Araştırma Makalesi
BibTex RIS Kaynak Göster

Origin, Geochemistry and Sulfur Isotope Ratios of Pb-Zn-Cu Mineralization between Karadoru and Karaköy (Biga Peninsula, Çanakkale)

Yıl 2024, Cilt: 67 Sayı: 3, 361 - 388, 31.08.2024
https://doi.org/10.25288/tjb.1369277

Öz

This study aims to investigate the geochemistry and sulfur isotope ratios, as well as the origin of Pb-Zn-Cu mineralization, between Karadoru (Biga, Çanakkale) and Karaköy (Yenice, Çanakkale) in the Biga Peninsula (NW Turkey). Mineralization was observed at four locations: Karadoru, Peynirderesi, Madençeşme (Biga, Çanakkale) and Karaköy (Yenice, Çanakkale). The lowest tectonostratigraphic unit in the region is the Karakaya Complex. The Nilüfer unit, which is part of the Karakaya Complex and mainly consists of metabasic rocks, is overlain by the Hodul unit. The Hodul unit comprises limestones, spilitic basalt, diabase, and arkosic sandstones. The Karadoru, Sarıçayır, and Soğucak granitoids, which are Oligocene-Miocene in age, cut through units of the Karakaya Complex. Skarn zones developed in locations where many plutonic masses intersect with the units of the Karakaya Complex (Nilüfer and Hodul). The Çan volcanics, which date back to the Miocene era, are found on top of the Karadoru, Sarıçayır, and Soğucak granitoid rocks. The Pb-Zn-Cu mineralizations were deposited as veins in the Nilüfer unit (epimetamorphics) in the Karadoru and Madençeşme locations within the Karakaya Complex, and in the Hodul unit (metadiabase and crystallized limestone) in the Peynirderesi and Karaköy (Arapuçandere) locations. The paragenesis includes galena, chalcopyrite, sphalerite, pyrite, limonite, hematite, malachite, manganese, quartz, calcite, and chlorite. The δ34S values of galena and pyrite samples taken from the ore zones in the study area are as follows: Karadoru -3.4‰ and -3.9‰, Karaköy -1.7‰ and -1.6‰, and Peynirderesi -1.7‰ and -4.0‰. The examined Pb-Zn-Cu mineralizations had Sb/Bi ratio in galena ranging from 0.06-0.34 ppm, and Co/Ni ratio in pyrites ranging from 1-10 ppm. The sulfur isotope ratios are negative, indicating that the mineralization has magmatic hydrothermal origin and is due to I-type magmatic activity. The mineralization contains vein-shaped epigenetic deposits of Pb-Zn-Cu mineralization, high trace element contents (Pb, Zn, Cu, Bi, Sb, Ag, Au, W, As), and silicification, sericitization, argillization, and limonitization are observed. These characteristics support the view that the mineralization has hydrothermal origin.

Proje Numarası

1745-YL-08

Kaynakça

  • Ağdemir, N., Kırıkoglu, M. S., Lehmann, B. & Tietze, J. (1994). Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit, NW Turkey: a reconnaissance study. Mineralium Deposita, 29, 366-371.
  • Akıska, S. (2020). Crystallization conditions and compositional variations of silicate and sulfide minerals in the Pb-Zn skarn deposits, Biga Peninsula, NW Turkey. Ore Geology Reviews, 118, Article 103322.
  • Akıska, S., Demirela, G. & Sayili, S. (2013). Geology, mineralogy and the Pb, S isotope study of the Kalkim Pb-Zn±Cu deposits, Biga Peninsula, NW Turkey. Journal of Geosciences, 58(4) 379– 396.
  • Akıska, S. & Demirela, G. (2014). Origin of the fluids in the Handeresi, Bağırkaçdere, and Fırıncıkdere (Kalkım, Yenice-Çanakkale) Pb-Zn±Cu distal skarn deposits. Yerbilimleri, 35(3), 199–218 (in Turkish with English abstract).
  • Akıska, S. & Demirela, G. (2018). The geology, mineral chemistry and isotope composition of Çulfa Çukuru (Çanakkale) Pb-Zn±Cu±Ag deposit. In M. Avcıoğlu, T. Kurttaş, F. Toksaoy Köksal, Y. Eyüboğlu, E. Yiğitbaş, (Eds.), 71st Geological Congress of Turkey Abstract Book, (p.: 575–576). Jeoloji Mühendisleri Odası Yayınları. http://www.jmo.org.tr/resimler/ekler/9ee599173fc3528_ek.pdf
  • Akıs, İ. (2011). Geological and geochemical features of the skarn deposits in the vicinity of the Sarıçayır (Yenice/Çanakkale)-Turkey [Msc. Thesis]. Selcuk University, Konya, Turkey.
  • Andic, T. & Kayhan, F. (1997). Report on the general geochemical research of the Çanakkale Lapseki (Report no. 10059). Technical reports of the general directorate of the Mineral Research and Exploration Institute (MTA) of Turkey, (in Turkish, unpublished).
  • Anil, M. (1979). Etude géologique et métallogénique du secteur septentrional de Yenice (presqu'île de Biga-Turquie) (Doctoral dissertation).
  • Anil, M. (1984). Genesis of the Pb–Zn–Cu mineralization and relations with Tertiary volcanism in Yenice area (Arapuçandere-Kurttasi-Sofular and Kalkim-Handeresi). Jeoloji Mühendisliği Dergisi, 8(2), 17–30. https://dergipark.org.tr/tr/download/article-file/289816
  • Anil, M. & Yaman, S. (1985). Fluid inclusion studies on the Arapuçandere (Yenice-Çanakkale) Pb–Zn mineralizations. Bulletin for Earth Science, 12, 81–91.
  • Arvas, H. ve Önder, İ. (1976). Biga Yarımadası Çataltepe sahası bakır-kurşun aramaları IP Etüd Raporu (Rapor No: 5625) MTA Derleme Ankara.
  • Aubert, D., Stille, P. & Probst, A. (2001). REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65(3), 387-406.
  • Aydın, E. (1981). Biga Yarımadasındaki Pb-sulfomineralleri, bunların oluşum koşulları ve kökenleri. İ.Ü. Yerbilimleri, 1-2, 53-76.
  • Aydın, E. ve Öztunalı, Ö. (1981). Biga Yarımadasındaki Pb-Zn cevherleşmelerinin oluşum koşulları. İ.Ü. Yerbilimleri, 1-2, 91-95.
  • Aydın, Ü., Şen, P., Özmen, Ö. & Şen, E. (2019). Biga Yarımadası’ndaki granitoyitlerin (KB Anadolu, Türkiye) petrolojik ve jeokimyasal özellikleri. MTA Dergisi, 160, 81-116.
  • Aysal, N. (2005). Biga (Çanakkale) doğusunun Mesozoyik-Tersiyer magmatizması ve metamorfizmasının petrolojisi [Doktora tezi]. İstanbul Üniversitesi Fen Bilimleri Enstitüsü.
  • Aysal, N. (2015). Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Science,105, 68-84.
  • Aysal, N., Öngen, S. ve Hanilçi, N. (2006). Karadoru granitoid plütonu yan kayaçlarının petrografisi ve skarn zonunun özellikleri, Yenice-Çanakkale. İstanbul Üniversitesi Yerbilimleri Dergisi, 19(2), 183-194.
  • Bajwah, Z., Seccombe, P. & Offler, R.(1987). Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22, 292–300.
  • Bingol, E. (1968).Contributiona l’étude géologique de la partie centrale et sud-est du massif de Kazdag (Turquie) [Doctoral dissertation thesis]. Faculty of Science, University of Nancy (France).
  • Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. Chapter 3. Development of Geochemistry, 2, 63-114.
  • Bozkaya, G. (2011a). Sulphur-and lead-isotope geochemistry of the Arapuçandere lead-zinc-copper deposit, Biga Peninsula, NorthwestTurkey. International Geology Review, 53(1), 116-129.
  • Bozkaya, G. (2011b). Sulfur isotope composition of the Bagirkacdere lead-zinc deposit, Biga Peninsula, Turkey. In Goldschmidt Conference 2011, Prague, Abstracts, Mineral Mag 75, 571.
  • Bozkaya, G., Gökçe, A. & Grassineau, N. V. (2008). Fluid inclusion and stable isotope characteristics of the Arapuçandere Pb-Zn-Cu deposits, Northwest Turkey. International Geology Review, 50(9), 848-862.
  • Bozkaya, G. & Gökce, A.(2009). Lead and sulfur isotopestudies of the Koru (Çanakkale, Turkey) lead-zinc eposits. Turkish Journal of Earth Sciences, 18(1), 127-137.
  • Bozkaya, G. & Banks, D. A. (2015). Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey. Ore Geology Reviews, 66, 65-81.
  • Bralia, A., Sabatini, G. & Troja, F. (1979). A revaluation of the Co/Ni ratio in pyrite as a geochemical tool in ore genesis problems: evidence from southern Tuscany pyritic deposits. Mineral Deposita, 14, 353-374.
  • Cagatay, A. (1980). Geology and mineralogy of western Anatolian lead-zinc deposits and some comments about their genesis. Bulletin of the Geological Society of Turkey, 23(2), 119-132. https://www.jmo.org.tr/resimler/ekler/f477737c1829c3e_ek.pdf
  • Campbell, F. A. & Ethier, V. (1984). Nickel and Cobalt in pyrrhotite and pyrite from the Faro and Sullivan ore bodies. Canadian Mineralogist, 22, 503-506.
  • Cetinkaya, N., Karul, B., Yenigun, K. & Onal, R. (1983). Report of Turkish–Germany project Biga Peninsula on there search project of metallic mines (Pb–Zn–Cu) (Report No. 7745). Mineral Research and Exploration Institute of Turkey (MTA).
  • Çiçek, M. & Oyman, T. (2016). Origin and evolution of hydrothermal fluids in epithermal Pb-Zn-Cu±Au±Ag deposits at Koru and Tesbihdere mining districts, Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews,78, 176-195.
  • Çiçek, M., Oyman, T., Kaliwoda, M. & Hochleitner, R. (2017). Mineralogy and mineral chemistry of the Arapuçandere Pb-Zn-Cu (Ag-Au) mineralization in the northeast of Yenice (Çanakkale), Biga Peninsula, NW Turkey. Workshop on Subduction Related Ore Deposits, Abstracts Book ( p.:18). Karadeniz Technical University, Trabzon-Turkey.
  • Çiçek, M., Oyman, T. &Palmer, M. R. (2021). Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews,136, Article 104255. https://doi.org/10.1016/j.oregeorev.2021.104255
  • Delaloye, M. & Bingöl, E., (2000). Granitoids from Western and Nortwestern Anatolia: Geochemistry and modeling of geodynamic evolution. International GeologyReview, 42, 241-268.
  • Demirela, G., Akışka, S., Sayılı, İ. S. & Kuşçu, İ. (2014). Çataltepe (Lapseki-Çanakkale) Pb-Zn±Cu±Ag yatağı'nın jeolojisi ve alterasyon özellikleri. Yerbilimleri, 35(2), 141-168.
  • Demirela, G. & Akışka, S. (2022). Evaluation of Pb isotope systematics and metal sources of the Biga Pb–Zn Province (NW Turkey) and comparison with the Pb isotope systematics of the Rhodope Massif. Journal of African Earth Sciences,187, Article 104445. https://doi.org/10.1016/j.jafrearsci.2021.104445
  • Doyuran, M. (1970) . The preliminary study of Pb-Zn mineralizations between Evciler-Dağoba (Bayramiç/Çanakkale) (Report no. 4976). MTA, Ankara. (in Turkish, unpublished).
  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M. ve Akçay, A. E. (2007). 1/100.000 ölçekli Türkiye jeoloji haritaları serisi, Bandırma-H18 paftası, no:102. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Duru, M., Pehlivan, Ş., Okay, A.İ., Şentürk, Y. ve Kar, H.(2012). Biga Yarımadası’nın Tersiyer öncesi jeolojisi. Biga Yarımadası’nın genel ve ekonomik jeolojisi. MTA Özel Yayın Serisi-28, 7-77.
  • Einaudi, M.T., Hedenquist, J.W. & Inan, E. E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In S.F. Simmons, I. Graham (Eds.), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. https://doi.org/10.5382/SP.10.15
  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E., Adis, C., Walter, H.J. ve Yıldırım, T. (1995). Biga Yarımadası ile Gökçeada, Bozcaada ve Tavşanlı adalarındaki (KB Anadolu) Tersiyer volkanizmasının özellikleri. MTA Dergisi, 117, 55-86.
  • Eric, D., Philippe, B., Jean, L.C., Jean, P.D., Yves, F., Pierre, A. & Toshitaka, G. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63 (5), 627-643.
  • Ersoy, E.Y., Palmer, M.R., Can Genç, Ş., Prevelic D., Akal, C. & Uysal, İ. (2017a). Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of, crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of postcollisional magmatism. Lithos, 288-289, 55-71. https://doi.org/10.1016/j.lithos.2017.07.006
  • Ersoy, E.Y., Akal, C., Can Genç, Ş., Candan, O., Palmer, M.R., Prelevic, D., Uysal, İ. & Mertz-Kraus, R. (2017b). U-Pb zircon geochronology of the Paleogene-Neogene volcanism in the NW Anatolia: Its implications for the late MesozoicCenozoic geodynamic evolution of the Aegean. Tectonophysics, 717, 284-301. https://doi.org/10.1016/j.tecto.2017.08.016
  • Evans, A.M. (1993). Ore geology and industrial minerals: An introduction. Blackwell Scientific Publications, London.
  • Field, C.W. & Fifarek, R.H. (1985). Light isotope systematics in the epithermal environment. In B. R. Berger, P.M. Bekte (Eds.), Geology and Geochemistry of Geothermal Systems, Reviews in Econ. Geology, 2, 99-128.
  • Foley, S.F. & Wheller, G.E. (1990). Parallels in theorigin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: The role of residual titanites. Chemical Geology, 85, 1–18. https://doi.org/10.1016/0009-2541(90)90120-V
  • Genç, S.C. (1998). Evolution of the Bayramiç magmatic complex, Northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85, 233–249.
  • Gözler, M.Z., Ergül, E., Akçaören, F, Genç, Ş., Akat, U. ve Acar, Ş. (1984). Çanakkale Boğazı doğusu Marmara Denizi güneyi Bandırma–Balıkesir Edremit ve Ege Denizi arasındaki alanın jeolojisi ve kompilasyonu (Rapor no:7430). Maden Tetkik Arama Genel Müdürlüğü Raporu, (yayımlanmamış).
  • Gültekin, A. H. ve Örgün, Y. (2005). Arapuçan (Yenice-Çanakkale) Pb-Zn-Cu-Ag yatağının jeolojik, mineralojik ve jeokimyasal özellikleri. Anadolu Üniversitesi Bilim veTeknoloji Dergisi, 6(1), 97-107.
  • Hedenquist, J. W., Arribas, A. & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4), 373-404.
  • Heinrich, C. A., Driesner, T., Stefánsson, A. & Seward, T. M. (2004). Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology, 32(9), 761-764.
  • Henderson, P. (1984). General geochemical properties and aboundance of the rare earth elements. In P. Henderson (Ed.), Rare Earth Element Geochemistry (pp. 1-32.). Developments in Geochemistry 2, Elsevier, Amsterdam.
  • Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R. & Both, R. A. (1995). Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5), 1167-1196. https://doi.org/10.2113/gsecongeo.90.5.1167
  • Hoefs, J. (1987). Stable Isotope Geochemistry, 3rd edn. Springer, Berlin-Heidelberg New York.
  • Hoefs, J. (2009). Stable Isotope Geochemistry, 6th ed. Springer-Verlag, Berlin Heidelberg.
  • Ishihara, S. & Sasaki, A. (1989). Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith - a reconnaissance study. Geology, 17(9), 788-791.
  • Kaaden, G. v. d. (1956). Edremit Bölgesinde jeoloji ve maden yatakları incelemeleri (Rapor No. 2400). Maden Tetkik Arama Enstitüsü Raporu (yayımlanmamış).
  • Kaaden, G. v. d. (1957). Çanakkale-Biga Edremit yarımadası bölgesindeki jeolojik saha çalışmaları ve maden yatakları hakkında rapor (Rapor no: 2661). Maden Tetkik Arama Enstitüsü Raporu (yayımlanmamış), Ankara.
  • Kandemir, Ö., Pehlivan, Ş., Kanar, F. ve Tok, T. (2013). 1/100.000 ölçekli Türkiye Jeoloji Haritaları Serisi no:191 Bandırma-H21 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Karacık, Z. & Yılmaz, Y. (1998). Geology of the ignimbrites and the associated volcano-plutonic complex of the Ezine area, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1-4), 251-264.
  • Kasapçı, C. (2005). Kuzeybatı Anadolu Pb-Zn yataklarının jeolojisi ve oluşumlarının karşılaştırmalı incelemesi [Yayımlanmamış Yüksek Lisans Tezi]. Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul.
  • Kasapçı, C., Öztürk, H., Hanilçi, N. & Aysal, N. (2008). Jeoloji ve sıvı kapanım bulguları ışığında Arapuçandere (Yenice-Çanakkale) Pb-Zn-Cu yatağının oluşumu. Türkiye Kurşun-Çinko Yataklarının Jeolojisi, Madenciliği ve Mevcut Sorunları Sempozyumu, Bildiri Kitabı (s.: 100-118). 14–16 Ocak 2008- İstanbul,
  • Kaya, O. & Mostler, H. (1992). A Middle Triassic age for low-grade greenschist facies metamorphic sequence in Bergama (Izmir), western Turkey: the first paleontological age assignment and structural-stratigraphic implications. Newsletters on Stratigraphy, 1-17.
  • Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J. & Irving, A. J. (1990). High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature, 345(6275), 521-524.
  • Ketin, İ. (1966). Anadolu'nun tektonik birlikleri. MTA Dergisi, 66: 20-37. https://dergipark.org.tr/tr/pub/bulletinofmre/issue/3892/51961
  • Kıray, D.(2010). Karadoru-Karaköy (Çanakkale) arasındaki Pb-Zn-Cu cevherleşmelerinin jeolojik ve jeokimyasal özellikleri [Yüksek lisans tezi]. Süleyman Demirel Üniversitesi, Jeoloji Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü, Isparta.
  • Kıray, D. (2021). Şahinli (Lapseki-Çanakkale, Batı Türkiye) bölgesindeki Kestanelik Au-Agcevherleşmesinin jeolojik, mineralojik ve jeokimyasal incelemeler ile kökeninin belirlenmesi [Yayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü.
  • Kıray, D. ve Cengiz, O. (2023). Kestanelik granitoyidinin petrografik ve jeokimyasal özellikleri (Çanakkale, Biga Yarımadası)/Petrographical and geochemical characteristics of the Kestanelik granitoid (Çanakkale, Biga Peninsula). Türkiye Jeoloji Bülteni, 66(1) 127-148. https://doi.org/10.25288/tjb.1187739
  • Klinkhammer, G.P., Elderfield, H., Edmond, J.M. & Mitra, A. (1994). Geochemical implications of rareearth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58, 5105-5113.
  • Konak, N., Alan, İ., Bakırhan, B., Bedi, Y., Dönmez, M., Pehlivan, Ş., Sevin, M., Türkecan, A. ve Yusufoğlu, H. (2016). 1/1.000.000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Kouhestani, H., Mokhtari, M. A. A., Qin, K. & Zhao, J. (2019). Origin andevolution of hydrothermalfluids in theMarshounepithermal Pb–Zn–Cu (Ag) deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113, 103087.
  • Kozur, H.W, Aydın, M., Demir, O., Yakar, H., Göncüoğlu, M.C. & Kuru, F. (2000). New Stratigraphic and Palaeogeographic Results from the Palaeozoic and Early Mesozoic of the Middle Pontides (Northern Turkey) in the Azdavay, Devrekani, Küre and Inebolu Areas: Implications for the Carboniferous - Early Cretaceous Geodynamic Evolution and Some Related Remarks to the Karakaya Oceanic Rift Basin. Geologia Croatica, 53(2), 209-268. https://doi.org/10.4154/GC.2000.03
  • Kuşcu, İ, Tosdal, R.M. & Gençalioğlu-Kuşcu, G. (2019). Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geology Reviews, 107, 119–154. https://doi.org/10.1016/j.oregeorev.2019.02.005
  • Laçin, D. (2003). Biga Yarımadası (Çanakkale-Balıkesir) halloysitlerinin yataklanma özellikleri, mineralojisi ve oluşumları [Doktora Tezi]. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Loftus-Hills, G. & Solomon, M. (1967). Cobalt, nickel and selenium in sulfides as indicators of ore genesis: Mineralium Deposita, 2, 228–242.
  • Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25-41. https://doi.org/10.1016/0169-1368(92)90017-F
  • Malakhov, A.A.(1969). Bismuth and antimony in galenas as indicators of some conditions of ore formation. Institute of Geopyhsics, Tashkent.
  • McDonough, W. F. & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120(3-4), 223-253.
  • Menant, A., Jolivet, L., Tuduri, J., Loiselet, C., Bertrand, G. & Guillou-Frottier, L. (2018). 3D subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geology Reviews, 94, 118–135. https://doi.org/10.1016/j.oregeorev.2018.01.023
  • Michard, A. & Albarède, F. (1986). The REE content of some hydrothermal fluids. Chemical Geology, 55(1-2), 51-60. https://doi.org/10.1016/0009-2541(86)90127-0
  • Moller, P. & Morteani, G. (1983). On the geochemical fractionation of ram earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. In S.S. Augusthitis (Ed.), The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies (pp. 747-791). Theophrastus, Athens.
  • Müller, D., Rock, N. M. S. & Groves, D. I. (1992). Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings, a pilot study. Mineralogy and Petrology, 46, 259-289. https://doi.org/10.1007/BF01173568
  • Ohmoto, H. & Rye, R. O.(1979). Isotopes Sulfur and Carbon: In H. L. Barnes, (Ed.), Geochemistry of Hy drothermal Ore Deposits, Second Edition, (509–567), John Wiley and Sons Inc., New York.
  • Okay, A. İ., Siyako, M. ve Bürkan, K.A. (1990). Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2(1), 83-121.
  • Okay, A. İ., Siyako, M. & Bürkan, K. A. (1991). Geology and tectonic evolution of Biga Peninsula, Northwest Turkey. Bulletin Technical University of İstanbul, 44, 191-255.
  • Okay, A. I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.
  • Okay, A. I. & Altıner, D. (2004). Uppermost Triassic Limestone in the Karakaya Complex– Stratigraphic and Tectonic Significance. Turkish Journal of Earth Sciences, 13(2), 187-199. https://journals.tubitak.gov.tr/earth/vol13/iss2/5
  • Okay, A. I. & Göncüoğlu, M. C. (2004). The Karakaya Complex: a review of data and concepts. Turkish Journal of Earth Sciences, 13(2), 75-95.
  • Ovalıoğlu, R. (1973). Biga Yarımadası’nın jeolojisi, maden yatakları ve bakır-kurşun çinko mineralizasyonu için ümitli olan bölgeler. Madencilik Dergisi, 12(6), 1-22.
  • Oyman, T. (2018). Yenice’nin KD’daki Granitoid sokulumlar ile ilişkili magmatik-hidrotermal sistemlerle ilişkili cevherleşmeler arasındaki bağlantılar (Çanakkale, Biga Yarımadası), (Rapor no: 114Y055). Tübitak Proje Raporu.
  • Öngen, S. (1982). Yenice (Çanakkale) granitoyidlerinin ve yan kayaçlarının petrolojisi [Doçentlik Tezi]. İstanbul Üniversitesi.
  • Öngen, S., Aysal, N. & Azaz, D. (2002). Çan Güneyi (Çanakkale) Geç Tersiyer Riyolit-Bazalt Karakterli Volkanizması. 55. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, 201-203.
  • Örgün, Y., Gültekin, A. H. & Önal, A. (2005). Geology, mineralogy and fluid inclusion data from the Arapuçandere Pb-Zn-Cu-Ag deposit, Çanakkale, Turkey: Journal of Asian Earth Sciences, 25, 629-642.
  • Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental Basalts and Mantle Xenoliths, (pp.: 230-249.). Shiva Cheshire, UK.
  • Pearce, J. A. & Parkinson, I. J. (1993). Trace element models for mantle melting: application to volcanic arc petrogenesis. In H.M. Prichard, T. Alabaster, N.B.W. Harris, C.R. Neary, (Eds.), Magmatic Processes and Plate Tectonics, Volume 76 (pp. 373-403). Geological Society of London: London, UK.
  • Pearce, J. A. & Peate, D. W. (1995). Tectonic implications of the composition of the volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  • Pehlivan, A. N. & Çetin, A. (1997). Edremit (Balıkesir) Ezine-Bayramiç-Yenice (Çanakkale) çevresinin altın ağırlıklı polimetal ve ağır mineral çalışmaları raporu (Rapor No: 10061). MTA Derleme Raporu, Ankara (yayımlanmamış).
  • Pehlivan, Ş., Duru, M., Dönmez, M. Akçay, A. E. ve Ilgar, A. (2007). 1/100.000 ölçekli Türkiye Jeoloji Haritaları serisi, Balıkesir-İ19 paftası, No:96. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Qi, X. X., Yu, F. L. & Yu, C. L. (2008). Rare earth element and trace element geochemistry of Shalagang antimony deposit in the Southern Tibet and its tracing significance for the origin of metallogenic elements. Geoscience, 22(2), 162-172.
  • Richards, J. P. (2015). Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70, 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009
  • Ringwood, A. E. (1990). Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology, 82, 187-207.
  • Ruggieri, G., Lattanzi, P., Luxoro, S. S., Dessi, R., Benvenuti, M. & Tannelli, G. (1997). Geology, mineralogy and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy. Economic Geology 92, 1–14.
  • Sánchez, M. G., McClay, K. R., King, A. R. & Wijbrams, J. R. (2016). Cenozoic crustal extension and its relationship to porphyry Cu-Au-(Mo) and epithermal Au-(Ag) mineralization in the Biga peninsula, Northwestern Turkey. In J. P. Richards (Ed.), Tectonics and Metallogeny of the Tethyan Orogenic Belt, Special Publication (Society of Economic Geologists (U. S.))19, 113-156. https://doi.org/10.5382/SP.19.05
  • Shahbazi, S., Ghaderi, M. & Alfonso, P. (2019). Mineralogy, alteration, and sülfür isotope geochemistry of the Zehabad intermediate sulfidation epithermal deposit, NW Iran. Turkish Journal of Earth Sciences, 28(6), 882-901.
  • Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Economic Geology, 68(6), 799-815.
  • Stolz, A. J., Varne, R., Davies, G. R., Wheller, G. E., & Foden, J. D. (1990). Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contributions to Mineralogy and Petrology, 105, 585-601.
  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.
  • Şengör, A. M. C., Cin, A., Rowley, D. B. & Nie, S. Y. (1993). Space-time patterns of magmatism along the Tethysides: A preliminary study. The Journal of Geology, 101(1), 51-84.
  • Tufan, E. A. & Kara, A. (1987). Çanakkale-Yenice-Vakıf Köyü Pb-Zn-Cu Cevherleşmesi Maden Jeolojisi Raporu (rapor no: 8297). Maden Tetkik ve Arama Genel Müdürlüğü.
  • Tunç, I. O., Yiğitbas, E., Sengun, F., Wazeck, J., Hofmann, M. & Linnemann, U. (2012). U-Pb zircon geochronology of northern metamorphic massifs in the Biga Peninsula (NW Anatolia-Turkey): new data and a new approach to understand the tectonostratigraphy of the region. Geodinamica Acta, 25(3-4), 202-225. https://doi.org/10.1080/09853111.2013.877242
  • Ünal-Çakır, E. (2020). Sulphur and lead isotope geochemistry of the Dursunbey (Balıkesir) lead–zinc deposit. Journal of African Earth Sciences,172, Article 104003.
  • Walshe, J. L. & Solomon, M. (1981). An investigation into the environment of formation of the volcanic-hosted Mount Lyell copper deposits using geology, mineralogy, stable isotopes and a six-component chlorite solid solution model. Economic Geology, 76(2), 246-284. https://doi.org/10.2113/gsecongeo.76.2.246
  • Yenigün, K. (1978). The geological report of Alandere Pb-Zn-Cu mineralization in Çakır Village (Yenice/Çanakkale) (Report no. 6564). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish, unpublished).
  • Yilmaz, Y. (1990). Allochthonous terranes in the Tethyan Middle East: Anatolia and the surrounding regions. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 331, 611–624. https://doi.org/10.1098/rsta.1990.0093
  • Yılmaz, Y., Genç, Ş. C., Karacık, Z. & Altunkaynak, Ş. (2001). Two contrasting magmatic associations of NW Anatolia and their tectonic significance. Journal of Geodynamics, 31(3), 243-271. https://doi.org/10.1016/S0264-3707(01)00002-3
  • Yılmaz, Y., Genç, Ş. C., Yiğitbaş, E., Bozcu, M. ve Yılmaz, K. (1994). Kuzeybatı Anadolu’da geç Kretase yaşlı kıta kenarının jeolojik evrimi, Türkiye. 10. Petrol Kongresi, 37-55.
  • Yılmaz, H., Oyman, T., Sönmez, F. N., Arehart, G.B. & Billor, Z. (2010). Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Şahinli/Tespih Dere (Lapseki /Western Turkey). Ore Geology Reviews, 37(3-4), 236–258. https://doi.org/10.1016/j.oregeorev.2010.04.001
  • Yiğit, Ö. (2012). A prospective sector in the Tethyan Metalogennic Belt: Geology and Geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148. https://doi.org/10.1016/j.oregeorev.2011.09.015
  • Yiğitbaş, E. & Tunç, İ. O. (2020). Biga Yarımadası’nda Sakarya Zonunun Prekambriyen Metamorfik Kayaları; Geç Ediyakaran Gondwanaland Aktif Kıta Kenarı. Türkiye Jeoloji Bülteni, 63(3), 277-302. https://doi.org/10.25288/tjb.589144
  • Yusoff, Z. M., Ngwenya, B. T. & Parsons, I. (2013). Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349, 71-86.
  • Yücelay, M. A. (1971). Geological etude of the Karaköy-Arapuçandere Pb-Zn-Cu mineralization, Çanakkale-Yenice (Report No. 4688). Mineral Research and Exploration Institute of Turkey.
  • Yücelay, M. A. (1976). Çanakkale-Yenice geological report related to the Karaköy-Arapuçandere Pb-Zn-Cu area (Report No. 5655). Mineral Research and Exploration Institute of Turkey.
  • Zamanian, H. & Radmard, K. (2016). Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran–a key to determine conditions of mineralization. Geologos, 22(1), 33-47.
  • Zhai, D., Williams-Jones, A. E., Liu, J., Selby, D., Voudouris, P. C., Tombros, S., Li, K., Li, P. & Sun, H. (2020). The genesis of the Giant Shuangjianzishan epithermal Ag-Pb-Zndeposit, Inner Mongolia, Northeastern China. EconomicGeology, 115(1), 101-128.

Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları

Yıl 2024, Cilt: 67 Sayı: 3, 361 - 388, 31.08.2024
https://doi.org/10.25288/tjb.1369277

Öz

Bu çalışma Biga Yarımadası (KB Türkiye)’nda yer alan Karadoru (Biga, Çanakkale) ve Karaköy (Yenice, Çanakkale) arasındaki Pb-Zn-Cu cevherleşmelerinin jeokimyasını ve kükürt izotop oranlarıile kökenini ortaya koymaya yöneliktir. İncelenen cevherleşmeler, Karadoru, Peynirderesi, Madençeşme (Biga, Çanakkale) ve Karaköy (Yenice, Çanakkale) olmak üzere toplam 4 lokasyonda gözlenmektedir. Bölgenin en alt tektonostratigrafik birimini Karakaya Kompleksi oluşturmaktadır. Karakaya Kompleksinin birimi olan ve başlıca metabazik kayaçları içeren Nilüfer birimi onun üzerinde de kireçtaşları, spilitik bazalt, diyabaz ve arkozik kumtaşlarını kapsayan Hodul birimi yer alır. Karakaya Kompleksine ait birimlerini Oligosen-Miyosen yaşlı Karadoru, Sarıçayır ve Soğucak granitoyidleri kesmektedir. Bölgede yüzlek veren birçok plütonik kütlelerin Karakaya Kompleksi (Nilüfer ve Hodul)’ne ait birimleri kestiği lokasyonlarda skarn zonları gelişmiştir. Karadoru, Sarıçayır ve Soğucak granitoyid kayaçları üzerine Miyosen yaştaki Çan volkanitleri gelir. İncelenen Pb-Zn-Cu cevherleşmeleri Karakaya Kompleksi içerisindeki Karadoru ve Madençeşme lokasyonlarında Nilüfer biriminde (epimetamorfikler), Peynirderesi ve Karaköy (Arapuçandere) mevkiilerinde Hodul birimi (metadiyabazve kristalize kireçtaşı) içerisinde damar şeklinde yataklanmaktadır. Cevherleşmenin mineral parajenezini galen, kalkopirit, sfalerit cevher mineralleri ile pirit, limonit, hematit, malakit, manganoksit, kuvars, kalsit ve klorit oluşturmaktadır. Çalışma alanındaki cevherli zonlardan alınan galen ve pirit numunelerinin δ34S değerleri sırasıyla Karadoru ‰ -3,4 ve ‰-3,9, Karaköy ‰-1,7 ve ‰ -1,6, Peynirderesi ‰ -1,7 ve ‰ -4,0 şeklindedir. İncelenen Pb-Zn-Cu cevherleşmelerinde galenlerde Sb/Bi oranının 0,06-0,34 ppm, piritlerde Co/Ni oranı 1-10 ppm arasında olması, kükürt izotop oranlarının negatif değerlerde olması, cevherleşmenin magmatik hidrotermal kökenli ve I-tipi bir magmatik aktiviteye bağlı olduğunaişaret etmektedir. Buna ek olarak, Pb-Zn-Cu cevherleşmelerinin damar şeklinde epijenetik yataklanması, iz element içeriklerinin (Pb, Zn, Cu, Bi, Sb, Ag, Au, W, As) yüksekliği ve silisleşme, serizitleşme, killeşme ve limonitleşme alterasyonlarının gözlenmesi de cevherleşmenin hidrotermal kökenli olduğunu destekler niteliktedir.

Destekleyen Kurum

Süleyman Demirel Üniversitesi Bilimsel Araştırma Proje Ofisi

Proje Numarası

1745-YL-08

Kaynakça

  • Ağdemir, N., Kırıkoglu, M. S., Lehmann, B. & Tietze, J. (1994). Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit, NW Turkey: a reconnaissance study. Mineralium Deposita, 29, 366-371.
  • Akıska, S. (2020). Crystallization conditions and compositional variations of silicate and sulfide minerals in the Pb-Zn skarn deposits, Biga Peninsula, NW Turkey. Ore Geology Reviews, 118, Article 103322.
  • Akıska, S., Demirela, G. & Sayili, S. (2013). Geology, mineralogy and the Pb, S isotope study of the Kalkim Pb-Zn±Cu deposits, Biga Peninsula, NW Turkey. Journal of Geosciences, 58(4) 379– 396.
  • Akıska, S. & Demirela, G. (2014). Origin of the fluids in the Handeresi, Bağırkaçdere, and Fırıncıkdere (Kalkım, Yenice-Çanakkale) Pb-Zn±Cu distal skarn deposits. Yerbilimleri, 35(3), 199–218 (in Turkish with English abstract).
  • Akıska, S. & Demirela, G. (2018). The geology, mineral chemistry and isotope composition of Çulfa Çukuru (Çanakkale) Pb-Zn±Cu±Ag deposit. In M. Avcıoğlu, T. Kurttaş, F. Toksaoy Köksal, Y. Eyüboğlu, E. Yiğitbaş, (Eds.), 71st Geological Congress of Turkey Abstract Book, (p.: 575–576). Jeoloji Mühendisleri Odası Yayınları. http://www.jmo.org.tr/resimler/ekler/9ee599173fc3528_ek.pdf
  • Akıs, İ. (2011). Geological and geochemical features of the skarn deposits in the vicinity of the Sarıçayır (Yenice/Çanakkale)-Turkey [Msc. Thesis]. Selcuk University, Konya, Turkey.
  • Andic, T. & Kayhan, F. (1997). Report on the general geochemical research of the Çanakkale Lapseki (Report no. 10059). Technical reports of the general directorate of the Mineral Research and Exploration Institute (MTA) of Turkey, (in Turkish, unpublished).
  • Anil, M. (1979). Etude géologique et métallogénique du secteur septentrional de Yenice (presqu'île de Biga-Turquie) (Doctoral dissertation).
  • Anil, M. (1984). Genesis of the Pb–Zn–Cu mineralization and relations with Tertiary volcanism in Yenice area (Arapuçandere-Kurttasi-Sofular and Kalkim-Handeresi). Jeoloji Mühendisliği Dergisi, 8(2), 17–30. https://dergipark.org.tr/tr/download/article-file/289816
  • Anil, M. & Yaman, S. (1985). Fluid inclusion studies on the Arapuçandere (Yenice-Çanakkale) Pb–Zn mineralizations. Bulletin for Earth Science, 12, 81–91.
  • Arvas, H. ve Önder, İ. (1976). Biga Yarımadası Çataltepe sahası bakır-kurşun aramaları IP Etüd Raporu (Rapor No: 5625) MTA Derleme Ankara.
  • Aubert, D., Stille, P. & Probst, A. (2001). REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65(3), 387-406.
  • Aydın, E. (1981). Biga Yarımadasındaki Pb-sulfomineralleri, bunların oluşum koşulları ve kökenleri. İ.Ü. Yerbilimleri, 1-2, 53-76.
  • Aydın, E. ve Öztunalı, Ö. (1981). Biga Yarımadasındaki Pb-Zn cevherleşmelerinin oluşum koşulları. İ.Ü. Yerbilimleri, 1-2, 91-95.
  • Aydın, Ü., Şen, P., Özmen, Ö. & Şen, E. (2019). Biga Yarımadası’ndaki granitoyitlerin (KB Anadolu, Türkiye) petrolojik ve jeokimyasal özellikleri. MTA Dergisi, 160, 81-116.
  • Aysal, N. (2005). Biga (Çanakkale) doğusunun Mesozoyik-Tersiyer magmatizması ve metamorfizmasının petrolojisi [Doktora tezi]. İstanbul Üniversitesi Fen Bilimleri Enstitüsü.
  • Aysal, N. (2015). Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Science,105, 68-84.
  • Aysal, N., Öngen, S. ve Hanilçi, N. (2006). Karadoru granitoid plütonu yan kayaçlarının petrografisi ve skarn zonunun özellikleri, Yenice-Çanakkale. İstanbul Üniversitesi Yerbilimleri Dergisi, 19(2), 183-194.
  • Bajwah, Z., Seccombe, P. & Offler, R.(1987). Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22, 292–300.
  • Bingol, E. (1968).Contributiona l’étude géologique de la partie centrale et sud-est du massif de Kazdag (Turquie) [Doctoral dissertation thesis]. Faculty of Science, University of Nancy (France).
  • Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. Chapter 3. Development of Geochemistry, 2, 63-114.
  • Bozkaya, G. (2011a). Sulphur-and lead-isotope geochemistry of the Arapuçandere lead-zinc-copper deposit, Biga Peninsula, NorthwestTurkey. International Geology Review, 53(1), 116-129.
  • Bozkaya, G. (2011b). Sulfur isotope composition of the Bagirkacdere lead-zinc deposit, Biga Peninsula, Turkey. In Goldschmidt Conference 2011, Prague, Abstracts, Mineral Mag 75, 571.
  • Bozkaya, G., Gökçe, A. & Grassineau, N. V. (2008). Fluid inclusion and stable isotope characteristics of the Arapuçandere Pb-Zn-Cu deposits, Northwest Turkey. International Geology Review, 50(9), 848-862.
  • Bozkaya, G. & Gökce, A.(2009). Lead and sulfur isotopestudies of the Koru (Çanakkale, Turkey) lead-zinc eposits. Turkish Journal of Earth Sciences, 18(1), 127-137.
  • Bozkaya, G. & Banks, D. A. (2015). Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey. Ore Geology Reviews, 66, 65-81.
  • Bralia, A., Sabatini, G. & Troja, F. (1979). A revaluation of the Co/Ni ratio in pyrite as a geochemical tool in ore genesis problems: evidence from southern Tuscany pyritic deposits. Mineral Deposita, 14, 353-374.
  • Cagatay, A. (1980). Geology and mineralogy of western Anatolian lead-zinc deposits and some comments about their genesis. Bulletin of the Geological Society of Turkey, 23(2), 119-132. https://www.jmo.org.tr/resimler/ekler/f477737c1829c3e_ek.pdf
  • Campbell, F. A. & Ethier, V. (1984). Nickel and Cobalt in pyrrhotite and pyrite from the Faro and Sullivan ore bodies. Canadian Mineralogist, 22, 503-506.
  • Cetinkaya, N., Karul, B., Yenigun, K. & Onal, R. (1983). Report of Turkish–Germany project Biga Peninsula on there search project of metallic mines (Pb–Zn–Cu) (Report No. 7745). Mineral Research and Exploration Institute of Turkey (MTA).
  • Çiçek, M. & Oyman, T. (2016). Origin and evolution of hydrothermal fluids in epithermal Pb-Zn-Cu±Au±Ag deposits at Koru and Tesbihdere mining districts, Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews,78, 176-195.
  • Çiçek, M., Oyman, T., Kaliwoda, M. & Hochleitner, R. (2017). Mineralogy and mineral chemistry of the Arapuçandere Pb-Zn-Cu (Ag-Au) mineralization in the northeast of Yenice (Çanakkale), Biga Peninsula, NW Turkey. Workshop on Subduction Related Ore Deposits, Abstracts Book ( p.:18). Karadeniz Technical University, Trabzon-Turkey.
  • Çiçek, M., Oyman, T. &Palmer, M. R. (2021). Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews,136, Article 104255. https://doi.org/10.1016/j.oregeorev.2021.104255
  • Delaloye, M. & Bingöl, E., (2000). Granitoids from Western and Nortwestern Anatolia: Geochemistry and modeling of geodynamic evolution. International GeologyReview, 42, 241-268.
  • Demirela, G., Akışka, S., Sayılı, İ. S. & Kuşçu, İ. (2014). Çataltepe (Lapseki-Çanakkale) Pb-Zn±Cu±Ag yatağı'nın jeolojisi ve alterasyon özellikleri. Yerbilimleri, 35(2), 141-168.
  • Demirela, G. & Akışka, S. (2022). Evaluation of Pb isotope systematics and metal sources of the Biga Pb–Zn Province (NW Turkey) and comparison with the Pb isotope systematics of the Rhodope Massif. Journal of African Earth Sciences,187, Article 104445. https://doi.org/10.1016/j.jafrearsci.2021.104445
  • Doyuran, M. (1970) . The preliminary study of Pb-Zn mineralizations between Evciler-Dağoba (Bayramiç/Çanakkale) (Report no. 4976). MTA, Ankara. (in Turkish, unpublished).
  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M. ve Akçay, A. E. (2007). 1/100.000 ölçekli Türkiye jeoloji haritaları serisi, Bandırma-H18 paftası, no:102. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Duru, M., Pehlivan, Ş., Okay, A.İ., Şentürk, Y. ve Kar, H.(2012). Biga Yarımadası’nın Tersiyer öncesi jeolojisi. Biga Yarımadası’nın genel ve ekonomik jeolojisi. MTA Özel Yayın Serisi-28, 7-77.
  • Einaudi, M.T., Hedenquist, J.W. & Inan, E. E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In S.F. Simmons, I. Graham (Eds.), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. https://doi.org/10.5382/SP.10.15
  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E., Adis, C., Walter, H.J. ve Yıldırım, T. (1995). Biga Yarımadası ile Gökçeada, Bozcaada ve Tavşanlı adalarındaki (KB Anadolu) Tersiyer volkanizmasının özellikleri. MTA Dergisi, 117, 55-86.
  • Eric, D., Philippe, B., Jean, L.C., Jean, P.D., Yves, F., Pierre, A. & Toshitaka, G. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63 (5), 627-643.
  • Ersoy, E.Y., Palmer, M.R., Can Genç, Ş., Prevelic D., Akal, C. & Uysal, İ. (2017a). Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of, crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of postcollisional magmatism. Lithos, 288-289, 55-71. https://doi.org/10.1016/j.lithos.2017.07.006
  • Ersoy, E.Y., Akal, C., Can Genç, Ş., Candan, O., Palmer, M.R., Prelevic, D., Uysal, İ. & Mertz-Kraus, R. (2017b). U-Pb zircon geochronology of the Paleogene-Neogene volcanism in the NW Anatolia: Its implications for the late MesozoicCenozoic geodynamic evolution of the Aegean. Tectonophysics, 717, 284-301. https://doi.org/10.1016/j.tecto.2017.08.016
  • Evans, A.M. (1993). Ore geology and industrial minerals: An introduction. Blackwell Scientific Publications, London.
  • Field, C.W. & Fifarek, R.H. (1985). Light isotope systematics in the epithermal environment. In B. R. Berger, P.M. Bekte (Eds.), Geology and Geochemistry of Geothermal Systems, Reviews in Econ. Geology, 2, 99-128.
  • Foley, S.F. & Wheller, G.E. (1990). Parallels in theorigin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: The role of residual titanites. Chemical Geology, 85, 1–18. https://doi.org/10.1016/0009-2541(90)90120-V
  • Genç, S.C. (1998). Evolution of the Bayramiç magmatic complex, Northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85, 233–249.
  • Gözler, M.Z., Ergül, E., Akçaören, F, Genç, Ş., Akat, U. ve Acar, Ş. (1984). Çanakkale Boğazı doğusu Marmara Denizi güneyi Bandırma–Balıkesir Edremit ve Ege Denizi arasındaki alanın jeolojisi ve kompilasyonu (Rapor no:7430). Maden Tetkik Arama Genel Müdürlüğü Raporu, (yayımlanmamış).
  • Gültekin, A. H. ve Örgün, Y. (2005). Arapuçan (Yenice-Çanakkale) Pb-Zn-Cu-Ag yatağının jeolojik, mineralojik ve jeokimyasal özellikleri. Anadolu Üniversitesi Bilim veTeknoloji Dergisi, 6(1), 97-107.
  • Hedenquist, J. W., Arribas, A. & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4), 373-404.
  • Heinrich, C. A., Driesner, T., Stefánsson, A. & Seward, T. M. (2004). Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology, 32(9), 761-764.
  • Henderson, P. (1984). General geochemical properties and aboundance of the rare earth elements. In P. Henderson (Ed.), Rare Earth Element Geochemistry (pp. 1-32.). Developments in Geochemistry 2, Elsevier, Amsterdam.
  • Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R. & Both, R. A. (1995). Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5), 1167-1196. https://doi.org/10.2113/gsecongeo.90.5.1167
  • Hoefs, J. (1987). Stable Isotope Geochemistry, 3rd edn. Springer, Berlin-Heidelberg New York.
  • Hoefs, J. (2009). Stable Isotope Geochemistry, 6th ed. Springer-Verlag, Berlin Heidelberg.
  • Ishihara, S. & Sasaki, A. (1989). Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith - a reconnaissance study. Geology, 17(9), 788-791.
  • Kaaden, G. v. d. (1956). Edremit Bölgesinde jeoloji ve maden yatakları incelemeleri (Rapor No. 2400). Maden Tetkik Arama Enstitüsü Raporu (yayımlanmamış).
  • Kaaden, G. v. d. (1957). Çanakkale-Biga Edremit yarımadası bölgesindeki jeolojik saha çalışmaları ve maden yatakları hakkında rapor (Rapor no: 2661). Maden Tetkik Arama Enstitüsü Raporu (yayımlanmamış), Ankara.
  • Kandemir, Ö., Pehlivan, Ş., Kanar, F. ve Tok, T. (2013). 1/100.000 ölçekli Türkiye Jeoloji Haritaları Serisi no:191 Bandırma-H21 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Karacık, Z. & Yılmaz, Y. (1998). Geology of the ignimbrites and the associated volcano-plutonic complex of the Ezine area, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1-4), 251-264.
  • Kasapçı, C. (2005). Kuzeybatı Anadolu Pb-Zn yataklarının jeolojisi ve oluşumlarının karşılaştırmalı incelemesi [Yayımlanmamış Yüksek Lisans Tezi]. Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul.
  • Kasapçı, C., Öztürk, H., Hanilçi, N. & Aysal, N. (2008). Jeoloji ve sıvı kapanım bulguları ışığında Arapuçandere (Yenice-Çanakkale) Pb-Zn-Cu yatağının oluşumu. Türkiye Kurşun-Çinko Yataklarının Jeolojisi, Madenciliği ve Mevcut Sorunları Sempozyumu, Bildiri Kitabı (s.: 100-118). 14–16 Ocak 2008- İstanbul,
  • Kaya, O. & Mostler, H. (1992). A Middle Triassic age for low-grade greenschist facies metamorphic sequence in Bergama (Izmir), western Turkey: the first paleontological age assignment and structural-stratigraphic implications. Newsletters on Stratigraphy, 1-17.
  • Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J. & Irving, A. J. (1990). High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature, 345(6275), 521-524.
  • Ketin, İ. (1966). Anadolu'nun tektonik birlikleri. MTA Dergisi, 66: 20-37. https://dergipark.org.tr/tr/pub/bulletinofmre/issue/3892/51961
  • Kıray, D.(2010). Karadoru-Karaköy (Çanakkale) arasındaki Pb-Zn-Cu cevherleşmelerinin jeolojik ve jeokimyasal özellikleri [Yüksek lisans tezi]. Süleyman Demirel Üniversitesi, Jeoloji Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü, Isparta.
  • Kıray, D. (2021). Şahinli (Lapseki-Çanakkale, Batı Türkiye) bölgesindeki Kestanelik Au-Agcevherleşmesinin jeolojik, mineralojik ve jeokimyasal incelemeler ile kökeninin belirlenmesi [Yayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü.
  • Kıray, D. ve Cengiz, O. (2023). Kestanelik granitoyidinin petrografik ve jeokimyasal özellikleri (Çanakkale, Biga Yarımadası)/Petrographical and geochemical characteristics of the Kestanelik granitoid (Çanakkale, Biga Peninsula). Türkiye Jeoloji Bülteni, 66(1) 127-148. https://doi.org/10.25288/tjb.1187739
  • Klinkhammer, G.P., Elderfield, H., Edmond, J.M. & Mitra, A. (1994). Geochemical implications of rareearth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58, 5105-5113.
  • Konak, N., Alan, İ., Bakırhan, B., Bedi, Y., Dönmez, M., Pehlivan, Ş., Sevin, M., Türkecan, A. ve Yusufoğlu, H. (2016). 1/1.000.000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.
  • Kouhestani, H., Mokhtari, M. A. A., Qin, K. & Zhao, J. (2019). Origin andevolution of hydrothermalfluids in theMarshounepithermal Pb–Zn–Cu (Ag) deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113, 103087.
  • Kozur, H.W, Aydın, M., Demir, O., Yakar, H., Göncüoğlu, M.C. & Kuru, F. (2000). New Stratigraphic and Palaeogeographic Results from the Palaeozoic and Early Mesozoic of the Middle Pontides (Northern Turkey) in the Azdavay, Devrekani, Küre and Inebolu Areas: Implications for the Carboniferous - Early Cretaceous Geodynamic Evolution and Some Related Remarks to the Karakaya Oceanic Rift Basin. Geologia Croatica, 53(2), 209-268. https://doi.org/10.4154/GC.2000.03
  • Kuşcu, İ, Tosdal, R.M. & Gençalioğlu-Kuşcu, G. (2019). Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geology Reviews, 107, 119–154. https://doi.org/10.1016/j.oregeorev.2019.02.005
  • Laçin, D. (2003). Biga Yarımadası (Çanakkale-Balıkesir) halloysitlerinin yataklanma özellikleri, mineralojisi ve oluşumları [Doktora Tezi]. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Loftus-Hills, G. & Solomon, M. (1967). Cobalt, nickel and selenium in sulfides as indicators of ore genesis: Mineralium Deposita, 2, 228–242.
  • Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25-41. https://doi.org/10.1016/0169-1368(92)90017-F
  • Malakhov, A.A.(1969). Bismuth and antimony in galenas as indicators of some conditions of ore formation. Institute of Geopyhsics, Tashkent.
  • McDonough, W. F. & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120(3-4), 223-253.
  • Menant, A., Jolivet, L., Tuduri, J., Loiselet, C., Bertrand, G. & Guillou-Frottier, L. (2018). 3D subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geology Reviews, 94, 118–135. https://doi.org/10.1016/j.oregeorev.2018.01.023
  • Michard, A. & Albarède, F. (1986). The REE content of some hydrothermal fluids. Chemical Geology, 55(1-2), 51-60. https://doi.org/10.1016/0009-2541(86)90127-0
  • Moller, P. & Morteani, G. (1983). On the geochemical fractionation of ram earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. In S.S. Augusthitis (Ed.), The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies (pp. 747-791). Theophrastus, Athens.
  • Müller, D., Rock, N. M. S. & Groves, D. I. (1992). Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings, a pilot study. Mineralogy and Petrology, 46, 259-289. https://doi.org/10.1007/BF01173568
  • Ohmoto, H. & Rye, R. O.(1979). Isotopes Sulfur and Carbon: In H. L. Barnes, (Ed.), Geochemistry of Hy drothermal Ore Deposits, Second Edition, (509–567), John Wiley and Sons Inc., New York.
  • Okay, A. İ., Siyako, M. ve Bürkan, K.A. (1990). Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2(1), 83-121.
  • Okay, A. İ., Siyako, M. & Bürkan, K. A. (1991). Geology and tectonic evolution of Biga Peninsula, Northwest Turkey. Bulletin Technical University of İstanbul, 44, 191-255.
  • Okay, A. I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.
  • Okay, A. I. & Altıner, D. (2004). Uppermost Triassic Limestone in the Karakaya Complex– Stratigraphic and Tectonic Significance. Turkish Journal of Earth Sciences, 13(2), 187-199. https://journals.tubitak.gov.tr/earth/vol13/iss2/5
  • Okay, A. I. & Göncüoğlu, M. C. (2004). The Karakaya Complex: a review of data and concepts. Turkish Journal of Earth Sciences, 13(2), 75-95.
  • Ovalıoğlu, R. (1973). Biga Yarımadası’nın jeolojisi, maden yatakları ve bakır-kurşun çinko mineralizasyonu için ümitli olan bölgeler. Madencilik Dergisi, 12(6), 1-22.
  • Oyman, T. (2018). Yenice’nin KD’daki Granitoid sokulumlar ile ilişkili magmatik-hidrotermal sistemlerle ilişkili cevherleşmeler arasındaki bağlantılar (Çanakkale, Biga Yarımadası), (Rapor no: 114Y055). Tübitak Proje Raporu.
  • Öngen, S. (1982). Yenice (Çanakkale) granitoyidlerinin ve yan kayaçlarının petrolojisi [Doçentlik Tezi]. İstanbul Üniversitesi.
  • Öngen, S., Aysal, N. & Azaz, D. (2002). Çan Güneyi (Çanakkale) Geç Tersiyer Riyolit-Bazalt Karakterli Volkanizması. 55. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, 201-203.
  • Örgün, Y., Gültekin, A. H. & Önal, A. (2005). Geology, mineralogy and fluid inclusion data from the Arapuçandere Pb-Zn-Cu-Ag deposit, Çanakkale, Turkey: Journal of Asian Earth Sciences, 25, 629-642.
  • Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental Basalts and Mantle Xenoliths, (pp.: 230-249.). Shiva Cheshire, UK.
  • Pearce, J. A. & Parkinson, I. J. (1993). Trace element models for mantle melting: application to volcanic arc petrogenesis. In H.M. Prichard, T. Alabaster, N.B.W. Harris, C.R. Neary, (Eds.), Magmatic Processes and Plate Tectonics, Volume 76 (pp. 373-403). Geological Society of London: London, UK.
  • Pearce, J. A. & Peate, D. W. (1995). Tectonic implications of the composition of the volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  • Pehlivan, A. N. & Çetin, A. (1997). Edremit (Balıkesir) Ezine-Bayramiç-Yenice (Çanakkale) çevresinin altın ağırlıklı polimetal ve ağır mineral çalışmaları raporu (Rapor No: 10061). MTA Derleme Raporu, Ankara (yayımlanmamış).
  • Pehlivan, Ş., Duru, M., Dönmez, M. Akçay, A. E. ve Ilgar, A. (2007). 1/100.000 ölçekli Türkiye Jeoloji Haritaları serisi, Balıkesir-İ19 paftası, No:96. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Qi, X. X., Yu, F. L. & Yu, C. L. (2008). Rare earth element and trace element geochemistry of Shalagang antimony deposit in the Southern Tibet and its tracing significance for the origin of metallogenic elements. Geoscience, 22(2), 162-172.
  • Richards, J. P. (2015). Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70, 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009
  • Ringwood, A. E. (1990). Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology, 82, 187-207.
  • Ruggieri, G., Lattanzi, P., Luxoro, S. S., Dessi, R., Benvenuti, M. & Tannelli, G. (1997). Geology, mineralogy and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy. Economic Geology 92, 1–14.
  • Sánchez, M. G., McClay, K. R., King, A. R. & Wijbrams, J. R. (2016). Cenozoic crustal extension and its relationship to porphyry Cu-Au-(Mo) and epithermal Au-(Ag) mineralization in the Biga peninsula, Northwestern Turkey. In J. P. Richards (Ed.), Tectonics and Metallogeny of the Tethyan Orogenic Belt, Special Publication (Society of Economic Geologists (U. S.))19, 113-156. https://doi.org/10.5382/SP.19.05
  • Shahbazi, S., Ghaderi, M. & Alfonso, P. (2019). Mineralogy, alteration, and sülfür isotope geochemistry of the Zehabad intermediate sulfidation epithermal deposit, NW Iran. Turkish Journal of Earth Sciences, 28(6), 882-901.
  • Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Economic Geology, 68(6), 799-815.
  • Stolz, A. J., Varne, R., Davies, G. R., Wheller, G. E., & Foden, J. D. (1990). Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contributions to Mineralogy and Petrology, 105, 585-601.
  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.
  • Şengör, A. M. C., Cin, A., Rowley, D. B. & Nie, S. Y. (1993). Space-time patterns of magmatism along the Tethysides: A preliminary study. The Journal of Geology, 101(1), 51-84.
  • Tufan, E. A. & Kara, A. (1987). Çanakkale-Yenice-Vakıf Köyü Pb-Zn-Cu Cevherleşmesi Maden Jeolojisi Raporu (rapor no: 8297). Maden Tetkik ve Arama Genel Müdürlüğü.
  • Tunç, I. O., Yiğitbas, E., Sengun, F., Wazeck, J., Hofmann, M. & Linnemann, U. (2012). U-Pb zircon geochronology of northern metamorphic massifs in the Biga Peninsula (NW Anatolia-Turkey): new data and a new approach to understand the tectonostratigraphy of the region. Geodinamica Acta, 25(3-4), 202-225. https://doi.org/10.1080/09853111.2013.877242
  • Ünal-Çakır, E. (2020). Sulphur and lead isotope geochemistry of the Dursunbey (Balıkesir) lead–zinc deposit. Journal of African Earth Sciences,172, Article 104003.
  • Walshe, J. L. & Solomon, M. (1981). An investigation into the environment of formation of the volcanic-hosted Mount Lyell copper deposits using geology, mineralogy, stable isotopes and a six-component chlorite solid solution model. Economic Geology, 76(2), 246-284. https://doi.org/10.2113/gsecongeo.76.2.246
  • Yenigün, K. (1978). The geological report of Alandere Pb-Zn-Cu mineralization in Çakır Village (Yenice/Çanakkale) (Report no. 6564). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish, unpublished).
  • Yilmaz, Y. (1990). Allochthonous terranes in the Tethyan Middle East: Anatolia and the surrounding regions. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 331, 611–624. https://doi.org/10.1098/rsta.1990.0093
  • Yılmaz, Y., Genç, Ş. C., Karacık, Z. & Altunkaynak, Ş. (2001). Two contrasting magmatic associations of NW Anatolia and their tectonic significance. Journal of Geodynamics, 31(3), 243-271. https://doi.org/10.1016/S0264-3707(01)00002-3
  • Yılmaz, Y., Genç, Ş. C., Yiğitbaş, E., Bozcu, M. ve Yılmaz, K. (1994). Kuzeybatı Anadolu’da geç Kretase yaşlı kıta kenarının jeolojik evrimi, Türkiye. 10. Petrol Kongresi, 37-55.
  • Yılmaz, H., Oyman, T., Sönmez, F. N., Arehart, G.B. & Billor, Z. (2010). Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Şahinli/Tespih Dere (Lapseki /Western Turkey). Ore Geology Reviews, 37(3-4), 236–258. https://doi.org/10.1016/j.oregeorev.2010.04.001
  • Yiğit, Ö. (2012). A prospective sector in the Tethyan Metalogennic Belt: Geology and Geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148. https://doi.org/10.1016/j.oregeorev.2011.09.015
  • Yiğitbaş, E. & Tunç, İ. O. (2020). Biga Yarımadası’nda Sakarya Zonunun Prekambriyen Metamorfik Kayaları; Geç Ediyakaran Gondwanaland Aktif Kıta Kenarı. Türkiye Jeoloji Bülteni, 63(3), 277-302. https://doi.org/10.25288/tjb.589144
  • Yusoff, Z. M., Ngwenya, B. T. & Parsons, I. (2013). Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349, 71-86.
  • Yücelay, M. A. (1971). Geological etude of the Karaköy-Arapuçandere Pb-Zn-Cu mineralization, Çanakkale-Yenice (Report No. 4688). Mineral Research and Exploration Institute of Turkey.
  • Yücelay, M. A. (1976). Çanakkale-Yenice geological report related to the Karaköy-Arapuçandere Pb-Zn-Cu area (Report No. 5655). Mineral Research and Exploration Institute of Turkey.
  • Zamanian, H. & Radmard, K. (2016). Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran–a key to determine conditions of mineralization. Geologos, 22(1), 33-47.
  • Zhai, D., Williams-Jones, A. E., Liu, J., Selby, D., Voudouris, P. C., Tombros, S., Li, K., Li, P. & Sun, H. (2020). The genesis of the Giant Shuangjianzishan epithermal Ag-Pb-Zndeposit, Inner Mongolia, Northeastern China. EconomicGeology, 115(1), 101-128.
Toplam 125 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer), İzotop Jeokimyası
Bölüm Makaleler - Articles
Yazarlar

Didem Kıray 0000-0002-4187-7285

Mustafa Kuşcu 0000-0001-6955-7470

Oya Cengiz 0000-0003-1363-4638

Proje Numarası 1745-YL-08
Erken Görünüm Tarihi 26 Nisan 2024
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 30 Eylül 2023
Kabul Tarihi 4 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 67 Sayı: 3

Kaynak Göster

APA Kıray, D., Kuşcu, M., & Cengiz, O. (2024). Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları. Türkiye Jeoloji Bülteni, 67(3), 361-388. https://doi.org/10.25288/tjb.1369277
AMA Kıray D, Kuşcu M, Cengiz O. Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları. Türkiye Jeol. Bült. Ağustos 2024;67(3):361-388. doi:10.25288/tjb.1369277
Chicago Kıray, Didem, Mustafa Kuşcu, ve Oya Cengiz. “Karadoru Ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası Ve Kükürt İzotop Oranları”. Türkiye Jeoloji Bülteni 67, sy. 3 (Ağustos 2024): 361-88. https://doi.org/10.25288/tjb.1369277.
EndNote Kıray D, Kuşcu M, Cengiz O (01 Ağustos 2024) Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları. Türkiye Jeoloji Bülteni 67 3 361–388.
IEEE D. Kıray, M. Kuşcu, ve O. Cengiz, “Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları”, Türkiye Jeol. Bült., c. 67, sy. 3, ss. 361–388, 2024, doi: 10.25288/tjb.1369277.
ISNAD Kıray, Didem vd. “Karadoru Ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası Ve Kükürt İzotop Oranları”. Türkiye Jeoloji Bülteni 67/3 (Ağustos 2024), 361-388. https://doi.org/10.25288/tjb.1369277.
JAMA Kıray D, Kuşcu M, Cengiz O. Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları. Türkiye Jeol. Bült. 2024;67:361–388.
MLA Kıray, Didem vd. “Karadoru Ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası Ve Kükürt İzotop Oranları”. Türkiye Jeoloji Bülteni, c. 67, sy. 3, 2024, ss. 361-88, doi:10.25288/tjb.1369277.
Vancouver Kıray D, Kuşcu M, Cengiz O. Karadoru ve Karaköy (Biga Yarımadası, Çanakkale) Arasındaki Pb-Zn-Cu Cevherleşmelerinin Kökeni, Jeokimyası ve Kükürt İzotop Oranları. Türkiye Jeol. Bült. 2024;67(3):361-88.

Yazım Kuralları / Instructions for Authorshttp://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php

Etik Bildirimi ve Telif Hakkı Devir Formu / Ethical Statement and Copyrighy Form https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php