Chicago Akkoyunlu, Mustafa Tahir, and Yousef Abdallatif. “A Comprehensive Investigation of Solar Panel Cleaning Technologies: A Review Study”. Journal of Thermal Engineering 10, no. 6 (November 2024): 1715-41.
EndNote Akkoyunlu MT, Abdallatif Y (November 1, 2024) A comprehensive investigation of solar panel cleaning technologies: A review study. Journal of Thermal Engineering 10 6 1715–1741.
IEEE M. T. Akkoyunlu and Y. Abdallatif, “A comprehensive investigation of solar panel cleaning technologies: A review study”, Journal of Thermal Engineering, vol. 10, no. 6, pp. 1715–1741, 2024.
ISNAD Akkoyunlu, Mustafa Tahir - Abdallatif, Yousef. “A Comprehensive Investigation of Solar Panel Cleaning Technologies: A Review Study”. Journal of Thermal Engineering 10/6 (November 2024), 1715-1741.
JAMA Akkoyunlu MT, Abdallatif Y. A comprehensive investigation of solar panel cleaning technologies: A review study. Journal of Thermal Engineering. 2024;10:1715–1741.
MLA Akkoyunlu, Mustafa Tahir and Yousef Abdallatif. “A Comprehensive Investigation of Solar Panel Cleaning Technologies: A Review Study”. Journal of Thermal Engineering, vol. 10, no. 6, 2024, pp. 1715-41.
Vancouver Akkoyunlu MT, Abdallatif Y. A comprehensive investigation of solar panel cleaning technologies: A review study. Journal of Thermal Engineering. 2024;10(6):1715-41.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering