Araştırma Makalesi
BibTex RIS Kaynak Göster

Updated Orbital Decay Rate of WASP-12 with New Data from TESS and Ground-based Observations

Yıl 2023, Cilt: 4 Sayı: 2, 10 - 22, 31.12.2023
https://doi.org/10.55064/tjaa.1307803

Öz

We investigate the orbital decay behavior of the well-studied hot Jupiter WASP-12\,b orbiting its late-F host star on a 1.09-day orbit by analyzing its transit timings. Thanks to precise photometric data covering nearly 15 years of observations from the space and the ground since the discovery of the planet, including a transit light curve of our own, it became possible to study this behaviour in its details. This work updates the orbital period to a new value of
$P = 1.0914202527 \pm 0.000000039\,\text{days}$ and agrees with the previous finding that the planetary orbit has been shrinking with an updated rate of $-31.03 \pm 0.94\,\text{ms yr}^{-1}$. This corresponds to an orbital decay timescale of $\tau =P/|\dot{P}| = 3.04 \pm 0.09\,\text{Myr}$ that we attribute to the strong tidal interactions between the host-star and the planet. We also update the reduced stellar tidal quality factor as $Q_{*}^{\prime} = (1.72 \pm 0.39) \times$ $10^{5}$, which corresponds to the lower bound of the previously reported values of the parameter.

Kaynakça

  • Albrecht S., et al., 2012, ApJ, 757, 18
  • Allen A., DuPrie K., Berriman B., Hanisch R. J., Mink J., Teuben P. J., 2013, in Friedel D. N., ed., Astronomical Society of the Pacific Conference Series Vol. 475, Astronomical Data Analysis Software and Systems XXII. p. 387 (arXiv:1212.1916), doi:10.48550/arXiv.1212.1916
  • Applegate J. H., 1992, ApJ, 385, 621
  • Babcock H. W., 1961, ApJ, 133, 572
  • Bailey E., Batygin K., 2018, in AAS/Division for Planetary Sciences Meeting Abstracts #50. p. 113.10
  • Bailey A., Goodman J., 2019, MNRAS, 482, 1872
  • Barker A. J., 2020, MNRAS, 498, 2270
  • Barker A. J., Ogilvie G. I., 2009, MNRAS, 395, 2268
  • Bechter E. B., et al., 2014, ApJ, 788, 2
  • Bergfors C., et al., 2013, MNRAS, 428, 182
  • Bonomo A. S., et al., 2017, A&A, 602, A107
  • Canto Martins B. L., et al., 2020, ApJS, 250, 20
  • Chakrabarty A., Sengupta S., 2019, AJ, 158, 39
  • Chambers J., 2007, in AAS/Division of Dynamical Astronomy Meeting #38. p. 6.04
  • Chan T., Ingemyr M., Winn J. N., Holman M. J., Sanchis-Ojeda R.,
  • Esquerdo G., Everett M., 2011, AJ, 141, 179
  • Collins K. A., Kielkopf J. F., Stassun K. G., Hessman F. V., 2017a, AJ, 153, 77
  • Collins K. A., Kielkopf J. F., Stassun K. G., 2017b, AJ, 153, 78
  • Crossfield I. J. M., Barman T., Hansen B. M. S., Tanaka I., Kodama T., 2012, ApJ, 760, 140
  • D’Angelo G., Durisen R. H., Lissauer J. J., 2010, in Seager S., ed., , Exoplanets. University of Arizona Press, pp 319–346, doi:10.48550/arXiv.1006.5486
  • De K., et al., 2023, Nature, 617, 55
  • Eastman J., Gaudi B. S., Agol E., 2013, PASP, 125, 83
  • Fabrycky D., Tremaine S., 2007, ApJ, 669, 1298
  • Gaia Collaboration et al., 2016, A&A, 595, A1
  • Gaia Collaboration et al., 2022, preprint, (arXiv:2208.00211)
  • Goldreich P. M., 1963, PhD thesis, Cornell University, New York
  • Goldreich P., Soter S., 1966, Icarus, 5, 375
  • Hagey S. R., Edwards B., Boley A. C., 2022, AJ, 164, 220
  • Hamer J. H., Schlaufman K. C., 2019, AJ, 158, 190
  • Harre J. V., et al., 2023, A&A, 669, A124
  • Hebb L., et al., 2009, ApJ, 693, 1920
  • Hiltner W. A., 1962, Astronomical techniques.. Chicago, University Press
  • Himes M. D., Harrington J., 2022, ApJ, 931, 86
  • Honeycutt R. K., 1992, PASP, 104, 435
  • Husnoo N., Pont F., Mazeh T., Fabrycky D., Hébrard G., Bouchy F., Shporer A., 2012, MNRAS, 422, 3151
  • Ivshina E., Winn J., 2022, in Bulletin of the American Astronomical Society. p. 102.353
  • Jackson B., Greenberg R., Barnes R., 2008, ApJ, 681, 1631
  • Jenkins J. M., et al., 2016, in Chiozzi G., Guzman J. C., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9913, Software and Cyberinfrastructure for Astronomy IV. p. 99133E, doi:10.1117/12.2233418
  • Knutson H. A., et al., 2014, ApJ, 785, 126
  • Lanza A. F., Damiani C., Gandolfi D., 2011, A&A, 529, A50
  • Levrard B., Winisdoerffer C., Chabrier G., 2009, ApJ, 692, L9
  • Lithwick Y., Naoz S., 2011, ApJ, 742, 94
  • Llama J., Vidotto A. A., Jardine M., Fares R., 2013, in European Planetary Science Congress. pp EPSC2013–272
  • Maciejewski G., Errmann R., Raetz S., Seeliger M., Spaleniak I.,
  • Neuhäuser R., 2011, A&A, 528, A65
  • Maciejewski G., et al., 2013, A&A, 551, A108
  • Maciejewski G., et al., 2016, A&A, 588, L6
  • Maciejewski G., et al., 2018, Acta Astron., 68, 371
  • Mandel K., Agol E., 2002, ApJ, 580, L171
  • Meibom S., Barnes S. A., Platais I., Gilliland R. L., Latham D. W.,
  • Mathieu R. D., 2015, Nature, 517, 589
  • Naoz S., Farr W. M., Lithwick Y., Rasio F. A., Teyssandier J., 2011, Nature, 473, 187
  • Ngo H., et al., 2015, ApJ, 800, 138
  • Ogilvie G. I., 2014, ARA&A, 52, 171
  • Ogilvie G. I., Lin D. N. C., 2007, ApJ, 661, 1180
  • Öztürk O., Erdem A., 2019, MNRAS, 486, 2290
  • Patra K. C., Winn J. N., Holman M. J., Yu L., Deming D., Dai F., 2017, AJ, 154, 4
  • Patra K. C., et al., 2020, AJ, 159, 150
  • Poddaný S., Brát L., Pejcha O., 2010, New Astron., 15, 297
  • Ricker G. R., et al., 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003
  • Rosário N. M., Barros S. C. C., Demangeon O. D. S., Santos N. C., 2022, A&A, 668, A114
  • Sada P. V., et al., 2012, PASP, 124, 212
  • Schwarz G., 1978, Annals of Statistics, 6, 461, ADS
  • Skumanich A., 1972, ApJ, 171, 565
  • Stassun K. G., Collins K. A., Gaudi B. S., 2017, AJ, 153, 136
  • Stassun K. G., et al., 2019, AJ, 158, 138
  • Tejada Arevalo R. A., Winn J. N., Anderson K. R., 2021, ApJ, 919, 138
  • Turner J. D., Ridden-Harper A., Jayawardhana R., 2021, AJ, 161, 72
  • Verrier P. E., Evans N. W., 2009, MNRAS, 394, 1721
  • Vissapragada S., et al., 2022, ApJ, 941, L31
  • Weinberg N. N., Sun M., Arras P., Essick R., 2017, ApJ, 849, L11
  • Winn J., 2019, in AAS/Division for Extreme Solar Systems Abstracts. p. 201.04
  • Wong I., Shporer A., Vissapragada S., Greklek-McKeon M., Knutson
  • H. A., Winn J. N., Benneke B., 2022, AJ, 163, 175
  • Yee S. W., et al., 2020, ApJ, 888, L5

TESS ve yer-tabanlı gözlemler ışığında WASP-12b'nin güncellenmiş yörünge küçülme oranı

Yıl 2023, Cilt: 4 Sayı: 2, 10 - 22, 31.12.2023
https://doi.org/10.55064/tjaa.1307803

Öz

Bu çalışmada, geç F tayf türünden bir barınak yıldızın etrafında 1.09 günlük bir yörünge döneminde dolanan, çok çalışılmış WASP-12\,b sıcak Jupiter türü gezegenin geçiş zamanlarını inceleyerek yörüngenin küçülme davranışı gösterip göstermediğini araştırdık. Keşfinden beri, neredeyse 15 yılı kapsayan, hem uzaydan hem yerden elde edilen fotometrik veri, hem de bizim kendimize ait bir gözlemimiz sayesinde, bahsi geçen yörünge küçülmesini detaylarıyla incelemek mümkün oldu. Bu çalışma gezegenin yörünge dönemini $P = 1.0914202527 \pm 0.000000039\,\text{gün}$ olarak güncellemesinin yanı sıra gezegenin yörüngesinin sabit bir oran ile küçüldüğünü doğrulamakta ve bu oran $-31.03 \pm 0.94\,\text{ms yıl}^{-1}$ olarak verilmektedir. Bu bulgunun işaret ettiği yörünge küçülmesi zaman ölçeği $\tau=P/|\dot{P}|= 3.04 \pm 0.09\,\text{Milyon yıl}$ olarak bulunmuştur. Yörünge dönemindeki bu kısalma gezegen ve barınak yıldızı arasındaki tedirginlik etkilerine atfedilmiştir. Ek olarak, bu çalışmada yıldızın tedirginlik etkileşmeleri sonucu açığa çıkan enerjiyi alma kapasitesini ifade eden tedirginlik kalite faktörü $Q_{*}^{'} = (1.72 \pm 0.39)\times 10^{5}$ olarak bulunmuştur. Bu değer, daha önceki çalışmalarda rapor edilmiş değer aralığının alt sınırındadır.

Kaynakça

  • Albrecht S., et al., 2012, ApJ, 757, 18
  • Allen A., DuPrie K., Berriman B., Hanisch R. J., Mink J., Teuben P. J., 2013, in Friedel D. N., ed., Astronomical Society of the Pacific Conference Series Vol. 475, Astronomical Data Analysis Software and Systems XXII. p. 387 (arXiv:1212.1916), doi:10.48550/arXiv.1212.1916
  • Applegate J. H., 1992, ApJ, 385, 621
  • Babcock H. W., 1961, ApJ, 133, 572
  • Bailey E., Batygin K., 2018, in AAS/Division for Planetary Sciences Meeting Abstracts #50. p. 113.10
  • Bailey A., Goodman J., 2019, MNRAS, 482, 1872
  • Barker A. J., 2020, MNRAS, 498, 2270
  • Barker A. J., Ogilvie G. I., 2009, MNRAS, 395, 2268
  • Bechter E. B., et al., 2014, ApJ, 788, 2
  • Bergfors C., et al., 2013, MNRAS, 428, 182
  • Bonomo A. S., et al., 2017, A&A, 602, A107
  • Canto Martins B. L., et al., 2020, ApJS, 250, 20
  • Chakrabarty A., Sengupta S., 2019, AJ, 158, 39
  • Chambers J., 2007, in AAS/Division of Dynamical Astronomy Meeting #38. p. 6.04
  • Chan T., Ingemyr M., Winn J. N., Holman M. J., Sanchis-Ojeda R.,
  • Esquerdo G., Everett M., 2011, AJ, 141, 179
  • Collins K. A., Kielkopf J. F., Stassun K. G., Hessman F. V., 2017a, AJ, 153, 77
  • Collins K. A., Kielkopf J. F., Stassun K. G., 2017b, AJ, 153, 78
  • Crossfield I. J. M., Barman T., Hansen B. M. S., Tanaka I., Kodama T., 2012, ApJ, 760, 140
  • D’Angelo G., Durisen R. H., Lissauer J. J., 2010, in Seager S., ed., , Exoplanets. University of Arizona Press, pp 319–346, doi:10.48550/arXiv.1006.5486
  • De K., et al., 2023, Nature, 617, 55
  • Eastman J., Gaudi B. S., Agol E., 2013, PASP, 125, 83
  • Fabrycky D., Tremaine S., 2007, ApJ, 669, 1298
  • Gaia Collaboration et al., 2016, A&A, 595, A1
  • Gaia Collaboration et al., 2022, preprint, (arXiv:2208.00211)
  • Goldreich P. M., 1963, PhD thesis, Cornell University, New York
  • Goldreich P., Soter S., 1966, Icarus, 5, 375
  • Hagey S. R., Edwards B., Boley A. C., 2022, AJ, 164, 220
  • Hamer J. H., Schlaufman K. C., 2019, AJ, 158, 190
  • Harre J. V., et al., 2023, A&A, 669, A124
  • Hebb L., et al., 2009, ApJ, 693, 1920
  • Hiltner W. A., 1962, Astronomical techniques.. Chicago, University Press
  • Himes M. D., Harrington J., 2022, ApJ, 931, 86
  • Honeycutt R. K., 1992, PASP, 104, 435
  • Husnoo N., Pont F., Mazeh T., Fabrycky D., Hébrard G., Bouchy F., Shporer A., 2012, MNRAS, 422, 3151
  • Ivshina E., Winn J., 2022, in Bulletin of the American Astronomical Society. p. 102.353
  • Jackson B., Greenberg R., Barnes R., 2008, ApJ, 681, 1631
  • Jenkins J. M., et al., 2016, in Chiozzi G., Guzman J. C., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9913, Software and Cyberinfrastructure for Astronomy IV. p. 99133E, doi:10.1117/12.2233418
  • Knutson H. A., et al., 2014, ApJ, 785, 126
  • Lanza A. F., Damiani C., Gandolfi D., 2011, A&A, 529, A50
  • Levrard B., Winisdoerffer C., Chabrier G., 2009, ApJ, 692, L9
  • Lithwick Y., Naoz S., 2011, ApJ, 742, 94
  • Llama J., Vidotto A. A., Jardine M., Fares R., 2013, in European Planetary Science Congress. pp EPSC2013–272
  • Maciejewski G., Errmann R., Raetz S., Seeliger M., Spaleniak I.,
  • Neuhäuser R., 2011, A&A, 528, A65
  • Maciejewski G., et al., 2013, A&A, 551, A108
  • Maciejewski G., et al., 2016, A&A, 588, L6
  • Maciejewski G., et al., 2018, Acta Astron., 68, 371
  • Mandel K., Agol E., 2002, ApJ, 580, L171
  • Meibom S., Barnes S. A., Platais I., Gilliland R. L., Latham D. W.,
  • Mathieu R. D., 2015, Nature, 517, 589
  • Naoz S., Farr W. M., Lithwick Y., Rasio F. A., Teyssandier J., 2011, Nature, 473, 187
  • Ngo H., et al., 2015, ApJ, 800, 138
  • Ogilvie G. I., 2014, ARA&A, 52, 171
  • Ogilvie G. I., Lin D. N. C., 2007, ApJ, 661, 1180
  • Öztürk O., Erdem A., 2019, MNRAS, 486, 2290
  • Patra K. C., Winn J. N., Holman M. J., Yu L., Deming D., Dai F., 2017, AJ, 154, 4
  • Patra K. C., et al., 2020, AJ, 159, 150
  • Poddaný S., Brát L., Pejcha O., 2010, New Astron., 15, 297
  • Ricker G. R., et al., 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003
  • Rosário N. M., Barros S. C. C., Demangeon O. D. S., Santos N. C., 2022, A&A, 668, A114
  • Sada P. V., et al., 2012, PASP, 124, 212
  • Schwarz G., 1978, Annals of Statistics, 6, 461, ADS
  • Skumanich A., 1972, ApJ, 171, 565
  • Stassun K. G., Collins K. A., Gaudi B. S., 2017, AJ, 153, 136
  • Stassun K. G., et al., 2019, AJ, 158, 138
  • Tejada Arevalo R. A., Winn J. N., Anderson K. R., 2021, ApJ, 919, 138
  • Turner J. D., Ridden-Harper A., Jayawardhana R., 2021, AJ, 161, 72
  • Verrier P. E., Evans N. W., 2009, MNRAS, 394, 1721
  • Vissapragada S., et al., 2022, ApJ, 941, L31
  • Weinberg N. N., Sun M., Arras P., Essick R., 2017, ApJ, 849, L11
  • Winn J., 2019, in AAS/Division for Extreme Solar Systems Abstracts. p. 201.04
  • Wong I., Shporer A., Vissapragada S., Greklek-McKeon M., Knutson
  • H. A., Winn J. N., Benneke B., 2022, AJ, 163, 175
  • Yee S. W., et al., 2020, ApJ, 888, L5
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Astronomik Bilimler (Diğer)
Bölüm Makaleler
Yazarlar

Ahmet Cem Kutluay 0009-0007-0502-7359

Ozgur Basturk 0000-0002-4746-0181

Selçuk Yalçınkaya 0000-0002-5224-247X

Tenay Saguner Rambaldi 0000-0002-2438-1923

Sinan Kaan Yerli 0000-0001-9717-5349

Erken Görünüm Tarihi 18 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 31 Mayıs 2023
Kabul Tarihi 6 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

TJAA, Türk Astronomi Derneğinin (TAD) bir yayınıdır.