Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey

Yıl 2018, Cilt: 19 Sayı: 4, 413 - 418, 30.12.2018
https://doi.org/10.18182/tjf.459005

Öz

In solids, density is an important factor that determines lots of properties such as mechanic behavior. Mechanic properties of materials can be determined by static and dynamic tests. Ultrasonic measurements are one of the non-destructive test methods and are being applied to lots of field for determination of wide range of properties. When literature in wood science reviewed, it’s seen that researches did not make a consensus on the effect of density on ultrasonic wave velocity. Also, propagation length is another issue that has close relations with ultrasonic waves. From this point of view, effects of density and propagation length on ultrasonic longitudinal wave in Oriental beech, Scots pine, Black pine and Turkish red pine woods were investigated in this study. 20x20 cross-cut and 20, 30 and 40mm L direction samples were used to perform measurements. All samples acclimatized at 20±1 °C temperature and 65% relative humidity. Then, ultrasonic measurements performed using OLYMPUS EPOCH 650 flaw detector and 2.25MHz contact type transducers. According to the results, MC of the samples were calculated around 12% and up to 25.49% increase in velocity observed when sample length increased from 20mm to 40mm. Coefficients of determination between density and velocity were ranged from 0.78 to 0.94. Therefore, it’s concluded that both propagation length and density have positive effect on ultrasonic wave velocity in these woods.

Kaynakça

  • Aziz, S.H., Shaari, A., Hafzan, S., Ahmad, M.N., İbrahim, A., Abidin, İ.M.Z., 2013. Elastic studies of tropical wood by using non-destructive ultrasonic technique. Proceedings of Malaysia International NDT Conference and Exhibition, 16-18 June 2013, Kuala Lumpur, Malaysia, pp. 1.
  • Baar, J., Tippner, J., Gryc, V., 2012. The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method. European Journal of Wood and Wood Products, 70(5): 767-769.
  • Baradit, E., Niemz, P., 2011. Selected physical and mechanical properties of Chilean wood species Tepa, Olivillo, Laurel, Lenga, Alerce and Manio. Proceedings of 17th Symposium Nondestructive Testing of Wood,14-16 September 2011, Sopron, Hungary, pp. 395-401.
  • Beall, F.C., 2002. Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci. Technol., 36: 197-212.
  • Berke, M., 2000. Nondestructive material testing with ultrasonics. https://www.ndt.net/article/v05n09/berke/ berke1.htm, Accessed: 06.02.2017.
  • Berndt, H., Johnson, G.C., 1995. Examination of wave propagation in wood from a microstuructural perspective. In: Thompson, D.O., Chimenti, D.E., (Eds), Review of Progress in Quantitative Nondestructive Evaluation Volume 14, Plenum Press, New York, USA, pp 1661-1668.
  • Björnberg, J., 2014. Comparison of non-destructive techniques to discover defect finger joints in furniture. BSc thesis, Linnaeus University, Växjö, Sweeden.
  • Brandner, R., Gehri, E., Bogensperger, T., Schickhofer, G., 2007. Determination of modulus of shear and elasticity of glued laminated timber and related examinations. Proceedings of International Council for Research and Innaovation in Building and Construction Working Commission W18, August 2007, Bled, Slovenia, pp. 40-12-2.
  • Bucur, V., 1983. An ultrasonic method for measuring the elastic constants of wood increment cores bored from living tress. Ultrasonics, 21: 116-126.
  • Bucur, V., 2006. Acoustics of Wood. Springer-Verlag, Heidelberg, Germany.
  • Bucur, V., Chivers, R.C., 1991. Acoustic properties and anisotropy of some Australian wood species. Acta Acustica united with Acustica, 75(1): 69-74.
  • Calegari, L., Gatto, D., Stangerlin, D., 2011. Influence of moisture content, specific gravity and specimen geometry on the ultrasonic pulse velocity in Eucalyptus grandis hill ex maiden wood. Ciência da Madeira, 2(2): 64-74.
  • Carcangiu, S., Montisci, A., Usai, M., 2015. Modeling ultrasounds for nondestructive testing applications. In: Burrascano, S. Callegari, A. Montisci, M. Ricci, and V. Mario, P., (Eds), Ultrasonic Nondestructive Evaluation Systems: Industrial Application Issues, Springer International, Switzerland, pp. 47-82. Cochran, S., 2012. Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers, In: Nakamura, K., (Ed), Ultrasonic Transducers: Materials and Design for Sensors, Actuators and Medical Applications. Woodhead Publishing , Cambridge, England, pp. 3-35.
  • Czerlinsky, E., 1943. Non-destructive plywood testing with ultrasound. Dt. Luftfahrtforschung, Deutschland, Unters. u. Mitt. Nr. 1042.
  • Dahmen, S., Ketata, H., Ben Ghozlen, M.H., Hosten, B., 2010. Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave. Ultrasonics, 50(4-5): 502-507.
  • Gerhards, C.C., 1982. Longitudinal stress waves for lumber stress grading: factors affecting applications: state of art. Forest Products Journal, 32: 20-25.
  • Halachan, P., Babiak, M., Spišiak, D., Chubinsky, A.N., Tambi, A.A., Chauzov, K.V., 2017. Physico-acoustic characteristics of spruce and larche wood. Wood Research. 62: 235-242.
  • Hearmon, R.F.S., 1961. An Introduction to Applied Anisotropic Elasticity. Oxford University Press, Oxford, England.
  • Hearmon, R.F.S., 1965. The assessment of wood properties by vibrations and high frequency acoustic waves. Proceedings of 2nd Symposium Nondestructive Testing of Wood. April 1965, Pullman, WA. pp. 49-65.
  • Hui, P., Jiali, J., Tianyi, Z., Jianxiong, L., 2016. Influence of density and moisture content on ultrasound velocities along the longitudinal direction in wood. Scienta Silvae Sinicae, 52(10): 117-124.
  • Ilic, J., 2003. Dynamic MOE of 55 species using small wood beams. Holz als Roh und Werkstoff, 61(3): 167-172.
  • Íñiguez, G., Esteban, M., Arriaga, F., Bobadilla, I., and Gil, M., 2007. Influence of specimen length on ultrasound wave velocity. Proceedings of 15th International Symposium on Nondestructive Testing of Wood, 10-12 September 2007, Duluth, USA, pp. 155-159.
  • Krautkraemer, J., Krautkraemer, H., 1990. Ultrasonic Testing of Materials. Springer-Verlag, Berlin, Germany.
  • Menges, A., Schwinn, T., Krieg , D., 2017. Advancing wood architecture: an introduction. In: Achim, M., Tobias, S., Oliver, D.K., (Eds.), Advancing Wood Architecture A computational approach, Routledge, N.Y., U.S.A., pp.1-9.
  • Miettinen, P., Tiitta, M., Lappalainen, R., 2005. Electrical and ultrasonic analysis of heat-treated wood. Proceedings of 14th Symposium Nondestructive Testing of Wood. 2-4 May 2005, Eberswalde, Germany. pp. 265-274.
  • Mishiro, A., 1996a. Effects of grain and ring angles on ultrasonic velocity in wood. Mokuzai Gakkaishi, 42: 211-215.
  • Mishiro, A., 1996b. Effect of density on ultrasonic velocity in wood. Mokuzai Gakkaishi, 42(9): 887-894.
  • Musgrave, M.J., 1970. Crystal Acoustics: Introduction to The Study of Elastic Waves and Vibrations in Crystals. Acoustical Society of America, San Francisco, U.S.A.
  • Oliveira, F.G.R., de Campos, J.A., Pletz, E., Sales, A., 2002. Nondestructive evaluation of wood using ultrasonic techniques. Maderas Ciencia y Tecnologia, 4: 133-139.
  • Oliveira, F.G.R., Candian, M., Lucchette, F.F., Salgon J.L., Sales, A., 2005a. A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra). Building and Environment, 40(2): 297-300.
  • Oliveira, F.G.R., Candian, M., Lucchette, F.F., Salgon, J.L., Sales, A., 2005b. Moisture content effect on ultrasonic velocity in Goupia Glabra. Materials Research, 8(1): 11-14.
  • Oliveira, F.G.R., Sales, A., 2006. Relationship between density and ultrasonic velocity in Brazilian tropical woods. Bioresource Technology, 97(18): 2443-2446.
  • Palacios, P.I.C., Yoza, L.Y., Mallque, M.A., 2011. Elasticity modulus in Peruvian tropical woods using nondestructive techniques-preliminary study. Proceedings of 17th Symposium Nondestructive Testing of Wood, Vol. 2. 14-16 September 2011, Sopron, Hungary. pp. 469-475.
  • Schmerr, L., 2007. Fundamental models and measurements for ultrasonic nondestructive evaluation systems. In: Chen, C., (Ed), Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, World Scientific Publishing, Singapore, pp. 684.
  • Schmerr, L., Song,S., 2007. Ultrasonic Nondestructive Evaluation Systems Models and Measurements. Springer-Verlag, New York, U.S.A. Senalik, C., Schueneman, G., Ross, R., 2014. Ultrasonic-based nondestructive evaluation methods for wood a primer and historical review. https://www.fpl. fs.fed.us/documnts/fplgtr/fpl_gtr235.pdf, Accessed: 16.05.2018 Teles, F., Del Menezzi, C., de Souza, F., Souza, M., 2011. Nondestructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables. Ciência da Madeira, 2(1): 1-14.
  • Tomppo, L., 2013. Novel applications of electrical impedance and ultrasound methods for wood quality assessment. Ph.D. dissertation, University of Eastern Finland, Kuopio, Finland.
  • TS 2471, 2005. Wood-Determination of moisture content for physical and mechanical tests. Turkish Standards Institution, Ankara.
  • TS 2472, 2005. Wood-Determination of density for physical and mechanical tests. Turkish Standards Institution, Ankara.
  • UNI EN 14579, 2004. Natural stone test methods-determination of sound speed propagation. International Organization for Standardization, Geneva.
  • Vun, R.Y., Eischeid, T., Bhardwaj, M.C., 2006. Quantitative non-contact ultrasound testing and analysis of materials for process and quality control. European Conference on NDT, https://www.ndt.net/article/ecndt2006/doc/ Th.3.7.2.pdf, Accessed: 06.03.2018.
  • Yılmaz Aydın, T., Aydın, M., 2018. Relationship between density or propagation length and ultrasonic wave velocity in cedar (Cedrus libani) wood. Proceedings of International Science and Technology Conference, 18-20 July 2018, Paris, France, pp. 118.

Türkiye’de yetişen bazı önemli ağaç türlerinde yoğunluk ve yayılım uzunluğunun ultrasonik dalga hızına etkisi

Yıl 2018, Cilt: 19 Sayı: 4, 413 - 418, 30.12.2018
https://doi.org/10.18182/tjf.459005

Öz

Yoğunluk, katılarda mekanik davranış gibi birçok özelliği belirleyen önemli bir etkendir. Malzemelerin mekanik özellikleri statik ve dinamik testlerle belirlenebilir. Ultrasonik ölçümler, tahribatsız test yöntemlerinden biridir ve birçok alanda birçok özelliğin belirlenmesinde uygulanmaktadır. Ahşap bilimindeki literatür incelendiğinde, ultrasonik dalga hızı üzerine yoğunluğun etkisi hakkında araştırmacıların ortak bir fikir ortaya koymadığı görülmektedir. Ayrıca, yayılım uzunluğu ultrasonik dalgalar ile yakından ilişki içinde olan bir diğer konudur. Bu bakış açısıyla, bu çalışmada yoğunluk ve yayılım uzunluğunun Doğu kayını, sarıçam, kızılçam ve karaçam odunlarındaki boyuna ultrasonik dalgaya etkisi araştırılmışır.20x20mm enine kesit ve L yönündeki uzunlukları 20, 30 ve 40mm olan örnekler ölçümlerin gerçekleştirilmesinde kullanılmıştır. Tüm örnekler, 20±1°C sıcaklık ve %65 bağıl nemde iklimlendirilmiştir. Sonrasında ultrasonik ölçümler, OLYMPUS EPOCH 650 hata detektörü ve 2.25MHz frekanslı temaslı tip transdüserler kullanılarak gerçekleştirilmiştir. Sonuçlara göre, örneklerin rutubet içerikleri yaklaşık %12 olarak hesaplanmıştır ve dalga hızında örnek boyu 20mm’den 40mm’e çıktığında %25.49’luk bir artış gözlenmiştir. Yoğunluk ile hız arasındaki belirleme katsayıları 0.78 ile 0.94 değerlerinde sıralanmıştır. Dolayısıyla, hem yayılım uzunluğu hem de yoğunluğun bu ağaçlardaki ultrasonik dalga hızına olumlu etkisi olduğu sonucuna varılmıştır.

Kaynakça

  • Aziz, S.H., Shaari, A., Hafzan, S., Ahmad, M.N., İbrahim, A., Abidin, İ.M.Z., 2013. Elastic studies of tropical wood by using non-destructive ultrasonic technique. Proceedings of Malaysia International NDT Conference and Exhibition, 16-18 June 2013, Kuala Lumpur, Malaysia, pp. 1.
  • Baar, J., Tippner, J., Gryc, V., 2012. The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method. European Journal of Wood and Wood Products, 70(5): 767-769.
  • Baradit, E., Niemz, P., 2011. Selected physical and mechanical properties of Chilean wood species Tepa, Olivillo, Laurel, Lenga, Alerce and Manio. Proceedings of 17th Symposium Nondestructive Testing of Wood,14-16 September 2011, Sopron, Hungary, pp. 395-401.
  • Beall, F.C., 2002. Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci. Technol., 36: 197-212.
  • Berke, M., 2000. Nondestructive material testing with ultrasonics. https://www.ndt.net/article/v05n09/berke/ berke1.htm, Accessed: 06.02.2017.
  • Berndt, H., Johnson, G.C., 1995. Examination of wave propagation in wood from a microstuructural perspective. In: Thompson, D.O., Chimenti, D.E., (Eds), Review of Progress in Quantitative Nondestructive Evaluation Volume 14, Plenum Press, New York, USA, pp 1661-1668.
  • Björnberg, J., 2014. Comparison of non-destructive techniques to discover defect finger joints in furniture. BSc thesis, Linnaeus University, Växjö, Sweeden.
  • Brandner, R., Gehri, E., Bogensperger, T., Schickhofer, G., 2007. Determination of modulus of shear and elasticity of glued laminated timber and related examinations. Proceedings of International Council for Research and Innaovation in Building and Construction Working Commission W18, August 2007, Bled, Slovenia, pp. 40-12-2.
  • Bucur, V., 1983. An ultrasonic method for measuring the elastic constants of wood increment cores bored from living tress. Ultrasonics, 21: 116-126.
  • Bucur, V., 2006. Acoustics of Wood. Springer-Verlag, Heidelberg, Germany.
  • Bucur, V., Chivers, R.C., 1991. Acoustic properties and anisotropy of some Australian wood species. Acta Acustica united with Acustica, 75(1): 69-74.
  • Calegari, L., Gatto, D., Stangerlin, D., 2011. Influence of moisture content, specific gravity and specimen geometry on the ultrasonic pulse velocity in Eucalyptus grandis hill ex maiden wood. Ciência da Madeira, 2(2): 64-74.
  • Carcangiu, S., Montisci, A., Usai, M., 2015. Modeling ultrasounds for nondestructive testing applications. In: Burrascano, S. Callegari, A. Montisci, M. Ricci, and V. Mario, P., (Eds), Ultrasonic Nondestructive Evaluation Systems: Industrial Application Issues, Springer International, Switzerland, pp. 47-82. Cochran, S., 2012. Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers, In: Nakamura, K., (Ed), Ultrasonic Transducers: Materials and Design for Sensors, Actuators and Medical Applications. Woodhead Publishing , Cambridge, England, pp. 3-35.
  • Czerlinsky, E., 1943. Non-destructive plywood testing with ultrasound. Dt. Luftfahrtforschung, Deutschland, Unters. u. Mitt. Nr. 1042.
  • Dahmen, S., Ketata, H., Ben Ghozlen, M.H., Hosten, B., 2010. Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave. Ultrasonics, 50(4-5): 502-507.
  • Gerhards, C.C., 1982. Longitudinal stress waves for lumber stress grading: factors affecting applications: state of art. Forest Products Journal, 32: 20-25.
  • Halachan, P., Babiak, M., Spišiak, D., Chubinsky, A.N., Tambi, A.A., Chauzov, K.V., 2017. Physico-acoustic characteristics of spruce and larche wood. Wood Research. 62: 235-242.
  • Hearmon, R.F.S., 1961. An Introduction to Applied Anisotropic Elasticity. Oxford University Press, Oxford, England.
  • Hearmon, R.F.S., 1965. The assessment of wood properties by vibrations and high frequency acoustic waves. Proceedings of 2nd Symposium Nondestructive Testing of Wood. April 1965, Pullman, WA. pp. 49-65.
  • Hui, P., Jiali, J., Tianyi, Z., Jianxiong, L., 2016. Influence of density and moisture content on ultrasound velocities along the longitudinal direction in wood. Scienta Silvae Sinicae, 52(10): 117-124.
  • Ilic, J., 2003. Dynamic MOE of 55 species using small wood beams. Holz als Roh und Werkstoff, 61(3): 167-172.
  • Íñiguez, G., Esteban, M., Arriaga, F., Bobadilla, I., and Gil, M., 2007. Influence of specimen length on ultrasound wave velocity. Proceedings of 15th International Symposium on Nondestructive Testing of Wood, 10-12 September 2007, Duluth, USA, pp. 155-159.
  • Krautkraemer, J., Krautkraemer, H., 1990. Ultrasonic Testing of Materials. Springer-Verlag, Berlin, Germany.
  • Menges, A., Schwinn, T., Krieg , D., 2017. Advancing wood architecture: an introduction. In: Achim, M., Tobias, S., Oliver, D.K., (Eds.), Advancing Wood Architecture A computational approach, Routledge, N.Y., U.S.A., pp.1-9.
  • Miettinen, P., Tiitta, M., Lappalainen, R., 2005. Electrical and ultrasonic analysis of heat-treated wood. Proceedings of 14th Symposium Nondestructive Testing of Wood. 2-4 May 2005, Eberswalde, Germany. pp. 265-274.
  • Mishiro, A., 1996a. Effects of grain and ring angles on ultrasonic velocity in wood. Mokuzai Gakkaishi, 42: 211-215.
  • Mishiro, A., 1996b. Effect of density on ultrasonic velocity in wood. Mokuzai Gakkaishi, 42(9): 887-894.
  • Musgrave, M.J., 1970. Crystal Acoustics: Introduction to The Study of Elastic Waves and Vibrations in Crystals. Acoustical Society of America, San Francisco, U.S.A.
  • Oliveira, F.G.R., de Campos, J.A., Pletz, E., Sales, A., 2002. Nondestructive evaluation of wood using ultrasonic techniques. Maderas Ciencia y Tecnologia, 4: 133-139.
  • Oliveira, F.G.R., Candian, M., Lucchette, F.F., Salgon J.L., Sales, A., 2005a. A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra). Building and Environment, 40(2): 297-300.
  • Oliveira, F.G.R., Candian, M., Lucchette, F.F., Salgon, J.L., Sales, A., 2005b. Moisture content effect on ultrasonic velocity in Goupia Glabra. Materials Research, 8(1): 11-14.
  • Oliveira, F.G.R., Sales, A., 2006. Relationship between density and ultrasonic velocity in Brazilian tropical woods. Bioresource Technology, 97(18): 2443-2446.
  • Palacios, P.I.C., Yoza, L.Y., Mallque, M.A., 2011. Elasticity modulus in Peruvian tropical woods using nondestructive techniques-preliminary study. Proceedings of 17th Symposium Nondestructive Testing of Wood, Vol. 2. 14-16 September 2011, Sopron, Hungary. pp. 469-475.
  • Schmerr, L., 2007. Fundamental models and measurements for ultrasonic nondestructive evaluation systems. In: Chen, C., (Ed), Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, World Scientific Publishing, Singapore, pp. 684.
  • Schmerr, L., Song,S., 2007. Ultrasonic Nondestructive Evaluation Systems Models and Measurements. Springer-Verlag, New York, U.S.A. Senalik, C., Schueneman, G., Ross, R., 2014. Ultrasonic-based nondestructive evaluation methods for wood a primer and historical review. https://www.fpl. fs.fed.us/documnts/fplgtr/fpl_gtr235.pdf, Accessed: 16.05.2018 Teles, F., Del Menezzi, C., de Souza, F., Souza, M., 2011. Nondestructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables. Ciência da Madeira, 2(1): 1-14.
  • Tomppo, L., 2013. Novel applications of electrical impedance and ultrasound methods for wood quality assessment. Ph.D. dissertation, University of Eastern Finland, Kuopio, Finland.
  • TS 2471, 2005. Wood-Determination of moisture content for physical and mechanical tests. Turkish Standards Institution, Ankara.
  • TS 2472, 2005. Wood-Determination of density for physical and mechanical tests. Turkish Standards Institution, Ankara.
  • UNI EN 14579, 2004. Natural stone test methods-determination of sound speed propagation. International Organization for Standardization, Geneva.
  • Vun, R.Y., Eischeid, T., Bhardwaj, M.C., 2006. Quantitative non-contact ultrasound testing and analysis of materials for process and quality control. European Conference on NDT, https://www.ndt.net/article/ecndt2006/doc/ Th.3.7.2.pdf, Accessed: 06.03.2018.
  • Yılmaz Aydın, T., Aydın, M., 2018. Relationship between density or propagation length and ultrasonic wave velocity in cedar (Cedrus libani) wood. Proceedings of International Science and Technology Conference, 18-20 July 2018, Paris, France, pp. 118.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Tuğba Yılmaz Aydın 0000-0002-6792-9602

Murat Aydın

Yayımlanma Tarihi 30 Aralık 2018
Kabul Tarihi 12 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 4

Kaynak Göster

APA Yılmaz Aydın, T., & Aydın, M. (2018). Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry, 19(4), 413-418. https://doi.org/10.18182/tjf.459005
AMA Yılmaz Aydın T, Aydın M. Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry. Aralık 2018;19(4):413-418. doi:10.18182/tjf.459005
Chicago Yılmaz Aydın, Tuğba, ve Murat Aydın. “Effect of Density and Propagation Length on Ultrasonic Longitudinal Wave Velocity in Some Important Wood Species Grown in Turkey”. Turkish Journal of Forestry 19, sy. 4 (Aralık 2018): 413-18. https://doi.org/10.18182/tjf.459005.
EndNote Yılmaz Aydın T, Aydın M (01 Aralık 2018) Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry 19 4 413–418.
IEEE T. Yılmaz Aydın ve M. Aydın, “Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey”, Turkish Journal of Forestry, c. 19, sy. 4, ss. 413–418, 2018, doi: 10.18182/tjf.459005.
ISNAD Yılmaz Aydın, Tuğba - Aydın, Murat. “Effect of Density and Propagation Length on Ultrasonic Longitudinal Wave Velocity in Some Important Wood Species Grown in Turkey”. Turkish Journal of Forestry 19/4 (Aralık 2018), 413-418. https://doi.org/10.18182/tjf.459005.
JAMA Yılmaz Aydın T, Aydın M. Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry. 2018;19:413–418.
MLA Yılmaz Aydın, Tuğba ve Murat Aydın. “Effect of Density and Propagation Length on Ultrasonic Longitudinal Wave Velocity in Some Important Wood Species Grown in Turkey”. Turkish Journal of Forestry, c. 19, sy. 4, 2018, ss. 413-8, doi:10.18182/tjf.459005.
Vancouver Yılmaz Aydın T, Aydın M. Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry. 2018;19(4):413-8.

Cited By

Moisture dependent bending properties of poplar
Turkish Journal of Forestry | Türkiye Ormancılık Dergisi
https://doi.org/10.18182/tjf.1547421