Araştırma Makalesi
BibTex RIS Kaynak Göster

BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ

Yıl 2024, Cilt: 23 Sayı: 45, 199 - 208, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1459483

Öz

Küresel bazda enerji talebi, sanayileşmenin gelişmesi ve elektronik cihazların hızlarının artması ve boyutlarının küçülmesiyle yoğun bir şekilde artmaktadır. Dünya enerji payına bakıldığında binalar için harcanan ısı enerjisinin en yüksek orana sahip olduğu görülmektedir. Bu bağlamda ısı enerjisinde sağlanabilecek tasarruflar küresel enerji sorununa katkı sağlayacaktır. Öte yandan bu tasarruf metotların/malzemelerin çevre dostu ve yeşil kaynaklı olması karşı karşıya kaldığımız çevresel sorunların sebebiyle elzemdir. Bu çalışmada, potansiyel ısı yalıtım malzemesi olarak değerlendirilen kabak lifi, Jüt lifi ve bu liflerin hibritleştirilmesi (kabak+jüt) yöntemiyle elde edilen biyokompozit malzemelerin ısı iletim katsayıları üç farklı sıcaklık değerinde belirlenmiştir. Bitkisel lifler takviye elemanı olarak kullanılmış olup matris olarak epoksi kullanılmıştır. Bu bağlamda biyokompozit malzeme numuneleri için testler gerçekleştirilmiş ve mevcut piyasada kullanılan ısı yalıtım malzemeleri ile karşılaştırılmıştır. Sonuçlar literatürdeki bilgiler ışığında tartışılmış ve öneriler sunulmuştur.

Kaynakça

  • Balo, F., (2017). Ekolojik Yalıtım Malzemesi Üretiminin Analitik Hiyerarşi Prosesi ile Değerlendirilmesi. Politeknik Dergisi, 20(3), 733-742.
  • Binici, H., Aksogan, O. & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17-26.
  • Braga, R.A. & Magalhaes Jr, P.A.A. (2015). Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Materials science and engineering: C, 56, 269-273.
  • Christopher, S., Vikram, M.P., Bakli, C., Thakur, A.K., Ma, Y., Ma, Z., Xu, H., Cuce, P.M., Cuce, E. & Singh, P. (2023). Renewable energy potential towards attainment of net-zero energy buildings status–a critical review. Journal of Cleaner Production, 405, 136942.
  • Demir, H., Top, A., Balköse, D. & Ülkü, S. (2008). Dye adsorption behavior of Luffa cylindrica fibers. Journal of Hazardous Materials, 153(1-2), 389-394.
  • Erkmen, J., Yakut, R., Hamamcı, B., & Özer, R. A. (2024). Production of insulation material using styrene acrylic resin from animal and agricultural waste part 1. Thermal insulation and water absorption. Energy and Buildings, 303, 113817.
  • Genc, G. (2015). Dynamic properties of Luffa cylindrica fiber reinforced bio-composite beam. Journal of Vibroengineering, 17(4), 1615-1622.
  • Hassan, M.L., (2006). Quaternization and anion exchange capacity of sponge gourd (Luffa cylindrica). Journal of applied polymer science, 101(4), 2495-2503.
  • Ismaeil, E.M. & Sobaih, A. E. E. (2023). Heuristic Approach for Net-Zero Energy Residential Buildings in Arid Region Using Dual Renewable Energy Sources. Buildings, 13(3), 796.
  • Korkmaz, A., Özel, S. & Özdemir, M. R. (2023). CO2 Akışkanının Kaynamalı Akış Rejiminde Isı Transferi Katsayısının Çoklu Regresyon Yöntemi İle Tahminlenmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 22(43), 179-193.
  • Koruk, H. & Genc, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials letters, 157, 166-168.
  • Limam, A., Zerizer, A., Quenard, D., Sallee, H. & Chenak, A. (2016). Experimental thermal characterization of bio-based materials (Aleppo Pine wood, cork and their composites) for building insulation. Energy and Buildings, 116, 89-95.
  • Liu, K., Takagi, H., Osugi, R. & Yang, Z. (2012). Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites. Composites Science and Technology, 72(5), 633-639.
  • Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P. & Michaud, P. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244-250.
  • Mazumdar, S., (2001). Composites manufacturing: materials, product, and process engineering. CrC press.
  • Mutlu, S. (2012). Jüt lifi ve tekstil-hazır giyim sektöründe kullanım alanları. Akdeniz Sanat, 4(8).
  • Nam, T.H., Ogihara, S., Nakatani, H., Kobayashi, S. & Song, J.I. (2012). Mechanical and thermal properties and water absorption of jute fiber reinforced poly (butylene succinate) biodegradable composites. Advanced composite materials, 21(3), 241-258.
  • Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K. & Arsène, M.A. (2010). Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Composites Part A: Applied Science and Manufacturing, 41(4), 549-556.
  • Ozdemir, Y. & Genc, G. (2019). Comparison of flexural properties of luffa and jute fibers. Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi, 2(2), 61-65.
  • Pires, C., Motta, L.A.D.C., Ferreira, R.A.D.R., Caixeta, C.D.O. & Savastano, H. (2021). Thermomechanical and thermo-hydro-mechanical treatments of luffa cylindrical fibers. Journal of Natural Fibers, 18(12), 2351-2363.
  • Sözbir, N. (2014). Isı İletim Katsayısının Belirlenmesi Deneyi. Sakarya Üniversitesi Makine Mühendisliği Bölümü Deney Tasarım Dersi.
  • Wang, C., Zuo, Q., Lin, T., Anuar, N. I. S., Salleh, K. M., Gan, S., ... & Zakaria, S. (2020). Predicting thermal conductivity and mechanical property of bamboo fibers/polypropylene nonwovens reinforced composites based on regression analysis. International Communications in Heat and Mass Transfer, 118, 104895.
  • Zhou, X.Y., Zheng, F., Li, H.G. & Lu, C.L., (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7), 1070-1074.

DETERMINATION OF THERMAL CONDUCTIVITY OF FIBER REINFORCED BIOCOMPOSITE MATERIALS

Yıl 2024, Cilt: 23 Sayı: 45, 199 - 208, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1459483

Öz

Energy demand on a global basis is increasing intensively with the development of industrialization and the increasing speed and miniaturization of electronic devices. It is observed that the heat energy consumption for buildings has the highest share in the world energy expenses. In this context, savings in heat energy would greatly contribute to the global energy problem. On the other hand, it is essential that these saving methods/materials should be environmentally friendly and green in origin due to the environmental problems that the world face. In this study, the thermal conductivity of luffa fiber, jute fiber, and biocomposite materials obtained by the hybridization of these fibers (luffa + jute), which are considered as potential thermal insulation materials, were determined at three different temperature values. Bio-based fibers were used as reinforcement elements and epoxy was used as the matrix. The tests were conducted for biocomposite material samples and compared with thermal insulation materials used in the current market. The results were discussed in the light of the information in the literature and suggestions were presented.

Kaynakça

  • Balo, F., (2017). Ekolojik Yalıtım Malzemesi Üretiminin Analitik Hiyerarşi Prosesi ile Değerlendirilmesi. Politeknik Dergisi, 20(3), 733-742.
  • Binici, H., Aksogan, O. & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17-26.
  • Braga, R.A. & Magalhaes Jr, P.A.A. (2015). Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Materials science and engineering: C, 56, 269-273.
  • Christopher, S., Vikram, M.P., Bakli, C., Thakur, A.K., Ma, Y., Ma, Z., Xu, H., Cuce, P.M., Cuce, E. & Singh, P. (2023). Renewable energy potential towards attainment of net-zero energy buildings status–a critical review. Journal of Cleaner Production, 405, 136942.
  • Demir, H., Top, A., Balköse, D. & Ülkü, S. (2008). Dye adsorption behavior of Luffa cylindrica fibers. Journal of Hazardous Materials, 153(1-2), 389-394.
  • Erkmen, J., Yakut, R., Hamamcı, B., & Özer, R. A. (2024). Production of insulation material using styrene acrylic resin from animal and agricultural waste part 1. Thermal insulation and water absorption. Energy and Buildings, 303, 113817.
  • Genc, G. (2015). Dynamic properties of Luffa cylindrica fiber reinforced bio-composite beam. Journal of Vibroengineering, 17(4), 1615-1622.
  • Hassan, M.L., (2006). Quaternization and anion exchange capacity of sponge gourd (Luffa cylindrica). Journal of applied polymer science, 101(4), 2495-2503.
  • Ismaeil, E.M. & Sobaih, A. E. E. (2023). Heuristic Approach for Net-Zero Energy Residential Buildings in Arid Region Using Dual Renewable Energy Sources. Buildings, 13(3), 796.
  • Korkmaz, A., Özel, S. & Özdemir, M. R. (2023). CO2 Akışkanının Kaynamalı Akış Rejiminde Isı Transferi Katsayısının Çoklu Regresyon Yöntemi İle Tahminlenmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 22(43), 179-193.
  • Koruk, H. & Genc, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials letters, 157, 166-168.
  • Limam, A., Zerizer, A., Quenard, D., Sallee, H. & Chenak, A. (2016). Experimental thermal characterization of bio-based materials (Aleppo Pine wood, cork and their composites) for building insulation. Energy and Buildings, 116, 89-95.
  • Liu, K., Takagi, H., Osugi, R. & Yang, Z. (2012). Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites. Composites Science and Technology, 72(5), 633-639.
  • Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P. & Michaud, P. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244-250.
  • Mazumdar, S., (2001). Composites manufacturing: materials, product, and process engineering. CrC press.
  • Mutlu, S. (2012). Jüt lifi ve tekstil-hazır giyim sektöründe kullanım alanları. Akdeniz Sanat, 4(8).
  • Nam, T.H., Ogihara, S., Nakatani, H., Kobayashi, S. & Song, J.I. (2012). Mechanical and thermal properties and water absorption of jute fiber reinforced poly (butylene succinate) biodegradable composites. Advanced composite materials, 21(3), 241-258.
  • Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K. & Arsène, M.A. (2010). Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Composites Part A: Applied Science and Manufacturing, 41(4), 549-556.
  • Ozdemir, Y. & Genc, G. (2019). Comparison of flexural properties of luffa and jute fibers. Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi, 2(2), 61-65.
  • Pires, C., Motta, L.A.D.C., Ferreira, R.A.D.R., Caixeta, C.D.O. & Savastano, H. (2021). Thermomechanical and thermo-hydro-mechanical treatments of luffa cylindrical fibers. Journal of Natural Fibers, 18(12), 2351-2363.
  • Sözbir, N. (2014). Isı İletim Katsayısının Belirlenmesi Deneyi. Sakarya Üniversitesi Makine Mühendisliği Bölümü Deney Tasarım Dersi.
  • Wang, C., Zuo, Q., Lin, T., Anuar, N. I. S., Salleh, K. M., Gan, S., ... & Zakaria, S. (2020). Predicting thermal conductivity and mechanical property of bamboo fibers/polypropylene nonwovens reinforced composites based on regression analysis. International Communications in Heat and Mass Transfer, 118, 104895.
  • Zhou, X.Y., Zheng, F., Li, H.G. & Lu, C.L., (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7), 1070-1074.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mehmed Rafet Özdemir 0000-0002-3832-9659

Garip Genç 0000-0001-7711-3845

Erken Görünüm Tarihi 6 Haziran 2024
Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 26 Mart 2024
Kabul Tarihi 3 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 23 Sayı: 45

Kaynak Göster

APA Özdemir, M. R., & Genç, G. (2024). BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(45), 199-208. https://doi.org/10.55071/ticaretfbd.1459483
AMA Özdemir MR, Genç G. BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Haziran 2024;23(45):199-208. doi:10.55071/ticaretfbd.1459483
Chicago Özdemir, Mehmed Rafet, ve Garip Genç. “BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, sy. 45 (Haziran 2024): 199-208. https://doi.org/10.55071/ticaretfbd.1459483.
EndNote Özdemir MR, Genç G (01 Haziran 2024) BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 45 199–208.
IEEE M. R. Özdemir ve G. Genç, “BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 45, ss. 199–208, 2024, doi: 10.55071/ticaretfbd.1459483.
ISNAD Özdemir, Mehmed Rafet - Genç, Garip. “BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/45 (Haziran 2024), 199-208. https://doi.org/10.55071/ticaretfbd.1459483.
JAMA Özdemir MR, Genç G. BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:199–208.
MLA Özdemir, Mehmed Rafet ve Garip Genç. “BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 45, 2024, ss. 199-08, doi:10.55071/ticaretfbd.1459483.
Vancouver Özdemir MR, Genç G. BİTKİSEL LİF TAKVİYELİ BİYOKOMPOZİT MALZEMELERİN ISI İLETİM KATSAYISI TAYİNİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(45):199-208.