Araştırma Makalesi
BibTex RIS Kaynak Göster

Jeodinamik Modelleme Metodolojisi Üzerine Bir Tartışma: Anadolu Levhasındaki Sayısal Modellerden Çıkarımlar / A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate

Yıl 2024, Cilt: 67 Sayı: 4, 1 - 12, 28.07.2024
https://doi.org/10.25288/tjb.1318091

Öz

Sayısal modeller, son yirmi yılda yüksek çözünürlüklü veri setleri ve güçlü veri işleme ve depolama kapasiteleri olan süper bilgisayar olanakları sayesinde yer bilimlerinde yaygın bir kullanım alanı bulmuştur. Alt litosfer deformasyonu, üst manto akışı ve bunların yüzey etkileri gibi manto dinamiklerini araştırmak için Anadolu Levhası da dahil olmak üzere Alp-Himalaya orojenik kuşağının birçok bölgesinde anlık ve zamana bağlı jeodinamik modelleme çalışmaları yapılmıştır. Bu çalışma, Orta ve Doğu Anadolu platolarında çok boyutlu termomekanik modelleri dikkate alarak, anlık sayısal modelleme tekniğine odaklanmaktadır. Bu amaçla, geleneksel jeodinamik modelleme süreçleri, geniş bir parametre uzayı tarafından doğrusal olmayan bir şekilde beslenen ileri beslemeli geri yayılım modelleme mimarisini gösteren kavramsal bir akış şeması ile açıklanmaktadır. Çok çeşitli uzay-zaman ölçeklerindeki değişkenler tarafından kontrol edilen karmaşık bir doğa olayını ele alırken, sayısal modellerin üstünlüklerinin yanı sıra sınırlamaları da burada analiz edilmektedir. Geleneksel tekniklere ek olarak, sistematik veri iyileştirme, modelden açıklayıcı kuramın oluşturulmasında Temellendirilmiş Kuram yönteminin yinelemeli bir süreci aracılığıyla veri/parametre bağımlı sayısal model tasarımında yeni bir strateji olarak tartışılmaktadır. Bu, verilere dayanan teoriyi/bilgiyi ortaya çıkarmanın etkili bir yolu olarak sadece veri iyileştirmeyi değil, verilerin (yeniden) inşasını (yani ölçüm/analiz/ölçeklendirme gibi) içerir. Sayısal modelleme sürecine eşlik eden problem odaklı veri yeniden yapılandırmasını gösteren bu prosedürün, anlık sayısal modellemeye bütünleşik bir bakış açısı sağlayabileceği düşünülmektedir.

Kaynakça

  • Bangerth, W., Dannberg, J., Gassmoeller, R. & Heister, T. (2019). April 29. ASPECT v2.1.0. Zenodo. https://doi.org/10.5281/zenodo.2653531
  • Beris, A. N. & Giacomin, A. J. (2014). πάντα ῥει̃: Everything flows. Applied Rheology, 24(5):11-23.
  • Biryol, B. C., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057.
  • Chandra, R., Azam, D., Müller, R. D., Salles, T. & Cripps, S. (2019). BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands. Computers & Geosciences, 131, 89-101.
  • Danermark, B., Ekstrom, M. & Jakobsen, L. (2019). Explaining society: An introduction to critical realism in the social sciences. 2nd Edition. Routledge. ISBN: 978-1-351-01783-1
  • Davies, D. R., Ghelichkhan, S., Hoggard, M., Valentine, A. & Richards, F. D. (2023). Observations and models of dynamic topography: Current status and future directions. In J.C. (Ed.) Duarte Dynamics of Plate Tectonics and Mantle Convection (pp: 223-269). Elsevier. https://doi.org/10.1016/B978-0-323-85733-8.00017-2
  • Demetrescu, C. & Andreescu, M. (1994). On the thermal regime of some tectonic units in a continental collision environment in Romania. Tectonophysics, 230, 265–276. https://doi.org/10.1016/0040-1951(94)90140-6
  • Diaz, J., Pérez, J., Gallardo, C. & González-Prieto, Á. (2023). Applying Inter-Rater Reliability and Agreement in collaborative Grounded Theory studies in software engineering. Journal of Systems and Software, 195, Article 111520.
  • Faccenna, C., & Becker, T.W. (2010). Shaping mobile belts by small-scale convection. Nature, 465(7298), 602–605.
  • Faccenna, C. & Becker, T.W. (2020). Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 209, Article 103327. https://doi.org/10.1016/j.earscirev.2020.103327
  • Flament, N., Gurnis, M. & Muller, R. D. (2013). A review of observations and models of dynamic topography, Lithosphere, 5, 189–210.
  • Fullsack, P. (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models. Geophysical Journal International, 120(1), 1–23. https://doi.org/10.1111/j.1365-246x.1995.tb05908.x
  • Gerya, T. (2022). Numerical modeling of sub duction: State of the art and future directions. Geosphere, 18(2), 503-561. https://doi.org/10.1130/GES02416.1
  • Göğüş, O. H. & Pysklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723–726.
  • Göğüş, O. H., Pysklywec, R. N., Şengör, A. M. C. & Gün, E. (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature communications, 8(1), Article 1538. https://doi.org/10.1038/s41467-017-01611-3
  • Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Newyork: Adline Pub. Co.
  • Glaser, B.G. (1992). Emergence vs. Forcing: Basics of Grounded Theory Analysis. Mill Valley, CA: Sociology Press.
  • Glerum, A., Thieulot, C., Fraters, M., Constantijn, B. & Spakman, W. (2018). Nonlinear viscoplasticity in ASPECT: Benchmarking and applications to subduction. Solid Earth, 9(2), 267–294. https://doi.org/10.5194/se-9-267-2018
  • Heister, T., Dannberg, J., Gassmöller, R. & Bangerth, W. (2017). High accuracy mantle convection simulation through modern numerical methods–II: realistic models and problems. Geophysical Journal International, 210(2):833-51.
  • Hirth, G. & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108.
  • Hirth, G. & Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In Eiler, J. (Ed.), Inside the Subduction Factory, 138, (pp: 83-105), Geophysical Monograph Series. https://doi.org/10.1029/138GM06
  • Ismail-Zadeh, A. & Tackley, P. (2010). Computational methods for geodynamics. Cambridge University Press.
  • Karabulut, H., Paul, A., Özbakır, A.D., Ergün, T. & Şentürk, S. (2019). A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, 218(1), 57-73.
  • Karato, S. I. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters, 20(15), 1623-1626.
  • Kheirkhah, M., Neill, I., Allen, M. B. & Ajdari, K. (2013). Small-volume melts of lithospheric mantle during continental collision: Late Cenozoic lavas of Mahabad, NW Iran. Journal of Asian Earth Sciences, 74, 37–49.
  • King, S. D. (2016). Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. Journal of Geodynamics, 100, 33-50.
  • Komut, T., Gray, R., Pysklywec, R.N. & Göğüş, O. H. (2012). Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling. Journal of Geophysical Research, 117(B11). https://doi.org/10.1029/2012jb009306
  • Kounoudis, R., Bastow, I. D., Ogden, C. S., Goes, S., Jenkins, J., Grant, B. & Braham, C. (2020). Seismic tomographic imaging of the Eastern Mediterranean mantle: Implications for terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 21(7), e2020GC009009. https://doi.org/10.1029/2020gc009009
  • Kronbichler, M., Heister, T. & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12-29. https://doi.org/10.1111/j.1365-246X.2012.05609.x
  • Lanari, R., Faccenna, C., Natali, C., Şengül Uluocak, E., Fellin, M. G., Becker, T. W., Gögüs, O., Youbi, N., Clementucci, R. & Conticelli, S. (2023). The Atlas of Morocco: A Plume-Assisted Orogeny. Geochemistry, Geophysics, Geosystems, 24(6), e2022GC010843 https://doi.org/10.1029/2022GC010843
  • Laske, G., Masters, G., Ma, Z. & Pasyanos, M. (2013). Update on CRUST1.0- A 1-degree Global Model of Earth's Crust. Geophys. Res., 15, Abstract EGU 2013-2658.
  • Legendre, C. P., Zhao, L. & Tseng, T. L. (2021). Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey. Communications Earth & Environment, 2(1), 1-7, Article 73. https://doi.org/10.1038/s43247-021-00142-6
  • Magnani, L., Aliseda, A., Longo, G., Sinha, C., Street, K. H. I., Thagard, P. & Woods, J. (2018). Studies in Applied Philosophy. Epistemology and Rational Ethics. 45. pp. 207.
  • Memiş, C., Göğüş, O. H., Uluocak, E. Ş., Pysklywec, R., Keskin, M., Şengör, A. M. C. & Topuz, G. (2020). Long wavelength progressive plateau uplift in Eastern Anatolia since 20 Ma: Implications for the role of slab peel‐back and break‐off. Geochemistry, Geophysics, Geosystems, 21(2), e2019GC008726. https://doi.org/10.1029/2019GC008726
  • Molinari, I. & Morelli, A. (2011). EPcrust: a reference crustal model for the European plate. Geophysical Journal International, 185(1), 352–364.
  • Naliboff, J. & Buiter, S. J. H. (2015). Rift reactivation and migration during multiphase extension. Earth and Planetary Science Letters, 421, 58-67. https://doi.org/10.1016/j.epsl.2015.03.050
  • Oreskes, N., Shrader-Frechette, K., Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 1263(5147):641-646.
  • Pamukçu, O. A., Akçığ, Z., Demirbaş, Ş. & Zor, E, (2007). Investigation of crustal thickness in eastern Anatolia using gravity, magnetic and topographic data. Pure Applied Geophysics, 164, 2345–2358.
  • Petrescu, L., Mihai, A. & Borleanu, F. (2023). Slab tear and rotation imaged with core-refracted shear wave anisotropy. Journal of Geodynamics, 157, Article 101985. https://doi.org/10.1016/j.jog.2023.101985
  • Piromallo, C. & Morelli, A. (2003). P wave tomography of the mantle under the Alpine–Mediterranean area. Journal of Geophysical Research, 108(B2). https://doi.org/10.1029/2002JB001757
  • Portner, D. E., Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., Özacar, A. A., Sandvol, E., Türkelli, N. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere, 14(3):907-25.
  • Priestley, K., McKenzie, D., Barron, J., Tatar, M. & Debayle, E. (2012). The Zagros core: Deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 13(11), Q11014. https://doi.org/10.1029/2012GC004435
  • Priestley, K. & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78-91.
  • Pysklywec, R. N., Beaumont, C. & Fullsack, P. (2000). Modeling the behavior of the continental mantle lithosphere during plate convergence. Geology, 28(7), 655-658. https://doi.org/10.1130/0091-7613(2000)28<655:MTBOTC>2.0.CO;2
  • Pysklywec, R. N., Beaumont, C. & Fullsack, P. (2002). Lithospheric deformation during the early stages of continental collision: numerical experiments and comparison with South Island, New Zealand. Journal of Geophysical Research, 107(B7), 2133. https://doi.org/10.1029/2001JB000252
  • Pysklywec, R. N. & Beaumont, C. (2004). Interpolate tectonics: feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities. Earth and Planetary Science Letters, 221, 275–292.
  • Ranalli, G. & Murphy, D. C. (1987). Rheological stratification of the lithosphere. Tectonophysics, 132(4):281-95.
  • Ranalli, G. (1995). Rheology of the Earth (p. 413). Chapman and Hall.
  • Shaw, M. & Pysklywec, R. N. (2007). Anomalous uplift of the Apennines and subsidence of the Adriatic: The result of active mantle flow? Geophysical Research Letters,34(4), L04311. https://doi.org/10.1029/2006GL028337
  • Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., et al. (2004). Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1–4), 211-233. https://doi.org/10.1016/j.tecto.2002.08.001
  • Strauss, A. & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures and Techniques. SAGE Publication, London.
  • Şeber, D., Sandvol, E., Sandvol, C., Brindisi, C. & Barazangi, M. (2001). Crustal model for the Middle East and North Africa region: Implications for the isostatic compensation mechanism. Geophysical Journal International, 147(3), 630-638. https://doi.org/10.1046/j.0956-540x.2001.01572.x
  • Şengör, A. M. C. (2019). Observations: What for? Canadian Journal of Earth Sciences, 56(11): xi-v. https://doi.org/10.1139/cjes-2019-0114
  • Şengül Uluocak, E., Pysklywec, R. & Göğüş, O. H. (2016). Present-day dynamic and residual topography in Central Anatolia. Geophysical Journal International, 206(3), 1515-1525. https://doi.org/10.1093/gji/ggw225
  • Şengül Uluocak, E., Pysklywec, R. N., Göğüş, O. H. & Ulugergerli, E. U. (2019). Multidimensional geodynamic modeling in the Southeast Carpathians: Upper mantle flow‐induced surface topography anomalies. Geochemistry, Geophysics, Geosystems, 20(7), 3134-3149. https://doi.org/10.1029/2019GC008277
  • Şengül Uluocak, E., Göğüş, O. H., Pysklywec, R. N. & Chen, B. (2021). Geodynamics of East Anatolia‐Caucasus Domain: Inferences From 3D Thermo‐Mechanical Models, Residual Topography, and Admittance Function Analyses. Tectonics, 40(12), e2021TC007031. https://doi.org/10.1029/2021TC007031
  • Van Zelst, I, Crameri, F., Pusok, A. E., Glerum, A., Dannberg, J. & Thieulot, C (2022). 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth. Solid Earth, 13(3):583-637.
  • Yegorova, T., Gobarenko, V. & Yanovskaya, T. (2013). Lithosphere structure of the Black Sea from 3-D gravity analysis and seismic tomography. Geophysical Journal International, 193(1), 287–303. https://doi.org/10.1093/gji/ggs098
  • Zor, E. (2008). Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175, 1273–1282.

A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate

Yıl 2024, Cilt: 67 Sayı: 4, 1 - 12, 28.07.2024
https://doi.org/10.25288/tjb.1318091

Öz

Numerical models have found widespread use in geosciences, mainly due to high-resolution datasets and the development of supercomputing facilities with powerful data processing and storage capabilities during the past two decades. Instantaneous and time-dependent geodynamic modeling studies were carried out in many regions of the Alpine-Himalayan orogenic belt, including the Anatolian Plate, to investigate mantle dynamics such as lower lithosphere deformation, upper mantle flow, and their surface implications.
This study focuses on the instantaneous numerical modeling technique by considering multidimensional thermomechanical models in the Central and East Anatolian plateaus. To this end, conventional geodynamic modeling processes are explained with a conceptual flow chart that shows a feed-forward backpropagation modeling architecture which is nonlinearly fed by a large parameter space. While addressing a complex natural phenomenon controlled by variables on a wide range of space-time scales, the limitations as well as advantages of numerical models are analyzed.
In addition to conventional techniques, systematic data improvement is discussed as a new strategy in data/parameter-dependent numerical model design through an iterative process based on the Grounded Theory method for the construction of an explanatory theory from the model. This involves not refinement but (re)construction of the data (i.e., measurement/analysis/scaling) as an effective way to reveal theory/information grounded in data.
It is speculated that this procedure, which includes problem-oriented data reconstruction accompanying the numerical modeling process, may provide an integrated perspective for instantaneous numerical modelling.

Kaynakça

  • Bangerth, W., Dannberg, J., Gassmoeller, R. & Heister, T. (2019). April 29. ASPECT v2.1.0. Zenodo. https://doi.org/10.5281/zenodo.2653531
  • Beris, A. N. & Giacomin, A. J. (2014). πάντα ῥει̃: Everything flows. Applied Rheology, 24(5):11-23.
  • Biryol, B. C., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057.
  • Chandra, R., Azam, D., Müller, R. D., Salles, T. & Cripps, S. (2019). BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands. Computers & Geosciences, 131, 89-101.
  • Danermark, B., Ekstrom, M. & Jakobsen, L. (2019). Explaining society: An introduction to critical realism in the social sciences. 2nd Edition. Routledge. ISBN: 978-1-351-01783-1
  • Davies, D. R., Ghelichkhan, S., Hoggard, M., Valentine, A. & Richards, F. D. (2023). Observations and models of dynamic topography: Current status and future directions. In J.C. (Ed.) Duarte Dynamics of Plate Tectonics and Mantle Convection (pp: 223-269). Elsevier. https://doi.org/10.1016/B978-0-323-85733-8.00017-2
  • Demetrescu, C. & Andreescu, M. (1994). On the thermal regime of some tectonic units in a continental collision environment in Romania. Tectonophysics, 230, 265–276. https://doi.org/10.1016/0040-1951(94)90140-6
  • Diaz, J., Pérez, J., Gallardo, C. & González-Prieto, Á. (2023). Applying Inter-Rater Reliability and Agreement in collaborative Grounded Theory studies in software engineering. Journal of Systems and Software, 195, Article 111520.
  • Faccenna, C., & Becker, T.W. (2010). Shaping mobile belts by small-scale convection. Nature, 465(7298), 602–605.
  • Faccenna, C. & Becker, T.W. (2020). Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 209, Article 103327. https://doi.org/10.1016/j.earscirev.2020.103327
  • Flament, N., Gurnis, M. & Muller, R. D. (2013). A review of observations and models of dynamic topography, Lithosphere, 5, 189–210.
  • Fullsack, P. (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models. Geophysical Journal International, 120(1), 1–23. https://doi.org/10.1111/j.1365-246x.1995.tb05908.x
  • Gerya, T. (2022). Numerical modeling of sub duction: State of the art and future directions. Geosphere, 18(2), 503-561. https://doi.org/10.1130/GES02416.1
  • Göğüş, O. H. & Pysklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723–726.
  • Göğüş, O. H., Pysklywec, R. N., Şengör, A. M. C. & Gün, E. (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature communications, 8(1), Article 1538. https://doi.org/10.1038/s41467-017-01611-3
  • Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Newyork: Adline Pub. Co.
  • Glaser, B.G. (1992). Emergence vs. Forcing: Basics of Grounded Theory Analysis. Mill Valley, CA: Sociology Press.
  • Glerum, A., Thieulot, C., Fraters, M., Constantijn, B. & Spakman, W. (2018). Nonlinear viscoplasticity in ASPECT: Benchmarking and applications to subduction. Solid Earth, 9(2), 267–294. https://doi.org/10.5194/se-9-267-2018
  • Heister, T., Dannberg, J., Gassmöller, R. & Bangerth, W. (2017). High accuracy mantle convection simulation through modern numerical methods–II: realistic models and problems. Geophysical Journal International, 210(2):833-51.
  • Hirth, G. & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108.
  • Hirth, G. & Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In Eiler, J. (Ed.), Inside the Subduction Factory, 138, (pp: 83-105), Geophysical Monograph Series. https://doi.org/10.1029/138GM06
  • Ismail-Zadeh, A. & Tackley, P. (2010). Computational methods for geodynamics. Cambridge University Press.
  • Karabulut, H., Paul, A., Özbakır, A.D., Ergün, T. & Şentürk, S. (2019). A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, 218(1), 57-73.
  • Karato, S. I. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters, 20(15), 1623-1626.
  • Kheirkhah, M., Neill, I., Allen, M. B. & Ajdari, K. (2013). Small-volume melts of lithospheric mantle during continental collision: Late Cenozoic lavas of Mahabad, NW Iran. Journal of Asian Earth Sciences, 74, 37–49.
  • King, S. D. (2016). Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. Journal of Geodynamics, 100, 33-50.
  • Komut, T., Gray, R., Pysklywec, R.N. & Göğüş, O. H. (2012). Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling. Journal of Geophysical Research, 117(B11). https://doi.org/10.1029/2012jb009306
  • Kounoudis, R., Bastow, I. D., Ogden, C. S., Goes, S., Jenkins, J., Grant, B. & Braham, C. (2020). Seismic tomographic imaging of the Eastern Mediterranean mantle: Implications for terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 21(7), e2020GC009009. https://doi.org/10.1029/2020gc009009
  • Kronbichler, M., Heister, T. & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12-29. https://doi.org/10.1111/j.1365-246X.2012.05609.x
  • Lanari, R., Faccenna, C., Natali, C., Şengül Uluocak, E., Fellin, M. G., Becker, T. W., Gögüs, O., Youbi, N., Clementucci, R. & Conticelli, S. (2023). The Atlas of Morocco: A Plume-Assisted Orogeny. Geochemistry, Geophysics, Geosystems, 24(6), e2022GC010843 https://doi.org/10.1029/2022GC010843
  • Laske, G., Masters, G., Ma, Z. & Pasyanos, M. (2013). Update on CRUST1.0- A 1-degree Global Model of Earth's Crust. Geophys. Res., 15, Abstract EGU 2013-2658.
  • Legendre, C. P., Zhao, L. & Tseng, T. L. (2021). Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey. Communications Earth & Environment, 2(1), 1-7, Article 73. https://doi.org/10.1038/s43247-021-00142-6
  • Magnani, L., Aliseda, A., Longo, G., Sinha, C., Street, K. H. I., Thagard, P. & Woods, J. (2018). Studies in Applied Philosophy. Epistemology and Rational Ethics. 45. pp. 207.
  • Memiş, C., Göğüş, O. H., Uluocak, E. Ş., Pysklywec, R., Keskin, M., Şengör, A. M. C. & Topuz, G. (2020). Long wavelength progressive plateau uplift in Eastern Anatolia since 20 Ma: Implications for the role of slab peel‐back and break‐off. Geochemistry, Geophysics, Geosystems, 21(2), e2019GC008726. https://doi.org/10.1029/2019GC008726
  • Molinari, I. & Morelli, A. (2011). EPcrust: a reference crustal model for the European plate. Geophysical Journal International, 185(1), 352–364.
  • Naliboff, J. & Buiter, S. J. H. (2015). Rift reactivation and migration during multiphase extension. Earth and Planetary Science Letters, 421, 58-67. https://doi.org/10.1016/j.epsl.2015.03.050
  • Oreskes, N., Shrader-Frechette, K., Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 1263(5147):641-646.
  • Pamukçu, O. A., Akçığ, Z., Demirbaş, Ş. & Zor, E, (2007). Investigation of crustal thickness in eastern Anatolia using gravity, magnetic and topographic data. Pure Applied Geophysics, 164, 2345–2358.
  • Petrescu, L., Mihai, A. & Borleanu, F. (2023). Slab tear and rotation imaged with core-refracted shear wave anisotropy. Journal of Geodynamics, 157, Article 101985. https://doi.org/10.1016/j.jog.2023.101985
  • Piromallo, C. & Morelli, A. (2003). P wave tomography of the mantle under the Alpine–Mediterranean area. Journal of Geophysical Research, 108(B2). https://doi.org/10.1029/2002JB001757
  • Portner, D. E., Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., Özacar, A. A., Sandvol, E., Türkelli, N. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere, 14(3):907-25.
  • Priestley, K., McKenzie, D., Barron, J., Tatar, M. & Debayle, E. (2012). The Zagros core: Deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 13(11), Q11014. https://doi.org/10.1029/2012GC004435
  • Priestley, K. & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78-91.
  • Pysklywec, R. N., Beaumont, C. & Fullsack, P. (2000). Modeling the behavior of the continental mantle lithosphere during plate convergence. Geology, 28(7), 655-658. https://doi.org/10.1130/0091-7613(2000)28<655:MTBOTC>2.0.CO;2
  • Pysklywec, R. N., Beaumont, C. & Fullsack, P. (2002). Lithospheric deformation during the early stages of continental collision: numerical experiments and comparison with South Island, New Zealand. Journal of Geophysical Research, 107(B7), 2133. https://doi.org/10.1029/2001JB000252
  • Pysklywec, R. N. & Beaumont, C. (2004). Interpolate tectonics: feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities. Earth and Planetary Science Letters, 221, 275–292.
  • Ranalli, G. & Murphy, D. C. (1987). Rheological stratification of the lithosphere. Tectonophysics, 132(4):281-95.
  • Ranalli, G. (1995). Rheology of the Earth (p. 413). Chapman and Hall.
  • Shaw, M. & Pysklywec, R. N. (2007). Anomalous uplift of the Apennines and subsidence of the Adriatic: The result of active mantle flow? Geophysical Research Letters,34(4), L04311. https://doi.org/10.1029/2006GL028337
  • Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., et al. (2004). Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1–4), 211-233. https://doi.org/10.1016/j.tecto.2002.08.001
  • Strauss, A. & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures and Techniques. SAGE Publication, London.
  • Şeber, D., Sandvol, E., Sandvol, C., Brindisi, C. & Barazangi, M. (2001). Crustal model for the Middle East and North Africa region: Implications for the isostatic compensation mechanism. Geophysical Journal International, 147(3), 630-638. https://doi.org/10.1046/j.0956-540x.2001.01572.x
  • Şengör, A. M. C. (2019). Observations: What for? Canadian Journal of Earth Sciences, 56(11): xi-v. https://doi.org/10.1139/cjes-2019-0114
  • Şengül Uluocak, E., Pysklywec, R. & Göğüş, O. H. (2016). Present-day dynamic and residual topography in Central Anatolia. Geophysical Journal International, 206(3), 1515-1525. https://doi.org/10.1093/gji/ggw225
  • Şengül Uluocak, E., Pysklywec, R. N., Göğüş, O. H. & Ulugergerli, E. U. (2019). Multidimensional geodynamic modeling in the Southeast Carpathians: Upper mantle flow‐induced surface topography anomalies. Geochemistry, Geophysics, Geosystems, 20(7), 3134-3149. https://doi.org/10.1029/2019GC008277
  • Şengül Uluocak, E., Göğüş, O. H., Pysklywec, R. N. & Chen, B. (2021). Geodynamics of East Anatolia‐Caucasus Domain: Inferences From 3D Thermo‐Mechanical Models, Residual Topography, and Admittance Function Analyses. Tectonics, 40(12), e2021TC007031. https://doi.org/10.1029/2021TC007031
  • Van Zelst, I, Crameri, F., Pusok, A. E., Glerum, A., Dannberg, J. & Thieulot, C (2022). 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth. Solid Earth, 13(3):583-637.
  • Yegorova, T., Gobarenko, V. & Yanovskaya, T. (2013). Lithosphere structure of the Black Sea from 3-D gravity analysis and seismic tomography. Geophysical Journal International, 193(1), 287–303. https://doi.org/10.1093/gji/ggs098
  • Zor, E. (2008). Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175, 1273–1282.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Jeodinamik
Bölüm Araştırma Makalesi
Yazarlar

Ebru Şengül Uluocak 0000-0002-6701-463X

Erken Görünüm Tarihi 14 Eylül 2023
Yayımlanma Tarihi 28 Temmuz 2024
Gönderilme Tarihi 21 Haziran 2023
Kabul Tarihi 14 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 67 Sayı: 4

Kaynak Göster

APA Şengül Uluocak, E. (2024). A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate. Türkiye Jeoloji Bülteni, 67(4), 1-12. https://doi.org/10.25288/tjb.1318091
AMA Şengül Uluocak E. A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate. Türkiye Jeol. Bült. Temmuz 2024;67(4):1-12. doi:10.25288/tjb.1318091
Chicago Şengül Uluocak, Ebru. “A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate”. Türkiye Jeoloji Bülteni 67, sy. 4 (Temmuz 2024): 1-12. https://doi.org/10.25288/tjb.1318091.
EndNote Şengül Uluocak E (01 Temmuz 2024) A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate. Türkiye Jeoloji Bülteni 67 4 1–12.
IEEE E. Şengül Uluocak, “A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate”, Türkiye Jeol. Bült., c. 67, sy. 4, ss. 1–12, 2024, doi: 10.25288/tjb.1318091.
ISNAD Şengül Uluocak, Ebru. “A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate”. Türkiye Jeoloji Bülteni 67/4 (Temmuz 2024), 1-12. https://doi.org/10.25288/tjb.1318091.
JAMA Şengül Uluocak E. A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate. Türkiye Jeol. Bült. 2024;67:1–12.
MLA Şengül Uluocak, Ebru. “A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate”. Türkiye Jeoloji Bülteni, c. 67, sy. 4, 2024, ss. 1-12, doi:10.25288/tjb.1318091.
Vancouver Şengül Uluocak E. A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate. Türkiye Jeol. Bült. 2024;67(4):1-12.

Yazım Kuralları / Instructions for Authorshttp://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php

Etik Bildirimi ve Telif Hakkı Devir Formu / Ethical Statement and Copyrighy Form https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php