Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği

Yıl 2019, Cilt: 20 Sayı: 4, 333 - 340, 27.12.2019
https://doi.org/10.18182/tjf.656457

Öz

Bucak yöresi kızılçam (Pinus brutia Ten.), Toros sediri (Cedrus libani A. Rich.) ve Toros göknarı (Abies cilicica Carr.) meşcereleri için uyumlu gövde çapı ve gövde hacim denklemleri geliştirilmiştir. Test edilen model, tüm ağaç türleri için gövde çapı ve hacim tahminlerinde başarılı sonuçlar vermiştir. Kullanılan gövde çapı ve hacim modelinin, çap ve hacim tahminlerindeki doğruluğu ve hassasiyeti, 10 nisbi boy değeri için de test edilmiştir. Diğer yandan, Bucak yöresindeki üç ağaç türü için geliştirilen gövde çapı modellerinin kendi aralarında ve Mut ve Elmalı yörelerindeki aynı türler için geliştirilen gövde çapı modellerinden farklılık gösterip göstermediği doğrusal olmayan ekstra kareler yöntemi kullanılarak araştırılmıştır. Doğrusal olmayan ekstra kareler yöntemi sonuçlarına göre, güvenilir gövde çapı, ticari veya toplam hacim tahminleri için yörelere ve türlere özgü geliştirilen gövde çapı ve gövde hacmi denklemlerinin kullanılması ya da parametre tahminlerinin yapılması gerektiği anlaşılmıştır.

Kaynakça

  • Alemdağ, Ş., 1962 Development, yield and management rules of Brutian pine (Pinus brutia Ten.) forests in Turkey. Forestry research publication, Technical Bulletin No:11, 160 p., Ankara.
  • Bailey, R.L., 1995. Upper stem volumes from stem analysis data: an overlapping bolts method. Canadian Journal of Forest Research, 25(1): 170-173.
  • Bates, D.M., Watts, D.G., 1988. Nonlinear regression analysis and its applications (Vol. 2). New York, Wiley.
  • Bozkuş, H., Carus, S., 1997. Toros göknarı (Abies cilicica Carr.) sedir (Cedrus libani Link.)’in çift girişli gövde hacmi tabloları ve mevcut tablolarla karşılaştırılması. İstanbul Üniversitesi Orman Fakültesi Dergisi, 47(1): 51-70.
  • Brooks, J. R., Harry Jr, V., 2008. Ecoregion-based local volume equations for Appalachian Hardwoods. Northern Journal of Applied Forestry, 25:87-92.
  • Brooks, J. R., Jiang, L., Özçelik, R., 2008. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1-2): 147-151.
  • Cao, Q. V., Wang, J., 2014. Evaluation of methods for calibrating a tree taper equation. Forest Science, 61(2): 213-219.
  • Cao, Q.V., 2009. Calibrating a segmented taper equation with two diameter measurements. Southern Journal of Applied Forestry, 33(2): 58-61.
  • Cao, Q.V., Burkhart, H.E., Max, T.A., 1980. Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1): 71-80.
  • Castedo-Dorado, F., Gómez-García, E., Diéguez-Aranda, U., Barrio-Anta, M., Crecente-Campo, F., 2012. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in Northwest Spain. Annals of Forest Science, 69(6): 735-746.
  • Clark, III A., Souter, R.A, Schlaegel, B.E., 1991. Stem profile equations for Southern tree species. USDA For. Serv. Res. Pap. SE-282, 124 p.
  • Crecente-Campo, F., Alboreca, A. R., Dieguez – Aranda, U., 2009. A Merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of Forest Science, 66-808.
  • de-Miguel, S., Mehtatalo, L., Shater, Z., Kraid, B., Pukkala, T., 2012. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42: 1383-1394.
  • Dieguez–Aranda, U., Castedo- Dorado, F., Alvarez-Gonzalez, J.G., Rojo, A., 2006. Compatible Taper Function for Scots Pine Plantations in Northwestern Spain. Canadian Journal of Forest Research, 36: 1190–1205.
  • Ercanlı, İ., Kurt, A.K., Bolat, F., 2014. Adana-Feke kızılçam (Pinus brutia Ten.) meşcereleri için gövde çapı ve Gövde hacim denklemlerinin karışık etkili modelleme ile geliştirilmesinde bazı varyans yapılarının karşılaştırılması. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Bildiriler Kitabı, s.585-591.
  • Ercanlı, İ., Günlü, A., Şenyurt, M., Keleş, S., 2019. Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey. Forest Ecosystems, 5(1): 29.
  • Fang, Z., Borders, B.E., Bailey, R.L., 2000. Compatible volume taper models for loblolly and slash pine based on system with segmented-stem form factors. Forest Science, 46: 1-12.
  • Figueiredo-Filho, A., Borders, B.E., Hitch, K.L., 1996. Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management, 83(1-2): 39-46.
  • Gomez-Garcìa, E., Fonseca, T.F., Crecente-Campo, F., Almeida, L.R., Dieguez-Aranda, U., Huang, S., Marques, C.P., 2015. Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models. iForest, 9:72-78.
  • Huang, S., Price, D., Morgan, D., Peck, K., 2000a. Kozak's variable-exponent taper equation regionalized for white spruce in Alberta. Western Journal of Applied Forestry, 15(2): 75-85.
  • Huang, S., Price, D., Titus, S.J., 2000b. Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management, 129(1-3): 125-141.
  • Jiang, L., Brooks, J. R., Wang, J., 2005. Compatible taper and volume equations for yellow-poplar in West Virginia. Forest ecology and management, 213(1-3): 399-409.
  • Klos, R.J., Wang, G.G., Dang, Q.L., East, E.W., 2007. Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Research. 22: 163-170.
  • Kozak, A., 1997. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Canadian Journal of Forest Research, 27(5): 619-629.
  • Kozak, A., 2004. My last words on taper equations. Forestry Chronicle, 80: 507–515.
  • Li, R., Weiskittel, A., Dick, A.R., Kershaw, J.A., Seymour, R.S., 2012. Regional stem taper equations for eleven conifer species in the Acadian region of North America: development and assessment. Northern Journal of Applied Forestry, 29: 5-14.
  • Li, R., Weiskittel, A.R., 2010. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Annals of Forest Science, 67: 302-317.
  • Martin, A.J., 1981. Taper and volume equations for selected Appalachian hardwood species. Res. Pap. NE-490. Broomall, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 22p., 490.
  • Max, T.A., Burkhart, H.E., 1976. Segmented polynomial regression applied to taper equations. Forest Science, 22(3): 283-289.
  • Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W., 1996. Applied linear statistical models (Vol. 4, p. 318). Chicago: Irwin.
  • Özçelik, R., Cao, Q.V. 2017. Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. Forest Science, 63(4): 349-355.
  • Özçelik, R., Crecente-Campo, F. 2016. Stem Taper Equations for Estimating Merchantable Volume of Lebanon Cedar Trees in the Taurus Mountains, Southern Turkey. Forest Science, 62(1): 78-91.
  • Özçelik, R., Karatepe, Y., Gürlevik, N., Cañellas, I., Crecente-Campo, F., 2016. Development of ecoregion-based merchantable volume systems for pinus brutia Ten. and Pinus nigra Arnold. İn Southern Turkey. Journal of Forestry Research 27: 101-117.
  • Parresol, B.R., 2001. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 31(5): 865-878.
  • Parresol, B.R., Hotvedt, J.E., Cao, Q.V., 1987. A volume and taper prediction system for bald cypress. Canadian Journal of Forest Research, 17(3): 250-259.
  • Peng, C., Zhang, L., Liu, J., 2001. Developing and validating nonlinear height–diameter models for major Tree species of Ontario's boreal forests. Northern Journal of Applied Forestry, 18(3): 87-94.
  • Pillsbury, N.H., McDonald, P.M., Simon, V., 1995. Reliability of tanoak volume equations when applied to different areas. Western Journal of Applied Forestry, 10(2): 72-78.
  • Rodríguez, F., Lizarralde, I., Bravo, F., 2015. Comparison of stem taper equations for eight major tree species in the Spanish Plateau. Forest Systems e034, 13p.
  • Rojo, A., Perales, X., Sanchez-Rodriguez, F., Álvarez, J.G., Gadow, K.V., 2005. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (North-western Spain). European Journal of Forest Research, 124: 177-186. Sakıcı, O. E., Misir, N., Yavuz, H., Misir, M. 2008. Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23(6): 522-533.
  • Sakıcı, O. E., Özdemir, G., 2018. Stem Taper Estimations with Artifıcial Neural Networks For Mixed Oriental Beech And Kazdağı Fir Stands in Karabük Region, Turkey. Cerne, 24(4): 439-451.
  • SAS Institute Inc., 2002. SAS/ETS User’s Guide, Version 9.0, SAS Institute Inc., Cary, NC.
  • Schlaegel, B.E., 1981. Testing, reporting, and using biomass estimation models. In Southern Forest Biomass Workshop (Vol. 1, pp. 95-112). Clemson: Clemson University.
  • Sharma, M,. Zhang, S.Y., 2004. Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19: 442-451.
  • Şenyurt, M., Ercanlı, İ., & Bolat, F., 2017. Taper equations based on nonlinear mixed effect modeling approach for Pinus nigra in Çankırı forests. Bosque, 38(3): 545-554.
  • Williams, M.S., Reich, R.M., 1997. Exploring the error structure of taper equations. Forest science, 43(3): 378-386.
  • Yavuz, H., 1995. Development of compatible stem taper, total tree volume and volume ration equations for Pinus sylvestris L. Hamata (Steven) Fomin and Pinus nigra Arn. Subsp. Pallasianan (Lamb.) Holmboe in Taşköprü Forest Enterprise, Karadeniz Technical University, Faculty of Forestry (unpublished), 101 p
  • Yavuz, H., Saraçoğlu, N., 1998. Compatible and non-compatible stem taper equations for alder. Turkish Journal of Agriculture and Forestry, 23:1275-1282.

Development of regional stem taper models for some important tree species of Turkey: Case study of Bucak

Yıl 2019, Cilt: 20 Sayı: 4, 333 - 340, 27.12.2019
https://doi.org/10.18182/tjf.656457

Öz

Compatible stem taper and volume models were developed for Brutian pine (Pinus brutia Ten.), Cedar of Lebanon (Cedrus libani A. Rich.), and Cilicica fir (Abies cilicica Carr.) in Bucak forest region of Southern Turkey. The proposed models generally performed better for the whole tree for all tree species. Diameter and volume predictions at 10 points along the stem were made to verify the accuracy and precision of these models for the three species. More specifically, differences among different tree species in one region and regional differences of the taper equation were examined using the nonlinear extra sum of squares method. The results of the non-liner extra sum of squares method indicated that species-specific taper equations for estimating diameters along the stem and predicting merchantable or total volume for each region are required.

Kaynakça

  • Alemdağ, Ş., 1962 Development, yield and management rules of Brutian pine (Pinus brutia Ten.) forests in Turkey. Forestry research publication, Technical Bulletin No:11, 160 p., Ankara.
  • Bailey, R.L., 1995. Upper stem volumes from stem analysis data: an overlapping bolts method. Canadian Journal of Forest Research, 25(1): 170-173.
  • Bates, D.M., Watts, D.G., 1988. Nonlinear regression analysis and its applications (Vol. 2). New York, Wiley.
  • Bozkuş, H., Carus, S., 1997. Toros göknarı (Abies cilicica Carr.) sedir (Cedrus libani Link.)’in çift girişli gövde hacmi tabloları ve mevcut tablolarla karşılaştırılması. İstanbul Üniversitesi Orman Fakültesi Dergisi, 47(1): 51-70.
  • Brooks, J. R., Harry Jr, V., 2008. Ecoregion-based local volume equations for Appalachian Hardwoods. Northern Journal of Applied Forestry, 25:87-92.
  • Brooks, J. R., Jiang, L., Özçelik, R., 2008. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1-2): 147-151.
  • Cao, Q. V., Wang, J., 2014. Evaluation of methods for calibrating a tree taper equation. Forest Science, 61(2): 213-219.
  • Cao, Q.V., 2009. Calibrating a segmented taper equation with two diameter measurements. Southern Journal of Applied Forestry, 33(2): 58-61.
  • Cao, Q.V., Burkhart, H.E., Max, T.A., 1980. Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1): 71-80.
  • Castedo-Dorado, F., Gómez-García, E., Diéguez-Aranda, U., Barrio-Anta, M., Crecente-Campo, F., 2012. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in Northwest Spain. Annals of Forest Science, 69(6): 735-746.
  • Clark, III A., Souter, R.A, Schlaegel, B.E., 1991. Stem profile equations for Southern tree species. USDA For. Serv. Res. Pap. SE-282, 124 p.
  • Crecente-Campo, F., Alboreca, A. R., Dieguez – Aranda, U., 2009. A Merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of Forest Science, 66-808.
  • de-Miguel, S., Mehtatalo, L., Shater, Z., Kraid, B., Pukkala, T., 2012. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42: 1383-1394.
  • Dieguez–Aranda, U., Castedo- Dorado, F., Alvarez-Gonzalez, J.G., Rojo, A., 2006. Compatible Taper Function for Scots Pine Plantations in Northwestern Spain. Canadian Journal of Forest Research, 36: 1190–1205.
  • Ercanlı, İ., Kurt, A.K., Bolat, F., 2014. Adana-Feke kızılçam (Pinus brutia Ten.) meşcereleri için gövde çapı ve Gövde hacim denklemlerinin karışık etkili modelleme ile geliştirilmesinde bazı varyans yapılarının karşılaştırılması. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Bildiriler Kitabı, s.585-591.
  • Ercanlı, İ., Günlü, A., Şenyurt, M., Keleş, S., 2019. Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey. Forest Ecosystems, 5(1): 29.
  • Fang, Z., Borders, B.E., Bailey, R.L., 2000. Compatible volume taper models for loblolly and slash pine based on system with segmented-stem form factors. Forest Science, 46: 1-12.
  • Figueiredo-Filho, A., Borders, B.E., Hitch, K.L., 1996. Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management, 83(1-2): 39-46.
  • Gomez-Garcìa, E., Fonseca, T.F., Crecente-Campo, F., Almeida, L.R., Dieguez-Aranda, U., Huang, S., Marques, C.P., 2015. Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models. iForest, 9:72-78.
  • Huang, S., Price, D., Morgan, D., Peck, K., 2000a. Kozak's variable-exponent taper equation regionalized for white spruce in Alberta. Western Journal of Applied Forestry, 15(2): 75-85.
  • Huang, S., Price, D., Titus, S.J., 2000b. Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management, 129(1-3): 125-141.
  • Jiang, L., Brooks, J. R., Wang, J., 2005. Compatible taper and volume equations for yellow-poplar in West Virginia. Forest ecology and management, 213(1-3): 399-409.
  • Klos, R.J., Wang, G.G., Dang, Q.L., East, E.W., 2007. Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Research. 22: 163-170.
  • Kozak, A., 1997. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Canadian Journal of Forest Research, 27(5): 619-629.
  • Kozak, A., 2004. My last words on taper equations. Forestry Chronicle, 80: 507–515.
  • Li, R., Weiskittel, A., Dick, A.R., Kershaw, J.A., Seymour, R.S., 2012. Regional stem taper equations for eleven conifer species in the Acadian region of North America: development and assessment. Northern Journal of Applied Forestry, 29: 5-14.
  • Li, R., Weiskittel, A.R., 2010. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Annals of Forest Science, 67: 302-317.
  • Martin, A.J., 1981. Taper and volume equations for selected Appalachian hardwood species. Res. Pap. NE-490. Broomall, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 22p., 490.
  • Max, T.A., Burkhart, H.E., 1976. Segmented polynomial regression applied to taper equations. Forest Science, 22(3): 283-289.
  • Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W., 1996. Applied linear statistical models (Vol. 4, p. 318). Chicago: Irwin.
  • Özçelik, R., Cao, Q.V. 2017. Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. Forest Science, 63(4): 349-355.
  • Özçelik, R., Crecente-Campo, F. 2016. Stem Taper Equations for Estimating Merchantable Volume of Lebanon Cedar Trees in the Taurus Mountains, Southern Turkey. Forest Science, 62(1): 78-91.
  • Özçelik, R., Karatepe, Y., Gürlevik, N., Cañellas, I., Crecente-Campo, F., 2016. Development of ecoregion-based merchantable volume systems for pinus brutia Ten. and Pinus nigra Arnold. İn Southern Turkey. Journal of Forestry Research 27: 101-117.
  • Parresol, B.R., 2001. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 31(5): 865-878.
  • Parresol, B.R., Hotvedt, J.E., Cao, Q.V., 1987. A volume and taper prediction system for bald cypress. Canadian Journal of Forest Research, 17(3): 250-259.
  • Peng, C., Zhang, L., Liu, J., 2001. Developing and validating nonlinear height–diameter models for major Tree species of Ontario's boreal forests. Northern Journal of Applied Forestry, 18(3): 87-94.
  • Pillsbury, N.H., McDonald, P.M., Simon, V., 1995. Reliability of tanoak volume equations when applied to different areas. Western Journal of Applied Forestry, 10(2): 72-78.
  • Rodríguez, F., Lizarralde, I., Bravo, F., 2015. Comparison of stem taper equations for eight major tree species in the Spanish Plateau. Forest Systems e034, 13p.
  • Rojo, A., Perales, X., Sanchez-Rodriguez, F., Álvarez, J.G., Gadow, K.V., 2005. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (North-western Spain). European Journal of Forest Research, 124: 177-186. Sakıcı, O. E., Misir, N., Yavuz, H., Misir, M. 2008. Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23(6): 522-533.
  • Sakıcı, O. E., Özdemir, G., 2018. Stem Taper Estimations with Artifıcial Neural Networks For Mixed Oriental Beech And Kazdağı Fir Stands in Karabük Region, Turkey. Cerne, 24(4): 439-451.
  • SAS Institute Inc., 2002. SAS/ETS User’s Guide, Version 9.0, SAS Institute Inc., Cary, NC.
  • Schlaegel, B.E., 1981. Testing, reporting, and using biomass estimation models. In Southern Forest Biomass Workshop (Vol. 1, pp. 95-112). Clemson: Clemson University.
  • Sharma, M,. Zhang, S.Y., 2004. Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19: 442-451.
  • Şenyurt, M., Ercanlı, İ., & Bolat, F., 2017. Taper equations based on nonlinear mixed effect modeling approach for Pinus nigra in Çankırı forests. Bosque, 38(3): 545-554.
  • Williams, M.S., Reich, R.M., 1997. Exploring the error structure of taper equations. Forest science, 43(3): 378-386.
  • Yavuz, H., 1995. Development of compatible stem taper, total tree volume and volume ration equations for Pinus sylvestris L. Hamata (Steven) Fomin and Pinus nigra Arn. Subsp. Pallasianan (Lamb.) Holmboe in Taşköprü Forest Enterprise, Karadeniz Technical University, Faculty of Forestry (unpublished), 101 p
  • Yavuz, H., Saraçoğlu, N., 1998. Compatible and non-compatible stem taper equations for alder. Turkish Journal of Agriculture and Forestry, 23:1275-1282.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Onur Alkan 0000-0001-5798-3421

Ramazan Ozçelik 0000-0003-2132-2589

Hasan Alkan 0000-0001-7944-420X

Yayımlanma Tarihi 27 Aralık 2019
Kabul Tarihi 17 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 4

Kaynak Göster

APA Alkan, O., Ozçelik, R., & Alkan, H. (2019). Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği. Turkish Journal of Forestry, 20(4), 333-340. https://doi.org/10.18182/tjf.656457
AMA Alkan O, Ozçelik R, Alkan H. Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği. Turkish Journal of Forestry. Aralık 2019;20(4):333-340. doi:10.18182/tjf.656457
Chicago Alkan, Onur, Ramazan Ozçelik, ve Hasan Alkan. “Türkiye’nin Bazı önemli ağaç türleri için yöresel gövde çapı Modellerinin geliştirilmesi: Bucak örneği”. Turkish Journal of Forestry 20, sy. 4 (Aralık 2019): 333-40. https://doi.org/10.18182/tjf.656457.
EndNote Alkan O, Ozçelik R, Alkan H (01 Aralık 2019) Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği. Turkish Journal of Forestry 20 4 333–340.
IEEE O. Alkan, R. Ozçelik, ve H. Alkan, “Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği”, Turkish Journal of Forestry, c. 20, sy. 4, ss. 333–340, 2019, doi: 10.18182/tjf.656457.
ISNAD Alkan, Onur vd. “Türkiye’nin Bazı önemli ağaç türleri için yöresel gövde çapı Modellerinin geliştirilmesi: Bucak örneği”. Turkish Journal of Forestry 20/4 (Aralık 2019), 333-340. https://doi.org/10.18182/tjf.656457.
JAMA Alkan O, Ozçelik R, Alkan H. Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği. Turkish Journal of Forestry. 2019;20:333–340.
MLA Alkan, Onur vd. “Türkiye’nin Bazı önemli ağaç türleri için yöresel gövde çapı Modellerinin geliştirilmesi: Bucak örneği”. Turkish Journal of Forestry, c. 20, sy. 4, 2019, ss. 333-40, doi:10.18182/tjf.656457.
Vancouver Alkan O, Ozçelik R, Alkan H. Türkiye’nin bazı önemli ağaç türleri için yöresel gövde çapı modellerinin geliştirilmesi: Bucak örneği. Turkish Journal of Forestry. 2019;20(4):333-40.

Cited By

Stem taper models for maritime pine plantations in Istanbul Sarıyer Region
Turkish Journal of Forestry | Türkiye Ormancılık Dergisi
Utkun KARAKUYU
https://doi.org/10.18182/tjf.786210