Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması

Yıl 2020, Cilt: 21 Sayı: 3, 324 - 331, 30.09.2020
https://doi.org/10.18182/tjf.695613

Öz

Bu çalışmada, mobilya başta olmak üzere her türlü sektörde yaygın ve güvenilir bir şekilde kullanılan ahşap malzemelerin en zayıf yönleri olan su ve güneş ışığı dayanımlarının artırılması amaçlanmıştır. Demirli sülfat heptahidrat (FeSO4·7H2O), nikel (II) klorür heksahidrat (NiCl2.6H2O), etil alkol (EtOH), sodyum hidroksit (NaOH), ve potasyum nitrat (KNO3)’ın kullanıldığı hidrotermal yaklaşım methodu ile ahşabın yüzeyinde oluşturulan nano yapılar ile anti-UV özellik sağlanıp fotodegregasyonun engellenmesi hedeflenmiştir. Daha sonra hidrotermal olarak fonksiyonlanan bu yeni yüzeyin oktadesiltriklorosilan (OTS, %95) kullanılarak hidrofobize edilmesi ile yüzeyin neme ve suya karşı dayanımının artırılması hedeflenmiştir. Yapılan bu fonsiyonlandırma çalışmalarının karakterizasyonu için enerji dağıtıcı x-ışını (EDX), fourier dönüşümü kızılötesi spektroskopisi (FTIR), x-ışını kırınımı (XRD) ve taramalı elektron mikroskopisi (SEM) analizleri yapılmıştır. Ayrıca, hidrofobizasyon özelliklerinin belirlenmesi için su temas açısı (WCA) ölçümü ve anti-UV özelliklerinin tespiti için ise UV-Vis spektrometresi kullanılmıştır. Fonksiyonlandırmadan sonra ölçülen renk ve yüzey parametrelerinin değişimleri sırasıyla, ISO 2469 (2014) ve ISO 4287 (1997) standartlarına göre incelenmiştir. Tüm bu çalışmalar sonucunda üretilen yeni yüzeyin su temas açısı θγ 105° olarak ölçülmüştür. UV dalga boyunun 200-800 nm olduğu aralıkta anti-UV özellik belirlenmiştir.  

Destekleyen Kurum

Bu çalışma, KSU / BAP tarafından finansal olarak desteklenmiştir.

Proje Numarası

Proje No: 2018/3-20 D.

Teşekkür

Bu çalışma, KSÜ BAP tarafından finansal olarak desteklenmiştir. Proje no: 2018/3-20 D.

Kaynakça

  • Andersson, S., Serimaa, R., Paakkari, T., Saranpaa, P., Pesonen, E., 2003. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science, 49: 531 –537.
  • Barthlott, W., Neinhuis, C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202: 1–8.
  • Borysiak, S., Doczekalska, B., 2005. X-ray diffraction study of pine wood treated with NaOH fibers. Textiles Eastern Europe, 13: 87-89.
  • Chandrapala, J., Oliver, C.M., Kentish, S., Ashokkumar, M., 2013. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Reviews International, 29(1): 67-91.
  • Donath, S., Militz, H., Mai, C., 2007. Weathering of silane treated wood. Holz als Roh-und werkstoff, 65(1): 35.
  • De La Fuente-Blanco, S., De Sarabia, E., R.F., Acosta-Aparicio, V.M., Blanco-Blanco, A., Gallego-Juarez, J.A., 2006. Food drying process by power ultrasound. Ultrasonics, 44: 523-527.
  • Eichhorn, S.J., Dufresne, A., Aranguren, M., 2010. Review: Current International Research into Cellulose Nanofibers and Nanocomposites. Journal of Materials Science, 45(1): 1–33.
  • Faux, O., 1991. Classification of Lignins From Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45: 21–28.
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D., 2002. Super‐Hydrophobic surfaces: From natural to artificial. Advanced Materials, 14: 1857–1860.
  • Fatemi, D.J., Harris, V.G., Chen, M.X., Malik, S.K., Yelon, W.B., Long, G.J., and Mohan. A., 1999. X-ray absorption, neutron diffraction, and mössbauer effect studies of mnzn–ferrite processed through high-energy ball milling. Journal of Applied Physics, 85, 5172-5174.
  • Fernandes, F.A.N., Linhares, F.E.J., Rodrigues, S., 2008. Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6): 1049-1054.
  • Floros, J.D., Liang, H., 1994. Acoustically assisted diffusion through membranes and biomaterials. Food Technology, 48(12): 79-84.
  • Gan, W.T. Gao, L.K. Sun, F.Q. Jin, C.D. Lu, Y. Li J., 2015. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Applied Surface Science, 322: 565-572.
  • Gao, L., Lu, Y., Zhan, X., Sun, Q., 2015. A Robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262: 33-39.
  • Gust, J., Suwalski, J., 1994. Use of mossbauer spectroscopy to study reaction products of polyphenols and iron compounds. Corrosion, 50(5): 355-365.
  • Hakkou, M. Pétrissans, M., Zoulalian, A., 2005. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation Stability Journal, 89: 1–5.
  • Hayoz, P., Peter, W., Rogez, D., 2003. A new innovative stabilization method for the protection of natural wood. Progress in Organic Coatings, 48(2-4): 297-309.
  • He, Z., Zhao, Z., Yang, F., Yi, S., 2014. Effect of ultrasound pretreatment on wood prior to vacuum drying. Maderas Ciencia y Tecnologia, 16(4): 395-402.
  • Jirous-Rajkovic, V., Bogner, A., Radovan, D., 2004. The efficiency of various treatments in protecting wood surfaces against weathering. Surface and Coatings Technology, 87: 15–19.
  • Kumar, M., Gupta, R.C., Sharma, T., 1993. X- ray diffraction studies of acacia and eucalyptus wood chars. Journal of Materials Science, 28(3): 805-810.
  • Li, N., Xia, T., Heng, L., Liu, L., 2013. Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102(25): 251603.
  • Liang, C.Y., Marchessault, R.H., 1959. Infrared spectra of crystalline polysaccharides. Hydrogen bonds in native celluloses. Journal of Polymer Science, 37: 385–395.
  • Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q., 2014. Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung, 68: 345–351.
  • ISO 4287, 1997. Geometrical product specifications surface texture profile method terms. Definitions and surface texture parameters. International Standart Organization.
  • ISO 2469, 2014. Paper, board and pulps measurement of diffuse radiance factor diffuse reflectance factor. International Standart Organization.
  • Oka, H., Kataoka, Y., Osada, H., Aruga, Y., 2007. Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process. Journal of Magnetism and Magnetic Materials, 310: E1028–E1029.
  • Oka, H., Hamano, H., Chiba, S., 2004a. Experimental study on actuation functions of coating-type magnetic. Journal of Magnetism and Magnetic Materials, 272: E1693–E1694.
  • Oka, H., Hojo, A., Seki, K., Takashiba, T., 2002a. Wood construction and magnetic characteristics of impregnated type magnetic wood. Journal of Magnetism and Magnetic Materials, 239: 617–619.
  • Oka, H., Narita, K., Osada, H., Seki, K., 2002b. Experimental results on indoor electromagnetic wave absorber using magnetic wood. Journal of Applied Physics, 91: 7008–7010.
  • Oka, H., Tokuta, H., Namizaki, Y., Sekino N., 2004b. Effects of Humidity on The Magnetic and Woody Characteristics of Powder-Type Magnetic Wood. Journal of Magnetism and Magnetic Materials, 272: 1515–1517.
  • Oka, H., Uchidate, S., Sekino, N., 2011. Electromagnetic wave absorption characteristics of half carbonized powder-type magnetic wood. IEEE Transactions on Magnetics, 47: 3078–3080.
  • Oka, H., Fujita, H., 1999. Experimental study on magnetic and heating characteristics of magnetic wood. Journal of Applied Physics, 85(8): 5732-5734.
  • Özdemir, F., Ramazanoğlu, D., Tutuş, A., 2018a. Akıllı malzemeler için biyomimetik yüzey tasarımları. Journal of Bartin Faculty of Forestry, 20(3): 1-1.
  • Özdemir, F., Ramazanoğlu, D., Tutuş, A., 2018b. Göknar odunun yüzey kalitesi üzerine yaşlandırma süresi, zımparalama ve kesit yönü etkisinin araştırılması. Bartın Orman Fakültesi Dergisi, 20(2): 194-204.
  • Patachia, S., Croitoru, C., Friedrich, C., 2012. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids. Applied Surface Science, 258: 6723–6729.
  • Ramazanoğlu, D, Özdemi̇r, F., 2020a. Ön İşlem Olarak Uygulanan Ultrasonik Banyonun Ceviz Kaplamaların Özellikleri Üzerine Etkileri . Bartın Orman Fakültesi Dergisi, 22 (2), 479-484.
  • Ramazanoğlu, D., Özdemi̇r, F., 2020b. Ahşap yüzeyde akıllı nano biyomimetik hidrotermal lokasyonlama. Bartın Orman Fakültesi Dergisi , 22 (2) , 447-456.
  • Ramazanoğlu, D., Özdemir, F., 2019. Heavy metal absorbtion of wood as natural smart material. III. International Mediterranean Forest and Environment Symposium, 03-05 October, Kahramanmaraş, s. 364-368.
  • Salla, J., Pandey, K.K., Srinivas, K., 2012. Improvement of Uv resistance of wood surfaces by using ZnO nanoparticles. Polymer Degradation Stability Journal, 97: 592–596.
  • Saleem, M., Varshney, D., 2017. Influence of transition metal Cr2+ doping on structural, electrical and optical properties of Mg-Zn Aluminates. Journal of Alloys and Compounds, 708, 397-403.
  • Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36: 23–40.
  • Tarleton, E., 1992. The Role of Field-Assisted techniques in solid/liquid separation. Filtr Separat, 29(3): 246-238.
  • Vestal, R., Zhang, J.Z., 2004. Magnetic spinel ferrite nanoparticles from microemulsions ınternational. Journal of Nanotechnology, 1, 240–263.
  • Wan, P.J., Muanda, M.W., Covey, J.E., 1992. Ultrasonic Vs nonultrasonic hydrogenation in a batch reactor. Journal of the American Oil Chemists Society, 69(9): 876-879.
  • Xia, T., Li, N., Wu, Y., Liu, L., 2012. Patterned Superhydrophobic Surface Based on Pd Based Metallic Glass. Applied Physics Letters, 101(8): 081601.
  • Zhu, Z., Li, X., Zhao, Q., Shi, Y., Li, H., Chen, G., 2011. Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 Particles with Porous Superstructure Fabricated by A Modified Chemical Coprecipitation Method. Journal of Nanoparticle Research, 13: 2147–2155.

Intelligent nano biomimetic reflection of hydrothermal approach on lignocellulosic surface

Yıl 2020, Cilt: 21 Sayı: 3, 324 - 331, 30.09.2020
https://doi.org/10.18182/tjf.695613

Öz

In this study, it is aimed to increase the water and sunlight resistance, which are the weakest aspects of wood materials, which are widely and reliably used in all sectors, especially furniture. Nano formed on the surface of wood with hydrothermal approach method using ferrous sulfate heptahydrate (FeSO4·7H2O), Nickel (II) chloride hexahydrate (NiCl2.6H2O), Ethyl alcohol (EtOH), Sodium hydroxide (NaOH), and Potassium nitrate (KNO3) structures are aimed at providing anti-UV properties and preventing photodegradation. Energy diffuser x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) analyzes were performed to characterize these functioning studies. In addition, water contact angle (WCA) measurement was used to determine hydrophobization properties and UV-Vis spectrometry was used to determine anti-UV properties. The changes of color and surface parameters after functioning were examined according to ISO 2469 (2014) and ISO 4287 standards, respectively. Anti-UV property is determined in the range where UV wavelength is 200-800 nm.

Proje Numarası

Proje No: 2018/3-20 D.

Kaynakça

  • Andersson, S., Serimaa, R., Paakkari, T., Saranpaa, P., Pesonen, E., 2003. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science, 49: 531 –537.
  • Barthlott, W., Neinhuis, C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202: 1–8.
  • Borysiak, S., Doczekalska, B., 2005. X-ray diffraction study of pine wood treated with NaOH fibers. Textiles Eastern Europe, 13: 87-89.
  • Chandrapala, J., Oliver, C.M., Kentish, S., Ashokkumar, M., 2013. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Reviews International, 29(1): 67-91.
  • Donath, S., Militz, H., Mai, C., 2007. Weathering of silane treated wood. Holz als Roh-und werkstoff, 65(1): 35.
  • De La Fuente-Blanco, S., De Sarabia, E., R.F., Acosta-Aparicio, V.M., Blanco-Blanco, A., Gallego-Juarez, J.A., 2006. Food drying process by power ultrasound. Ultrasonics, 44: 523-527.
  • Eichhorn, S.J., Dufresne, A., Aranguren, M., 2010. Review: Current International Research into Cellulose Nanofibers and Nanocomposites. Journal of Materials Science, 45(1): 1–33.
  • Faux, O., 1991. Classification of Lignins From Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45: 21–28.
  • Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D., 2002. Super‐Hydrophobic surfaces: From natural to artificial. Advanced Materials, 14: 1857–1860.
  • Fatemi, D.J., Harris, V.G., Chen, M.X., Malik, S.K., Yelon, W.B., Long, G.J., and Mohan. A., 1999. X-ray absorption, neutron diffraction, and mössbauer effect studies of mnzn–ferrite processed through high-energy ball milling. Journal of Applied Physics, 85, 5172-5174.
  • Fernandes, F.A.N., Linhares, F.E.J., Rodrigues, S., 2008. Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6): 1049-1054.
  • Floros, J.D., Liang, H., 1994. Acoustically assisted diffusion through membranes and biomaterials. Food Technology, 48(12): 79-84.
  • Gan, W.T. Gao, L.K. Sun, F.Q. Jin, C.D. Lu, Y. Li J., 2015. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Applied Surface Science, 322: 565-572.
  • Gao, L., Lu, Y., Zhan, X., Sun, Q., 2015. A Robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262: 33-39.
  • Gust, J., Suwalski, J., 1994. Use of mossbauer spectroscopy to study reaction products of polyphenols and iron compounds. Corrosion, 50(5): 355-365.
  • Hakkou, M. Pétrissans, M., Zoulalian, A., 2005. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation Stability Journal, 89: 1–5.
  • Hayoz, P., Peter, W., Rogez, D., 2003. A new innovative stabilization method for the protection of natural wood. Progress in Organic Coatings, 48(2-4): 297-309.
  • He, Z., Zhao, Z., Yang, F., Yi, S., 2014. Effect of ultrasound pretreatment on wood prior to vacuum drying. Maderas Ciencia y Tecnologia, 16(4): 395-402.
  • Jirous-Rajkovic, V., Bogner, A., Radovan, D., 2004. The efficiency of various treatments in protecting wood surfaces against weathering. Surface and Coatings Technology, 87: 15–19.
  • Kumar, M., Gupta, R.C., Sharma, T., 1993. X- ray diffraction studies of acacia and eucalyptus wood chars. Journal of Materials Science, 28(3): 805-810.
  • Li, N., Xia, T., Heng, L., Liu, L., 2013. Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102(25): 251603.
  • Liang, C.Y., Marchessault, R.H., 1959. Infrared spectra of crystalline polysaccharides. Hydrogen bonds in native celluloses. Journal of Polymer Science, 37: 385–395.
  • Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q., 2014. Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung, 68: 345–351.
  • ISO 4287, 1997. Geometrical product specifications surface texture profile method terms. Definitions and surface texture parameters. International Standart Organization.
  • ISO 2469, 2014. Paper, board and pulps measurement of diffuse radiance factor diffuse reflectance factor. International Standart Organization.
  • Oka, H., Kataoka, Y., Osada, H., Aruga, Y., 2007. Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process. Journal of Magnetism and Magnetic Materials, 310: E1028–E1029.
  • Oka, H., Hamano, H., Chiba, S., 2004a. Experimental study on actuation functions of coating-type magnetic. Journal of Magnetism and Magnetic Materials, 272: E1693–E1694.
  • Oka, H., Hojo, A., Seki, K., Takashiba, T., 2002a. Wood construction and magnetic characteristics of impregnated type magnetic wood. Journal of Magnetism and Magnetic Materials, 239: 617–619.
  • Oka, H., Narita, K., Osada, H., Seki, K., 2002b. Experimental results on indoor electromagnetic wave absorber using magnetic wood. Journal of Applied Physics, 91: 7008–7010.
  • Oka, H., Tokuta, H., Namizaki, Y., Sekino N., 2004b. Effects of Humidity on The Magnetic and Woody Characteristics of Powder-Type Magnetic Wood. Journal of Magnetism and Magnetic Materials, 272: 1515–1517.
  • Oka, H., Uchidate, S., Sekino, N., 2011. Electromagnetic wave absorption characteristics of half carbonized powder-type magnetic wood. IEEE Transactions on Magnetics, 47: 3078–3080.
  • Oka, H., Fujita, H., 1999. Experimental study on magnetic and heating characteristics of magnetic wood. Journal of Applied Physics, 85(8): 5732-5734.
  • Özdemir, F., Ramazanoğlu, D., Tutuş, A., 2018a. Akıllı malzemeler için biyomimetik yüzey tasarımları. Journal of Bartin Faculty of Forestry, 20(3): 1-1.
  • Özdemir, F., Ramazanoğlu, D., Tutuş, A., 2018b. Göknar odunun yüzey kalitesi üzerine yaşlandırma süresi, zımparalama ve kesit yönü etkisinin araştırılması. Bartın Orman Fakültesi Dergisi, 20(2): 194-204.
  • Patachia, S., Croitoru, C., Friedrich, C., 2012. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids. Applied Surface Science, 258: 6723–6729.
  • Ramazanoğlu, D, Özdemi̇r, F., 2020a. Ön İşlem Olarak Uygulanan Ultrasonik Banyonun Ceviz Kaplamaların Özellikleri Üzerine Etkileri . Bartın Orman Fakültesi Dergisi, 22 (2), 479-484.
  • Ramazanoğlu, D., Özdemi̇r, F., 2020b. Ahşap yüzeyde akıllı nano biyomimetik hidrotermal lokasyonlama. Bartın Orman Fakültesi Dergisi , 22 (2) , 447-456.
  • Ramazanoğlu, D., Özdemir, F., 2019. Heavy metal absorbtion of wood as natural smart material. III. International Mediterranean Forest and Environment Symposium, 03-05 October, Kahramanmaraş, s. 364-368.
  • Salla, J., Pandey, K.K., Srinivas, K., 2012. Improvement of Uv resistance of wood surfaces by using ZnO nanoparticles. Polymer Degradation Stability Journal, 97: 592–596.
  • Saleem, M., Varshney, D., 2017. Influence of transition metal Cr2+ doping on structural, electrical and optical properties of Mg-Zn Aluminates. Journal of Alloys and Compounds, 708, 397-403.
  • Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36: 23–40.
  • Tarleton, E., 1992. The Role of Field-Assisted techniques in solid/liquid separation. Filtr Separat, 29(3): 246-238.
  • Vestal, R., Zhang, J.Z., 2004. Magnetic spinel ferrite nanoparticles from microemulsions ınternational. Journal of Nanotechnology, 1, 240–263.
  • Wan, P.J., Muanda, M.W., Covey, J.E., 1992. Ultrasonic Vs nonultrasonic hydrogenation in a batch reactor. Journal of the American Oil Chemists Society, 69(9): 876-879.
  • Xia, T., Li, N., Wu, Y., Liu, L., 2012. Patterned Superhydrophobic Surface Based on Pd Based Metallic Glass. Applied Physics Letters, 101(8): 081601.
  • Zhu, Z., Li, X., Zhao, Q., Shi, Y., Li, H., Chen, G., 2011. Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 Particles with Porous Superstructure Fabricated by A Modified Chemical Coprecipitation Method. Journal of Nanoparticle Research, 13: 2147–2155.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Doğu Ramazanoğlu 0000-0002-6356-5792

Ferhat Özdemir 0000-0002-2282-1884

Proje Numarası Proje No: 2018/3-20 D.
Yayımlanma Tarihi 30 Eylül 2020
Kabul Tarihi 12 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 21 Sayı: 3

Kaynak Göster

APA Ramazanoğlu, D., & Özdemir, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması. Turkish Journal of Forestry, 21(3), 324-331. https://doi.org/10.18182/tjf.695613
AMA Ramazanoğlu D, Özdemir F. Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması. Turkish Journal of Forestry. Eylül 2020;21(3):324-331. doi:10.18182/tjf.695613
Chicago Ramazanoğlu, Doğu, ve Ferhat Özdemir. “Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı Nano Biyomimetik yansıması”. Turkish Journal of Forestry 21, sy. 3 (Eylül 2020): 324-31. https://doi.org/10.18182/tjf.695613.
EndNote Ramazanoğlu D, Özdemir F (01 Eylül 2020) Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması. Turkish Journal of Forestry 21 3 324–331.
IEEE D. Ramazanoğlu ve F. Özdemir, “Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması”, Turkish Journal of Forestry, c. 21, sy. 3, ss. 324–331, 2020, doi: 10.18182/tjf.695613.
ISNAD Ramazanoğlu, Doğu - Özdemir, Ferhat. “Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı Nano Biyomimetik yansıması”. Turkish Journal of Forestry 21/3 (Eylül 2020), 324-331. https://doi.org/10.18182/tjf.695613.
JAMA Ramazanoğlu D, Özdemir F. Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması. Turkish Journal of Forestry. 2020;21:324–331.
MLA Ramazanoğlu, Doğu ve Ferhat Özdemir. “Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı Nano Biyomimetik yansıması”. Turkish Journal of Forestry, c. 21, sy. 3, 2020, ss. 324-31, doi:10.18182/tjf.695613.
Vancouver Ramazanoğlu D, Özdemir F. Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması. Turkish Journal of Forestry. 2020;21(3):324-31.