Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating the effect of solution annealing on corrosion resistance and hardness property of AISI 1036 welded steel in chloride environment using electrochemical noise method

Yıl 2024, Cilt: 7 Sayı: 1, 38 - 47, 30.06.2024

Öz

The outcomes derived from the investigation into the influence of solution-annealed AISI 1036 welded steel on the corrosion resistance and hardness properties in a chloride environment are presented in this paper. The solution-annealed steel samples were austenitized at a temperature of 990 oC and soaked for 2 hours to ensure complete homogenization and thereafter cooled in water. The control and the heat-treated samples were exposed to a chloride solution for corrosion investigation. Corrosion rates were examined for at the parent metal (PM), heat affected zone (HAZ), and welded zone (WZ) using the Potentiostatic measurement method (PMM), and hardness tests were conducted using Vickers microhardness testing (VMT). The results obtained from the hardness testing showed that the solution-annealed samples have higher hardness properties than the control samples at the welded zone, heat-affected zone, and the parent metal. When exposed to corrosion, the obtained corrosion rate showed that the solution-annealed samples were found to be more noble in the chloride environment than the control samples. The corrosion resistance of the samples was observed to decrease from the parent metal (PM), to the heat-affected zone (HAZ), and the welded zone (WZ) exhibited the least resistance. From the results obtained, the solution-annealed welded steel specimens seemed to be better suited for application in a chloride environment since they showed superior resistance throughout the exposure period.

Kaynakça

  • Ebarvia, M.C.M., Economic Assessment of Oceans for Sustainable Blue Economy Development. Journal of Ocean and Coastal Economics, 2016, 2(2):7
  • Ma, Y., Zhang, Y., Zhang, R., Guan, F., Hou, B., and Duan, J., Microbiologically Influenced Corrosion of Marine Steels within the Interaction between Steel and Biofilms: A Brief View. Applied Microbiology and Biotechnology, 2020, 104, 515-525
  • Mehmet Şükrü Adin and Bahattin İşcan.,. Optimization of Process Parameters of Medium Carbon Steel Joints Joined by MIG Welding Using Taguchi Method. European Mechanical Science, 2022, 6(1): 17-26
  • Nešic´ S., and Sun, W., Corrosion in Acid Gas Solutions in: J.A.R. Tony (Ed.), Shreir’s Corrosion, Elsevier, Oxford, 2010, 1270–1298
  • Ghareba, S., and Omanovic, S., Interaction of 12-Aminododecanoic Acid with a Carbon Steel Surface: Towards the Development of ‘Green’ Corrosion Inhibitors, Corros. Sci. 2010, 52, 2104–2113
  • Liu, D., Qiu, Y.B., Tomoe, Y., Bando, K., and Guo, X.P., Interaction of Inhibitors with Corrosion Scale Formed on N80 Steel in CO2-Saturated NaCl Solution, Mater. Corros, 2011, 62, 1153–1158
  • Agarwal, R.L., Welding Engineering. A Textbook for Engineering students, 4th ed., Khanaa public, Nai Sarai, Delhi, India, 1992
  • Jariyaben, M., Davenport, A. J., Ambert, R., Connolly, B.J., Williams, S.W., and Price, D.A., The Effect of Welding Parameters on the Corrosion Behavior of Friction Stir Welded AA2024- T351. Corrosion Sci. 2007, 49: 877-909
  • Lothongkum, G., Viyanit, E., and Bhandhubanyong, P., Study On the Effect of Pulsed TIG Welding Parameters on Delta- Ferrite Content, Shape Factor and Bead Quality in Orbital Welding of AISI 316L Stainless Steel Plate. Mater. Proc. Technol, 2001, 110: 233-38
  • Karadeniz, E., Ozsarae, U., and Yildiz, C., The Effect of Process Parameters on Penetration in Gas Metal Arc Welding Processes. Mater. Design, 2007, 28:649-56
  • Akiyama, M., Frangopol, D.M., and Ishibashi, H., Toward Life-Cycle Reliability-, Risk-and Resilience-Based Design and Assessment of Bridges and Bridge Networks under Independent and Interacting Hazards: Emphasis on Earthquake, Tsunami and Corrosion. Structure and Infrastructure Engineering, 2020, 16(1):26-50
  • Bertocci, U., and Huet, F., Noise-Analysis Applied to Electrochemical Systems. Corrosion. 1995, 51, 131-144
  • Mansfeld, F., The Electrochemical Noise Technique – Applications in Corrosion Research. In Noise and Fluctuations; Gonzalez, T., Mateos, J., Pardo, D., Eds.; Amer Inst Physics: Melville, NY, USA, 2005, 780, 625-630
  • Wu, Z,D.H., Xia, J., Wang, Z., Qin, L., Xu, W., Hu, Y., Behnamian, J., Luo, L., Sensing Corrosion within an Artificial Defect in Organic Coating using SECM, Sensors Actuators. B Chem. 2019, 280, 235-242
  • Iverson, W.P., Transient Voltage Changes Produced in Corroding Metals and Alloys. Frederick (MD): Fort Detrick. 1968
  • Wharton, J.A., Mellor, B.G., Wood, R.J.K., and Smith, C.J.E., Crevice Corrosion Studies using Electrochemical Noise Measurements and a Scanning Electrode Technique. J. Electrochem. Soc. 2005, 147(9):3294-3301
  • Samiento, E., Uruchutu, J., Gonzalez-Rodriguez, J.G., Menchaca, C., Sarmiento, O., Electrochemical Noise Analysis of Type 316L Stainless Steel in a LiBr + Ethylene Glycol + H2O Solution. Corrosion, 2011, 67(10):105004-105008
  • Montesperelli, G., Gausman, G., and Marchioni, F., A Crevice Corrosion Study by Electrochemical Noise Analysis. Mater. Corros. 2000, 51(8):537-544
  • Cappeln, F.V., Bjerrum, N., and Petrushin, I., Electrochemical Noise Measurements of Steel Corrosion in the Molten NaCl-K2SO4 System. J. Electrochem. Soc. 2005, 152(7):228-235
  • Loto, C.A., and Cottis, R. A., Electrochemical Noise Generation during Stress Corrosion Cracking of Alpha-Brass (70Cu-30Zn) Alloy”. Corrosion. 1987, 43(8): 499-504
  • Hashimoto, M., Miyajima, S., and Murata, T., A Stochastic Analysis of Potential Fluctuation during Passive Film Breakdown and Repair on Iron. Corrosion Science. 1992, 33, 885-904
  • Shi, Z., Song, G., Cao, C., Lin, H., and Lu, M., Electrochemical Potential Noise of 321 Stainless Steel Stressed under Constant Strain Rate Testing Conditions. Electrochimica Acta. 2007, 52, 2123-2133
  • Cheng, Y.F., Luo, J.L., and Wilmott, M., Spectral Analysis of Electrochemical Noise with Different Transient Shapes. Electrochimica Acta. 2000, 45, 1763-1771
  • Qiao, G., and Ou, J., Corrosion Monitoring of Reinforcing Steel in Cement Mortar by EIS and ENA. Electrochimica Acta 2007, 52, 8008-8019
  • Dong, Z.H., Shi, W., and Guo, X.P., Initiation and Repassivation of Pitting Corrosion of Carbon Steel in Carbonated Concrete Pore Solution. Corrosion Science. 2011, 53, 1322-1330
  • Acuna-González, N., García-Ochoa, E., and González-Sánchez, J., Assessment of the Dynamics of Corrosion Fatigue Crack Initiation Applying Recurrence Plots to the Analysis of Electrochemical Noise Data. International Journal of Fatigue. 2008, 30, 1211-1219
  • Gomez-Duran, M., and Macdonald, D.D., Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in Thiosulphate Solution. II, Dynamics of Fracture. Corrosion Science. 2006, 48, 1608-1622
  • Edgemon, G.L., Danielson, M.J., and Bell, G.E.C., Detection of Stress Corrosion Cracking and General Corrosion of Mild Steel in Simulated Defense Nuclear Waste solutions using Electrochemical Noise Analysis. Journal of Nuclear Materials. 1997, 245, 201-209
  • Kiwilszo, M., and Smulko, J., Pitting Corrosion Characterization by Electrochemical Noise Measurements on Asymmetric Electrodes. Journal of Solid State Electrochemistry. 2009, 13, 1681-1686
  • Cao, F.H., Zhang, Z., Su, J.X., Shi, Y.Y.J., and Zhang, Q., Electrochemical Noise Analysis of LY12-T3 in EXCO Solution by Discrete Wavelet Transform Technique. Electrochimica Acta. 2006, 51, 1359-1364
  • Smulko, J., Darowicki, K., and Zielinski, A., Detection of Random Transients Caused by Pitting Corrosion. Electrochimica Acta. 2002, 47, 1297-1303
  • Pujar, M.G., Parvathavarthini, N., Dayal, R.K., and Thirunavukkarasu, S., Assessment of Intergranular Corrosion (IGC) in 316(N) Stainless Steel using Electrochemical Noise (EN) Technique. Corrosion Science. 2009, 51, 1707-1713
  • Girija, S., Mudali, U.K., Raju, V.R., Dayal, R.K., Khatak, H.S., and Raj, B., Determination of Corrosion Types for AISI Type 304L Stainless Steel using Electrochemical Noise Method. Materials Science and Engineering A. 2005, 407, 188-195
  • Estupinan-Lopez, F., Almeraya-Calderon, F., Margulis, R. B., Zamora, M.B., Martinez-Villafane, A., and Gaona-Tiburcio, C., Transient Analysis of Electrochemical Noise for 316 and Duplex 2205 Stainless Steels under Pitting Corrosion. Int. J. Electrochem. Sci. 2011, 6, 1785-1796
  • Hei, M., Xia, D.H., Song, S.Z., and Gao, Z.M., Sensing Atmospheric Corrosion of Carbon Steel and Low-Alloy Steel using the Electrochemical Noise Technique: Effects of Weather Conditions. Protection of Metals and Physical Chemistry of Surfaces. 2017, 53(6):1100-1113
  • Xia, D.H., Song, Y., Song, S., Behnamian, Y., Xu, L., Wu, Z., Qin, Z., Gao, Z., and Hu, W., Identifying Defect Levels in Organic Coatings with Electrochemical Noise (EN) Measured in Singe Cell (SC) Mode. Progress in Organic Coatings. 2019, 126, 53-61
  • Zheng, H., Jingzhe, L., Zhenbo, Q., Shizhe, S., Likun, X., Zhiming, G., Wenbin, H., and Xia, D.H., Identifying Defect Size in Organic Coatings by Electrochemical Noise, Galvanostatic Step and Potentiostatic Step Techniques. Journal of Electroanalytical Chemistry. 2020, 856(113596): 1-8
  • Obot, I.B., Ikenna, B.O., Aasem, Z., and Umoren, S. A., Electrochemical Noise (EN) Technique: Review of Recent Practical Applications to Corrosion Electrochemistry Research. Journal of Adhesion Science and Technology. 2019, 33(13): 1453-1496
  • Loto, C.A., Electrochemical Noise Measurement Technique in Corrosion Research. Int J. Electrochem. Sci. 2012, 7, 9248-9270
  • Arellano-Perez, J.H., Escobar-Jimenez, R.F., Granados-Lieberman, D., Gomez-Aguilar, J.F., Uruchurtu-Chavarin, J., and Alvarado-Martinez, V. M., Electrochemical Noise Signals Evaluation to Classify the Type of Corrosion using Synchrosqueezing Transform. Journal of Electroanalytical Chemistry. 2019, 848(113249):1-12
  • Loto, C.A., Electrochemical Noise Measurement and Statistical Parameters Evaluation of Stressed α-Brass in Mattsson’s Solution. Alexandria Engineering Journal. 2018, 57(1):483-490
  • Pistorius, P.C., Design Aspects of Electrochemical Noise Measurements for Uncoated Metals: Electrode Size and Sampling Rate. Corrosion. 1997, 53, 273
  • Shahidi, M., Jafari, A.H., and Hosseini, S.M.A., Comparison of Symmetrical and Asymmetrical Cells by Statistical and Wavelet Analysis of Electrochemical Noise Data. Corrosion. 2012, 68, 1003-1014.
  • American Welding Society (AWS)., Welding Handbook. 7th Edition, Welding Process, Miami Florida, USA, 1976, 1
  • Seidu, S.O., and Kutelu, B.J., Effect of Heat Treatment on Corrosion of Welded Low-Carbon Steel in Acid and Salt Environments. Journal of Minerals and Materials Characterization and Engineering (JMMCE). 2013, 1, 95-100
  • Adedayo, A.V., Ibitoye, S.A., and Oyetoyan, O.A., Annealing Heat Treatment Effects on Steel Welds. Journals of Minerals & Materials Characterization & Engineering. 2010, 9(6):547-557
  • Gigovic-Gekic, A., Oruc, M., and Vitez, I., The Effect of Solution Annealing on Properties of Steel Nitronic 60. Metalurgija, 2011, 50(1):21-24
  • Elki, C.D.S., Sergio, M.R., Carlos, A.F., Joao, M.D., and De Almeida, R., Influence of Ferritic Phase Content on the Electrochemical Properties of Duplex Stainless Steels. Materials Research, 2017, 20(1): 21-29
  • Yanjun, G., Jincheng, H., Jin, L., Laizhu, J., Tianwei, L., and Yanping, W., Effect of Annealing Temperature on the Mechanical and Corrosion Behaviour of a Newly Developed Novel Lean Duplex Stainless Steel. Materials. 2014, 7, 6604-6619
  • Rosemann, P., Krauss, N., Muller, C., and Halle, T., Influence of Solution Annealing Temperature and Cooling Medium on Microstructure, Hardness and Corrosion Resistance of Martensitic Stainless Steel X46Cr13. Materials and Corrosion. 2015, 66(10): 1068-1076
  • Raghavan, V., Physical Metallurgy: Principles and Practice, 1st Edition, Prentice-Hall of India, New Delhi,1989, 62-102
  • Xin, G., Hao, F., Zhouhua, J., Huabing, L., Binbin, Z., Shucai, Z., Qi, W., and Jizhong, L., Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N. Metals. 2016, 6(301):1-14
  • Blondeau, R., Metallurgy and Mechanics of Welding - Processes and Industrial Applications. 1st Edition, ISTL Ltd and John Wiley & Sons Inc, 2008
  • Lippold, J.C., Welding Metallurgy and Weldability. Published by John Wiley & Sons Inc., Hoboken, New Jersey, 2015
  • Nandan, R., DebRoy, T., and Bhadeshia, H.K.D.H., Recent Advances in Friction –Stir Welding-Process, Weldment Structure and Properties. Prog. Mater. Sci. 2008, 53, 980-1023
  • Dodo, M.R., Ause, T., Adamu, M. A., and Ibrahim, Y. M., Effect of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Arc Welded Medium Carbon Steel. Nigerian Journal of Technology (NIJOTECH). 2016, 35(2):337-343
  • Ueji, R., Fujii, H., Cui, L., Nishiokac, A., Kunishigea, K., and Nogib, K., Friction Stir Welding of Ultrafine Grained Plain Low-Carbon Steel Formed by the Martensitic Process. Metall. Mater. Trans. A. 2006, 423,324-330
  • Tukur, S.A., Dambratta, M.S., Ahmed, A., and Mu’az, N.M., Effect of Heat Treatment Temperature on Mechanical Properties of the AISI 304 Stainless Steel. International Journal of Innovative Research in Science, Engineering and Technology. 2014, 3(2):9516-9520
  • Marcuci, J.R.J., Souza, E.C., Camilo, C.C., Lorenzo, P. L.D., Rollo, J.M.D.A., Corrosion and Microstructural Characterization of Martensitic Stainless Steels Submitted to Industrial Thermal Processes for use in Surgical Tools. Brazilian Journal of Biomedical Engineering. 2014, 30(3):257-264
  • Martin, R., Mari, D., and Schaller, R., Influence of the Carbon Content on Dislocation Relaxation in Martensitic Steels. Mater. Sci. Eng. A., 2009, 521, 117-120
  • Choi, W.S., Lee, J., and Cooman, B.C.D., Internal-Friction Analysis of Dislocation Interstitial Carbon Interaction in Press-Hardened 22MnB5 Steel. Mater. Sci. Eng. A. 2015, 639, 439-447
  • Hoyos, J.J., Ghilarducci, A.A., and Mari, D., Evaluation of Dislocation Density and Interstitial Carbon Content in Quenched and Tempered Steel by Internal Friction. Mater. Sci. Eng. A. 2015, 640, 460-464
  • Zhang, K., Liu, P., Li, W., Ma, F., Guo, Z., and Rong, Y., Enhancement of the Strength and Ductility of Martensitic Steels by Carbon. Mater. Sci. Eng. A., 2018, 716, 87-91
  • Ndaliman M.B., An Assessment of Mechanical Properties of Medium Carbon Steel under Different Quenching Media. Au J.T. 2006, 10(2):100-104
  • DZU Pon, M., Parilak, L., Kollarora, M., and Sinaiova, I., Dual Phase Ferrite – Martensitic Steel Micro-Alloyed with V – Nb. Metalurgija, 2002, 46(1):15-20
  • Baker, H., Heat Treating. American Society for Testing and Materials-ASTM. 10th Edition, ASM International, 1991, 4
  • Garcia, A.C., Alvarez, L. F., and Corsi, M., Effects of Heat-Treatment Parameters on non-Equilibrium Transformations and Properties of X45Cr13 and X60Cr14 Martensitic Stainless Steels. Welding International. 1992, 6(8):612-621
  • Garcia, A.C., Jimenez, J.A., and Alvarez, L.F., Splitting Phenomena Occurring in the Martensitic Transformation of Cr13 and CrMoV14 Stainless Steels in the absence of Carbide Precipitations. Metalurgical and Materials Transaction A. 1996, 27(7):1799-1805
  • Ragunathan, S., Balasubramanian,V., Malarvizhi, S., and Rao, A.G., Effect of Welding on Mechanical and Microstructural Characteristic of High Strength Low Alloy Naval Grade Steel Joints. Defence Technology, 2015, 11, 308-317
  • Handoko, W., Pahlevani, F., and Sahajwalla, V., Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel. International Journal of Materials and Metallurgical Engineering. 2018, 12(1):1-5
  • Anburaj, J., Chandrasekar, A., Mohammed, S.S.N., Narayanan, R., Kumaravel, M., and Anandavel, B., Effect of Solution Annealing on Structure and Properties of High Mo Superaustenitic Stainless Steel Castings. International Journal of Cast Metals Research. 2012, 25(5):287-295
  • Sathiya, P., Aravindan, S., and Noorul Haq, A., Effect of Friction Welding Parameters on Mechanical and Metallurgical Properties of Ferritic Stainless Steel. International Journal of Adv. Manuf Technol, 2007, 31, 1076-1082.
  • Zhu, Y., Yang, S., Likun, X., Zhenbo, Q., Shizhe, S., Wenbin, H., Da Hai Xia., Quantification of the Atmospheric Corrosion of 304 and 2205 Stainless Steels Using Electrochemical Probes Based on Thevenin Electrochemical Equivalent Circuit Model. Trans. Tianjin Univ., 2020, 26, 218–227
  • Tan, H., Jiang, Y., Deng, B., Sun, T., Xu, J., and Li, J., Effect of Annealing Temperature on the Pitting Corrosion Resistance of Super Duplex Stainless Steel UNS 32750. Materials Characterization. 2009, 60(9):1049-1054
  • Hamada, A.S., Karjalainen, L.P., and Somani, M.C., Electrochemical Corrosion Behaviour of a Novel Submicron Grained Austenitic Stainless Steel in an Acidic NaCl Solution. Materials Science and Engineering A. 2006, 431(1-2):211-217
  • Ebrahimi, N., Momeni, M., Kosari, A., Zakeri, M., and Moayed, M.H., A Comperative Study of Critical Pitting Temperature (CPT) of Stainless Steels by Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic and Potentiostatic Techniques. Corros. Sci. 2012, 59, 96-102
  • Afolabi, A., and Pelowo, N., Effect of Heat Treatment on Corrosion Behaviour of Austenitic Stainless in Mild Acid Medium”. In Proceedings of the International Conference on Chemical, Ecology and Environmental Science (ICCEES), Pattaya, Thailand, 2011
  • Shoushtari, A.A., Meysam, S., and Sekhavat, S., Effect of Solution Annealing Heat Treatment on the Corrosion Resistance and Mechanical Properties of an Austenitic Stainless Steel. UCT Journal of Research in Science, Engineering and Technology. 2013, 1(1):14-16
  • Vignal, V., Richoux, V., Suzon, E., Thiebaut, S., and Tabaleiv, K., The Use of Potentiostatic Pulse Testing to Study the Corrosion Behaviour of Welded Stainless Steels in Sodium Chloride Solution. Materials and Design.2015, 88, 186-195
  • Hilbert, O.B., and James, A.M., Dictionary of Electrochemistry. Macmillan press, London, England, 1984
  • Fontana, M.G., and Greene, N.D., Corrosion Engineering. McGraw- Hill, International Book Company, 1974
Yıl 2024, Cilt: 7 Sayı: 1, 38 - 47, 30.06.2024

Öz

Kaynakça

  • Ebarvia, M.C.M., Economic Assessment of Oceans for Sustainable Blue Economy Development. Journal of Ocean and Coastal Economics, 2016, 2(2):7
  • Ma, Y., Zhang, Y., Zhang, R., Guan, F., Hou, B., and Duan, J., Microbiologically Influenced Corrosion of Marine Steels within the Interaction between Steel and Biofilms: A Brief View. Applied Microbiology and Biotechnology, 2020, 104, 515-525
  • Mehmet Şükrü Adin and Bahattin İşcan.,. Optimization of Process Parameters of Medium Carbon Steel Joints Joined by MIG Welding Using Taguchi Method. European Mechanical Science, 2022, 6(1): 17-26
  • Nešic´ S., and Sun, W., Corrosion in Acid Gas Solutions in: J.A.R. Tony (Ed.), Shreir’s Corrosion, Elsevier, Oxford, 2010, 1270–1298
  • Ghareba, S., and Omanovic, S., Interaction of 12-Aminododecanoic Acid with a Carbon Steel Surface: Towards the Development of ‘Green’ Corrosion Inhibitors, Corros. Sci. 2010, 52, 2104–2113
  • Liu, D., Qiu, Y.B., Tomoe, Y., Bando, K., and Guo, X.P., Interaction of Inhibitors with Corrosion Scale Formed on N80 Steel in CO2-Saturated NaCl Solution, Mater. Corros, 2011, 62, 1153–1158
  • Agarwal, R.L., Welding Engineering. A Textbook for Engineering students, 4th ed., Khanaa public, Nai Sarai, Delhi, India, 1992
  • Jariyaben, M., Davenport, A. J., Ambert, R., Connolly, B.J., Williams, S.W., and Price, D.A., The Effect of Welding Parameters on the Corrosion Behavior of Friction Stir Welded AA2024- T351. Corrosion Sci. 2007, 49: 877-909
  • Lothongkum, G., Viyanit, E., and Bhandhubanyong, P., Study On the Effect of Pulsed TIG Welding Parameters on Delta- Ferrite Content, Shape Factor and Bead Quality in Orbital Welding of AISI 316L Stainless Steel Plate. Mater. Proc. Technol, 2001, 110: 233-38
  • Karadeniz, E., Ozsarae, U., and Yildiz, C., The Effect of Process Parameters on Penetration in Gas Metal Arc Welding Processes. Mater. Design, 2007, 28:649-56
  • Akiyama, M., Frangopol, D.M., and Ishibashi, H., Toward Life-Cycle Reliability-, Risk-and Resilience-Based Design and Assessment of Bridges and Bridge Networks under Independent and Interacting Hazards: Emphasis on Earthquake, Tsunami and Corrosion. Structure and Infrastructure Engineering, 2020, 16(1):26-50
  • Bertocci, U., and Huet, F., Noise-Analysis Applied to Electrochemical Systems. Corrosion. 1995, 51, 131-144
  • Mansfeld, F., The Electrochemical Noise Technique – Applications in Corrosion Research. In Noise and Fluctuations; Gonzalez, T., Mateos, J., Pardo, D., Eds.; Amer Inst Physics: Melville, NY, USA, 2005, 780, 625-630
  • Wu, Z,D.H., Xia, J., Wang, Z., Qin, L., Xu, W., Hu, Y., Behnamian, J., Luo, L., Sensing Corrosion within an Artificial Defect in Organic Coating using SECM, Sensors Actuators. B Chem. 2019, 280, 235-242
  • Iverson, W.P., Transient Voltage Changes Produced in Corroding Metals and Alloys. Frederick (MD): Fort Detrick. 1968
  • Wharton, J.A., Mellor, B.G., Wood, R.J.K., and Smith, C.J.E., Crevice Corrosion Studies using Electrochemical Noise Measurements and a Scanning Electrode Technique. J. Electrochem. Soc. 2005, 147(9):3294-3301
  • Samiento, E., Uruchutu, J., Gonzalez-Rodriguez, J.G., Menchaca, C., Sarmiento, O., Electrochemical Noise Analysis of Type 316L Stainless Steel in a LiBr + Ethylene Glycol + H2O Solution. Corrosion, 2011, 67(10):105004-105008
  • Montesperelli, G., Gausman, G., and Marchioni, F., A Crevice Corrosion Study by Electrochemical Noise Analysis. Mater. Corros. 2000, 51(8):537-544
  • Cappeln, F.V., Bjerrum, N., and Petrushin, I., Electrochemical Noise Measurements of Steel Corrosion in the Molten NaCl-K2SO4 System. J. Electrochem. Soc. 2005, 152(7):228-235
  • Loto, C.A., and Cottis, R. A., Electrochemical Noise Generation during Stress Corrosion Cracking of Alpha-Brass (70Cu-30Zn) Alloy”. Corrosion. 1987, 43(8): 499-504
  • Hashimoto, M., Miyajima, S., and Murata, T., A Stochastic Analysis of Potential Fluctuation during Passive Film Breakdown and Repair on Iron. Corrosion Science. 1992, 33, 885-904
  • Shi, Z., Song, G., Cao, C., Lin, H., and Lu, M., Electrochemical Potential Noise of 321 Stainless Steel Stressed under Constant Strain Rate Testing Conditions. Electrochimica Acta. 2007, 52, 2123-2133
  • Cheng, Y.F., Luo, J.L., and Wilmott, M., Spectral Analysis of Electrochemical Noise with Different Transient Shapes. Electrochimica Acta. 2000, 45, 1763-1771
  • Qiao, G., and Ou, J., Corrosion Monitoring of Reinforcing Steel in Cement Mortar by EIS and ENA. Electrochimica Acta 2007, 52, 8008-8019
  • Dong, Z.H., Shi, W., and Guo, X.P., Initiation and Repassivation of Pitting Corrosion of Carbon Steel in Carbonated Concrete Pore Solution. Corrosion Science. 2011, 53, 1322-1330
  • Acuna-González, N., García-Ochoa, E., and González-Sánchez, J., Assessment of the Dynamics of Corrosion Fatigue Crack Initiation Applying Recurrence Plots to the Analysis of Electrochemical Noise Data. International Journal of Fatigue. 2008, 30, 1211-1219
  • Gomez-Duran, M., and Macdonald, D.D., Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in Thiosulphate Solution. II, Dynamics of Fracture. Corrosion Science. 2006, 48, 1608-1622
  • Edgemon, G.L., Danielson, M.J., and Bell, G.E.C., Detection of Stress Corrosion Cracking and General Corrosion of Mild Steel in Simulated Defense Nuclear Waste solutions using Electrochemical Noise Analysis. Journal of Nuclear Materials. 1997, 245, 201-209
  • Kiwilszo, M., and Smulko, J., Pitting Corrosion Characterization by Electrochemical Noise Measurements on Asymmetric Electrodes. Journal of Solid State Electrochemistry. 2009, 13, 1681-1686
  • Cao, F.H., Zhang, Z., Su, J.X., Shi, Y.Y.J., and Zhang, Q., Electrochemical Noise Analysis of LY12-T3 in EXCO Solution by Discrete Wavelet Transform Technique. Electrochimica Acta. 2006, 51, 1359-1364
  • Smulko, J., Darowicki, K., and Zielinski, A., Detection of Random Transients Caused by Pitting Corrosion. Electrochimica Acta. 2002, 47, 1297-1303
  • Pujar, M.G., Parvathavarthini, N., Dayal, R.K., and Thirunavukkarasu, S., Assessment of Intergranular Corrosion (IGC) in 316(N) Stainless Steel using Electrochemical Noise (EN) Technique. Corrosion Science. 2009, 51, 1707-1713
  • Girija, S., Mudali, U.K., Raju, V.R., Dayal, R.K., Khatak, H.S., and Raj, B., Determination of Corrosion Types for AISI Type 304L Stainless Steel using Electrochemical Noise Method. Materials Science and Engineering A. 2005, 407, 188-195
  • Estupinan-Lopez, F., Almeraya-Calderon, F., Margulis, R. B., Zamora, M.B., Martinez-Villafane, A., and Gaona-Tiburcio, C., Transient Analysis of Electrochemical Noise for 316 and Duplex 2205 Stainless Steels under Pitting Corrosion. Int. J. Electrochem. Sci. 2011, 6, 1785-1796
  • Hei, M., Xia, D.H., Song, S.Z., and Gao, Z.M., Sensing Atmospheric Corrosion of Carbon Steel and Low-Alloy Steel using the Electrochemical Noise Technique: Effects of Weather Conditions. Protection of Metals and Physical Chemistry of Surfaces. 2017, 53(6):1100-1113
  • Xia, D.H., Song, Y., Song, S., Behnamian, Y., Xu, L., Wu, Z., Qin, Z., Gao, Z., and Hu, W., Identifying Defect Levels in Organic Coatings with Electrochemical Noise (EN) Measured in Singe Cell (SC) Mode. Progress in Organic Coatings. 2019, 126, 53-61
  • Zheng, H., Jingzhe, L., Zhenbo, Q., Shizhe, S., Likun, X., Zhiming, G., Wenbin, H., and Xia, D.H., Identifying Defect Size in Organic Coatings by Electrochemical Noise, Galvanostatic Step and Potentiostatic Step Techniques. Journal of Electroanalytical Chemistry. 2020, 856(113596): 1-8
  • Obot, I.B., Ikenna, B.O., Aasem, Z., and Umoren, S. A., Electrochemical Noise (EN) Technique: Review of Recent Practical Applications to Corrosion Electrochemistry Research. Journal of Adhesion Science and Technology. 2019, 33(13): 1453-1496
  • Loto, C.A., Electrochemical Noise Measurement Technique in Corrosion Research. Int J. Electrochem. Sci. 2012, 7, 9248-9270
  • Arellano-Perez, J.H., Escobar-Jimenez, R.F., Granados-Lieberman, D., Gomez-Aguilar, J.F., Uruchurtu-Chavarin, J., and Alvarado-Martinez, V. M., Electrochemical Noise Signals Evaluation to Classify the Type of Corrosion using Synchrosqueezing Transform. Journal of Electroanalytical Chemistry. 2019, 848(113249):1-12
  • Loto, C.A., Electrochemical Noise Measurement and Statistical Parameters Evaluation of Stressed α-Brass in Mattsson’s Solution. Alexandria Engineering Journal. 2018, 57(1):483-490
  • Pistorius, P.C., Design Aspects of Electrochemical Noise Measurements for Uncoated Metals: Electrode Size and Sampling Rate. Corrosion. 1997, 53, 273
  • Shahidi, M., Jafari, A.H., and Hosseini, S.M.A., Comparison of Symmetrical and Asymmetrical Cells by Statistical and Wavelet Analysis of Electrochemical Noise Data. Corrosion. 2012, 68, 1003-1014.
  • American Welding Society (AWS)., Welding Handbook. 7th Edition, Welding Process, Miami Florida, USA, 1976, 1
  • Seidu, S.O., and Kutelu, B.J., Effect of Heat Treatment on Corrosion of Welded Low-Carbon Steel in Acid and Salt Environments. Journal of Minerals and Materials Characterization and Engineering (JMMCE). 2013, 1, 95-100
  • Adedayo, A.V., Ibitoye, S.A., and Oyetoyan, O.A., Annealing Heat Treatment Effects on Steel Welds. Journals of Minerals & Materials Characterization & Engineering. 2010, 9(6):547-557
  • Gigovic-Gekic, A., Oruc, M., and Vitez, I., The Effect of Solution Annealing on Properties of Steel Nitronic 60. Metalurgija, 2011, 50(1):21-24
  • Elki, C.D.S., Sergio, M.R., Carlos, A.F., Joao, M.D., and De Almeida, R., Influence of Ferritic Phase Content on the Electrochemical Properties of Duplex Stainless Steels. Materials Research, 2017, 20(1): 21-29
  • Yanjun, G., Jincheng, H., Jin, L., Laizhu, J., Tianwei, L., and Yanping, W., Effect of Annealing Temperature on the Mechanical and Corrosion Behaviour of a Newly Developed Novel Lean Duplex Stainless Steel. Materials. 2014, 7, 6604-6619
  • Rosemann, P., Krauss, N., Muller, C., and Halle, T., Influence of Solution Annealing Temperature and Cooling Medium on Microstructure, Hardness and Corrosion Resistance of Martensitic Stainless Steel X46Cr13. Materials and Corrosion. 2015, 66(10): 1068-1076
  • Raghavan, V., Physical Metallurgy: Principles and Practice, 1st Edition, Prentice-Hall of India, New Delhi,1989, 62-102
  • Xin, G., Hao, F., Zhouhua, J., Huabing, L., Binbin, Z., Shucai, Z., Qi, W., and Jizhong, L., Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N. Metals. 2016, 6(301):1-14
  • Blondeau, R., Metallurgy and Mechanics of Welding - Processes and Industrial Applications. 1st Edition, ISTL Ltd and John Wiley & Sons Inc, 2008
  • Lippold, J.C., Welding Metallurgy and Weldability. Published by John Wiley & Sons Inc., Hoboken, New Jersey, 2015
  • Nandan, R., DebRoy, T., and Bhadeshia, H.K.D.H., Recent Advances in Friction –Stir Welding-Process, Weldment Structure and Properties. Prog. Mater. Sci. 2008, 53, 980-1023
  • Dodo, M.R., Ause, T., Adamu, M. A., and Ibrahim, Y. M., Effect of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Arc Welded Medium Carbon Steel. Nigerian Journal of Technology (NIJOTECH). 2016, 35(2):337-343
  • Ueji, R., Fujii, H., Cui, L., Nishiokac, A., Kunishigea, K., and Nogib, K., Friction Stir Welding of Ultrafine Grained Plain Low-Carbon Steel Formed by the Martensitic Process. Metall. Mater. Trans. A. 2006, 423,324-330
  • Tukur, S.A., Dambratta, M.S., Ahmed, A., and Mu’az, N.M., Effect of Heat Treatment Temperature on Mechanical Properties of the AISI 304 Stainless Steel. International Journal of Innovative Research in Science, Engineering and Technology. 2014, 3(2):9516-9520
  • Marcuci, J.R.J., Souza, E.C., Camilo, C.C., Lorenzo, P. L.D., Rollo, J.M.D.A., Corrosion and Microstructural Characterization of Martensitic Stainless Steels Submitted to Industrial Thermal Processes for use in Surgical Tools. Brazilian Journal of Biomedical Engineering. 2014, 30(3):257-264
  • Martin, R., Mari, D., and Schaller, R., Influence of the Carbon Content on Dislocation Relaxation in Martensitic Steels. Mater. Sci. Eng. A., 2009, 521, 117-120
  • Choi, W.S., Lee, J., and Cooman, B.C.D., Internal-Friction Analysis of Dislocation Interstitial Carbon Interaction in Press-Hardened 22MnB5 Steel. Mater. Sci. Eng. A. 2015, 639, 439-447
  • Hoyos, J.J., Ghilarducci, A.A., and Mari, D., Evaluation of Dislocation Density and Interstitial Carbon Content in Quenched and Tempered Steel by Internal Friction. Mater. Sci. Eng. A. 2015, 640, 460-464
  • Zhang, K., Liu, P., Li, W., Ma, F., Guo, Z., and Rong, Y., Enhancement of the Strength and Ductility of Martensitic Steels by Carbon. Mater. Sci. Eng. A., 2018, 716, 87-91
  • Ndaliman M.B., An Assessment of Mechanical Properties of Medium Carbon Steel under Different Quenching Media. Au J.T. 2006, 10(2):100-104
  • DZU Pon, M., Parilak, L., Kollarora, M., and Sinaiova, I., Dual Phase Ferrite – Martensitic Steel Micro-Alloyed with V – Nb. Metalurgija, 2002, 46(1):15-20
  • Baker, H., Heat Treating. American Society for Testing and Materials-ASTM. 10th Edition, ASM International, 1991, 4
  • Garcia, A.C., Alvarez, L. F., and Corsi, M., Effects of Heat-Treatment Parameters on non-Equilibrium Transformations and Properties of X45Cr13 and X60Cr14 Martensitic Stainless Steels. Welding International. 1992, 6(8):612-621
  • Garcia, A.C., Jimenez, J.A., and Alvarez, L.F., Splitting Phenomena Occurring in the Martensitic Transformation of Cr13 and CrMoV14 Stainless Steels in the absence of Carbide Precipitations. Metalurgical and Materials Transaction A. 1996, 27(7):1799-1805
  • Ragunathan, S., Balasubramanian,V., Malarvizhi, S., and Rao, A.G., Effect of Welding on Mechanical and Microstructural Characteristic of High Strength Low Alloy Naval Grade Steel Joints. Defence Technology, 2015, 11, 308-317
  • Handoko, W., Pahlevani, F., and Sahajwalla, V., Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel. International Journal of Materials and Metallurgical Engineering. 2018, 12(1):1-5
  • Anburaj, J., Chandrasekar, A., Mohammed, S.S.N., Narayanan, R., Kumaravel, M., and Anandavel, B., Effect of Solution Annealing on Structure and Properties of High Mo Superaustenitic Stainless Steel Castings. International Journal of Cast Metals Research. 2012, 25(5):287-295
  • Sathiya, P., Aravindan, S., and Noorul Haq, A., Effect of Friction Welding Parameters on Mechanical and Metallurgical Properties of Ferritic Stainless Steel. International Journal of Adv. Manuf Technol, 2007, 31, 1076-1082.
  • Zhu, Y., Yang, S., Likun, X., Zhenbo, Q., Shizhe, S., Wenbin, H., Da Hai Xia., Quantification of the Atmospheric Corrosion of 304 and 2205 Stainless Steels Using Electrochemical Probes Based on Thevenin Electrochemical Equivalent Circuit Model. Trans. Tianjin Univ., 2020, 26, 218–227
  • Tan, H., Jiang, Y., Deng, B., Sun, T., Xu, J., and Li, J., Effect of Annealing Temperature on the Pitting Corrosion Resistance of Super Duplex Stainless Steel UNS 32750. Materials Characterization. 2009, 60(9):1049-1054
  • Hamada, A.S., Karjalainen, L.P., and Somani, M.C., Electrochemical Corrosion Behaviour of a Novel Submicron Grained Austenitic Stainless Steel in an Acidic NaCl Solution. Materials Science and Engineering A. 2006, 431(1-2):211-217
  • Ebrahimi, N., Momeni, M., Kosari, A., Zakeri, M., and Moayed, M.H., A Comperative Study of Critical Pitting Temperature (CPT) of Stainless Steels by Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic and Potentiostatic Techniques. Corros. Sci. 2012, 59, 96-102
  • Afolabi, A., and Pelowo, N., Effect of Heat Treatment on Corrosion Behaviour of Austenitic Stainless in Mild Acid Medium”. In Proceedings of the International Conference on Chemical, Ecology and Environmental Science (ICCEES), Pattaya, Thailand, 2011
  • Shoushtari, A.A., Meysam, S., and Sekhavat, S., Effect of Solution Annealing Heat Treatment on the Corrosion Resistance and Mechanical Properties of an Austenitic Stainless Steel. UCT Journal of Research in Science, Engineering and Technology. 2013, 1(1):14-16
  • Vignal, V., Richoux, V., Suzon, E., Thiebaut, S., and Tabaleiv, K., The Use of Potentiostatic Pulse Testing to Study the Corrosion Behaviour of Welded Stainless Steels in Sodium Chloride Solution. Materials and Design.2015, 88, 186-195
  • Hilbert, O.B., and James, A.M., Dictionary of Electrochemistry. Macmillan press, London, England, 1984
  • Fontana, M.G., and Greene, N.D., Corrosion Engineering. McGraw- Hill, International Book Company, 1974
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Articles
Yazarlar

Oghenerobo Awheme 0000-0002-5660-8643

Basil Obimma Onyekpe Bu kişi benim

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 2 Aralık 2023
Kabul Tarihi 11 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 1

Kaynak Göster

APA Awheme, O., & Obimma Onyekpe, B. (2024). Investigating the effect of solution annealing on corrosion resistance and hardness property of AISI 1036 welded steel in chloride environment using electrochemical noise method. The International Journal of Materials and Engineering Technology, 7(1), 38-47.