Araştırma Makalesi
BibTex RIS Kaynak Göster

ELECTROCHEMICAL BEHAVIOUR AND PERFORMANCE OF FLEXIBLE GRAPHITE YARNS IN DIFFERENT ELECTROLYTES WITH WIDE POTENTIAL WINDOW OF 2 V

Yıl 2022, Cilt: 5 Sayı: 1, 48 - 52, 30.06.2022

Öz

Energy storage systems have received increasing attention in recent years because of the requirements of energy supply with respect to the growing population and technology. Among the technologies of energy storage devices, supercapacitors become popular due to their superior characteristics such as high power density, extremely fast charge-discharge capability and long life cycle. A wide variety of materials are already in use to fabricate supercapacitors. Carbon and its derivatives are common materials among the electrode materials of supercapacitors. In this study, electrochemical behaviour of flexible graphite yarns are investigated in different media in order to elucidate the performance of graphite as a supercapacitor material. Electrochemical experiments of graphite electrode are carried out in sodium sulphate (Na2SO4), hydrochloric acid (HCl), potassium hydroxide (KOH) and Ethaline deep eutectic solvent as electrolyte media. Graphite yarn is cycled at wide potential window (from -1 V to 1 V) at various scan rates in the range of 5 to 100 mV s−1 in order to observe the associated electrochemical behaviour and performance. Graphite yarn electrodes without any treatment can be used in Ethaline and aqueous Na2SO4 electrolytes. However, these electrodes cannot be used in acidic or alkaline media with high potential window of 2 V.

Destekleyen Kurum

Gaziantep Üniversitesi BAP Birimi

Proje Numarası

(MF.ALT.19.18).

Teşekkür

The authors thank the Scientific Research Unit of Gaziantep University

Kaynakça

  • [1] X. Wang, S. Han, Y. Wu, X. Wang, Coverage and energy consumption control in mobile heterogeneous wireless sensor networks, IEEE Trans. Automat. Contr. 58 (2012) 975–988.
  • [2] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
  • [3] W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery‐supercapacitor hybrid devices: recent progress and future prospects, Adv. Sci. 4 (2017) 1600539.
  • [4] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A. 5 (2017) 12653–12672.
  • [5] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods, J. Energy Eng. 139 (2013) 72–79.
  • [6] B. Xie, C. Yang, Z. Zhang, P. Zou, Z. Lin, G. Shi, Q. Yang, F. Kang, C.-P. Wong, Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics, ACS Nano. 9 (2015) 5636–5645.
  • [7] D.P. Dubal, Advances in flexible supercapacitors for portable and wearable smart gadgets, in: Emerg. Mater. Energy Convers. Storage, Elsevier, 2018: pp. 209–246.
  • [8] H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices, Joule. 3 (2019) 613–619.
  • [9] W.-J. Song, S. Lee, G. Song, H. Bin Son, D.-Y. Han, I. Jeong, Y. Bang, S. Park, Recent progress in aqueous based flexible energy storage devices, Energy Storage Mater. 30 (2020) 260–286.
  • [10] Y. Li, Z. Kang, X. Yan, S. Cao, M. Li, Y. Liu, S. Liu, Y. Sun, X. Zheng, Y. Zhang, A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors, J. Mater. Chem. A. 5 (2017) 22559–22567.
  • [11] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, Three-dimensional α-Fe 2 O 3/carbon nanotube sponges as flexible supercapacitor electrodes, J. Mater. Chem. A. 3 (2015) 20927–20934.
  • [12] J. Li, W. Lu, Y. Yan, T.-W. Chou, High performance solid-state flexible supercapacitor based on Fe 3 O 4/carbon nanotube/polyaniline ternary films, J. Mater. Chem. A. 5 (2017) 11271–11277.
  • [13] Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance, J. Power Sources. 195 (2010) 4418–4422.
  • [14] I. Shown, A. Ganguly, L. Chen, K. Chen, Conducting polymer‐based flexible supercapacitor, Energy Sci. Eng. 3 (2015) 2–26.
  • [15] Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Strømme, Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances, ACS Nano. 9 (2015) 7563–7571.
  • [16] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025–4031.
  • [17] S.W. Ali, S. Bairagi, Conductive Polymer Based Flexible Supercapacitor, in: Self-Standing Substrates, Springer, 2020: pp. 211–233.
  • [18] M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon N. Y. 49 (2011) 3755–3761. https://doi.org/https://doi.org/10.1016/j.carbon.2011.05.008.
  • [19] Z. Zhang, P. Zhang, D. Zhang, H. Lin, Y. Chen, A new strategy for the preparation of flexible macroscopic graphene fibers as supercapacitor electrodes, Mater. Des. 157 (2018) 170–178.
  • [20] N. He, W. Shan, J. Wang, Q. Pan, J. Qu, G. Wang, W. Gao, Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors, J. Mater. Chem. A. 7 (2019) 6869–6876.
  • [21] Z. Yang, Y. Jia, Y. Niu, Y. Zhang, C. Zhang, P. Li, M. Zhu, Q. Li, One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor, J. Energy Chem. 51 (2020) 434–441.
  • [22] L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics, Nat. Commun. 5 (2014) 1–10.
  • [23] S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy, C. Gao, Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors, J. Mater. Chem. A. 5 (2017) 22489–22494.
  • [24] W.K. Chee, H.N. Lim, N.M. Huang, Electrochemical properties of free‐standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor, Int. J. Energy Res. 39 (2015) 111–119.
  • [25] Z. Dou, Z. Qin, Y. Shen, S. Hu, N. Liu, Y. Zhang, High–performance flexible supercapacitor based on carbon cloth through in–situ electrochemical exfoliation and re–deposition in neutral electrolyte, Carbon N. Y. 153 (2019) 617–624.
  • [26] F. Hekmat, Y. Tutel, H.E. Unalan, Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics, Int. J. Energy Res. 44 (2020) 7603–7616.
  • [27] A.P. Bond, H.H. Uhlig, Corrosion behavior and passivity of nickel‐chromium and cobalt‐chromium alloys, J. Electrochem. Soc. 107 (1960) 488.
  • [28] T.G. Yun, B. Il Hwang, D. Kim, S. Hyun, S.M. Han, Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Interfaces. 7 (2015) 9228–9234.
  • [29] X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators, Adv. Mater. 28 (2016) 98–105.
  • [30] Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova‐Jurcakova, Synthesis of phosphorus‐doped graphene and its wide potential window in aqueous supercapacitors, Chem. Eur. J. 21 (2015) 80–85.
  • [31] Y.-J. Gu, W. Wen, J.-M. Wu, Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor, J. Power Sources. 469 (2020) 228425. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.228425.
  • [32] L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor, J. Power Sources. 196 (2011) 580–586. https://doi.org/https://doi.org/10.1016/j.jpowsour.2010.06.013.
  • [33] A.A. Bojang, H.S. Wu, Characterization of electrode performance in enzymatic biofuel cells using cyclic voltammetry and electrochemical impedance spectroscopy, Catalysts. 10 (2020) 782.
  • [34] S. Vinayaraj, K. Brijesh, P.C. Dhanush, H.S. Nagaraja, ZnWO4/SnO2 composite for supercapacitor applications, Phys. B Condens. Matter. 596 (2020) 412369.
Yıl 2022, Cilt: 5 Sayı: 1, 48 - 52, 30.06.2022

Öz

Proje Numarası

(MF.ALT.19.18).

Kaynakça

  • [1] X. Wang, S. Han, Y. Wu, X. Wang, Coverage and energy consumption control in mobile heterogeneous wireless sensor networks, IEEE Trans. Automat. Contr. 58 (2012) 975–988.
  • [2] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
  • [3] W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery‐supercapacitor hybrid devices: recent progress and future prospects, Adv. Sci. 4 (2017) 1600539.
  • [4] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A. 5 (2017) 12653–12672.
  • [5] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods, J. Energy Eng. 139 (2013) 72–79.
  • [6] B. Xie, C. Yang, Z. Zhang, P. Zou, Z. Lin, G. Shi, Q. Yang, F. Kang, C.-P. Wong, Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics, ACS Nano. 9 (2015) 5636–5645.
  • [7] D.P. Dubal, Advances in flexible supercapacitors for portable and wearable smart gadgets, in: Emerg. Mater. Energy Convers. Storage, Elsevier, 2018: pp. 209–246.
  • [8] H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices, Joule. 3 (2019) 613–619.
  • [9] W.-J. Song, S. Lee, G. Song, H. Bin Son, D.-Y. Han, I. Jeong, Y. Bang, S. Park, Recent progress in aqueous based flexible energy storage devices, Energy Storage Mater. 30 (2020) 260–286.
  • [10] Y. Li, Z. Kang, X. Yan, S. Cao, M. Li, Y. Liu, S. Liu, Y. Sun, X. Zheng, Y. Zhang, A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors, J. Mater. Chem. A. 5 (2017) 22559–22567.
  • [11] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, Three-dimensional α-Fe 2 O 3/carbon nanotube sponges as flexible supercapacitor electrodes, J. Mater. Chem. A. 3 (2015) 20927–20934.
  • [12] J. Li, W. Lu, Y. Yan, T.-W. Chou, High performance solid-state flexible supercapacitor based on Fe 3 O 4/carbon nanotube/polyaniline ternary films, J. Mater. Chem. A. 5 (2017) 11271–11277.
  • [13] Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance, J. Power Sources. 195 (2010) 4418–4422.
  • [14] I. Shown, A. Ganguly, L. Chen, K. Chen, Conducting polymer‐based flexible supercapacitor, Energy Sci. Eng. 3 (2015) 2–26.
  • [15] Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Strømme, Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances, ACS Nano. 9 (2015) 7563–7571.
  • [16] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025–4031.
  • [17] S.W. Ali, S. Bairagi, Conductive Polymer Based Flexible Supercapacitor, in: Self-Standing Substrates, Springer, 2020: pp. 211–233.
  • [18] M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon N. Y. 49 (2011) 3755–3761. https://doi.org/https://doi.org/10.1016/j.carbon.2011.05.008.
  • [19] Z. Zhang, P. Zhang, D. Zhang, H. Lin, Y. Chen, A new strategy for the preparation of flexible macroscopic graphene fibers as supercapacitor electrodes, Mater. Des. 157 (2018) 170–178.
  • [20] N. He, W. Shan, J. Wang, Q. Pan, J. Qu, G. Wang, W. Gao, Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors, J. Mater. Chem. A. 7 (2019) 6869–6876.
  • [21] Z. Yang, Y. Jia, Y. Niu, Y. Zhang, C. Zhang, P. Li, M. Zhu, Q. Li, One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor, J. Energy Chem. 51 (2020) 434–441.
  • [22] L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics, Nat. Commun. 5 (2014) 1–10.
  • [23] S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy, C. Gao, Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors, J. Mater. Chem. A. 5 (2017) 22489–22494.
  • [24] W.K. Chee, H.N. Lim, N.M. Huang, Electrochemical properties of free‐standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor, Int. J. Energy Res. 39 (2015) 111–119.
  • [25] Z. Dou, Z. Qin, Y. Shen, S. Hu, N. Liu, Y. Zhang, High–performance flexible supercapacitor based on carbon cloth through in–situ electrochemical exfoliation and re–deposition in neutral electrolyte, Carbon N. Y. 153 (2019) 617–624.
  • [26] F. Hekmat, Y. Tutel, H.E. Unalan, Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics, Int. J. Energy Res. 44 (2020) 7603–7616.
  • [27] A.P. Bond, H.H. Uhlig, Corrosion behavior and passivity of nickel‐chromium and cobalt‐chromium alloys, J. Electrochem. Soc. 107 (1960) 488.
  • [28] T.G. Yun, B. Il Hwang, D. Kim, S. Hyun, S.M. Han, Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Interfaces. 7 (2015) 9228–9234.
  • [29] X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators, Adv. Mater. 28 (2016) 98–105.
  • [30] Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova‐Jurcakova, Synthesis of phosphorus‐doped graphene and its wide potential window in aqueous supercapacitors, Chem. Eur. J. 21 (2015) 80–85.
  • [31] Y.-J. Gu, W. Wen, J.-M. Wu, Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor, J. Power Sources. 469 (2020) 228425. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.228425.
  • [32] L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor, J. Power Sources. 196 (2011) 580–586. https://doi.org/https://doi.org/10.1016/j.jpowsour.2010.06.013.
  • [33] A.A. Bojang, H.S. Wu, Characterization of electrode performance in enzymatic biofuel cells using cyclic voltammetry and electrochemical impedance spectroscopy, Catalysts. 10 (2020) 782.
  • [34] S. Vinayaraj, K. Brijesh, P.C. Dhanush, H.S. Nagaraja, ZnWO4/SnO2 composite for supercapacitor applications, Phys. B Condens. Matter. 596 (2020) 412369.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Articles
Yazarlar

Mahmut Furkan Kalkan 0000-0002-1903-5583

Murat Artan 0000-0002-0629-5626

Hasan Mithat Delibaş 0000-0003-3353-8600

Abdulcabbar Yavuz 0000-0002-7216-0586

Necip Fazıl Yılmaz 0000-0002-0166-9799

Proje Numarası (MF.ALT.19.18).
Yayımlanma Tarihi 30 Haziran 2022
Kabul Tarihi 2 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 1

Kaynak Göster

APA Kalkan, M. F., Artan, M., Delibaş, H. M., Yavuz, A., vd. (2022). ELECTROCHEMICAL BEHAVIOUR AND PERFORMANCE OF FLEXIBLE GRAPHITE YARNS IN DIFFERENT ELECTROLYTES WITH WIDE POTENTIAL WINDOW OF 2 V. The International Journal of Materials and Engineering Technology, 5(1), 48-52.