Araştırma Makalesi
BibTex RIS Kaynak Göster

Ahşap ve ahşap kompozit yüzeylerde nikel kaplama: Yüzey dayanıklılığının karakterizasyonu

Yıl 2023, Cilt: 24 Sayı: 4, 417 - 424, 28.12.2023
https://doi.org/10.18182/tjf.1301786

Öz

Bu çalışmada, ahşap yüzeylere nikel kaplama yapılmış ve kaplamanın performansı incelenmiştir. Odun örnekleri olarak karaçam (BP), orta yoğunlukta lifli levha (MDF) ve yonga levha (PB) kullanılmıştır. Numune yüzeyleri 200, 500 ve 1000 grit zımpara ile zımparalandıktan ve poliüretan vernik (150 g/m2) ile verniklendikten sonra püskürtme tabancası ile basınçlı hava kullanılarak nikel ile kaplanmıştır. Numuneler oda sıcaklığında 72 saat kurutulduktan sonra TS EN 15186 (2012) ve TS EN ISO 2409 (2020) 'a göre çizilme, TS EN 13329+A'ya göre aşınma analizleri yapılmıştır. Örneklerin lekelenme direnci DIN 53799 standardına göre belirlenmiştir. Elde edilen sonuçlara göre, MDF örneklerinin yüzey dayanımlarının PB ve BP numunelerinden daha düşük olduğu tespit edilmiştir. Siyah nikel kaplama için çizilme analiz sonuçları TS EN 15186 (2012)'ya göre daha düşük, ancak TS EN ISO 2409 (2020)’a göre daha yüksek çıkmıştır. Lekelenme direnci açısından kahve lekeleri dışında tüm numunelerin su, sabun, çay ve aseton lekelerine karşı dayanıklı olduğu tespit edilmiştir. Görsel incelemede numune yüzeylerinde hafif bir kahve lekesi gözlenmiştir. Sonuç olarak yüzey dayanım analizleri ışığında ahşap levhaların yüzeylerinin nikel kaplamaya uygun olmadığı sonucuna varılmıştır.

Kaynakça

  • Amer, J., 2014. Influence of multiple electroless nickel coatings on beech wood: preparation and characterization. Compos Interfaces, 21: 191–201. https://doi.org/10.1080/15685543. 2014.854615
  • Bakraji, E.H., Salman, N., Al-kassiri, H., 2001. Gamma-radiation-induced wood–plastic composites from Syrian tree species. Radiation Physics and Chemistry, 61: 137–141. https://doi.org/10.1016/S0969-806X(00)00430-8
  • Bekhta, P., Proszyk, S., Lis, B., Krystofiak, T., 2014. Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betula verrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. European Journal of Wood and Wood Products, 72: 799–808. https://doi.org/10.1007/s00107-014-0843-3
  • Bulian, F., Graystone, J., 2009. Wood Coatings: Theory and Practice. Elsevier, Amsterdam, The Netherlands.
  • Cogulet, A., Blanchet, P., Landry, V., 2018. The multifactorial aspect of wood weathering: A review based on a holistic approach of wood degradation protected by clear coating. Bioresources, 13: 2116–2138. https://doi.org/10.15376/BIORES.13.1.COGULET
  • Csanady, E., Magos, E., Tolvaj, L., 2015. Gloss of Colour Surfaces. In Quality of Machined Wood Surfaces. Springer International Publishing, Cham, Switzerland.
  • de Gennaro, G., Loiotile, A.D., Fracchiolla, R., Palmisani, J., Saracino, M.R., Tutino, M., 2015. Temporal variation of VOC emission from solvent and water based wood stains. Atmos Environ, 115: 53–61. https://doi.org/10.1016/j.atmosenv.2015.04.021
  • Demirci, Z., Sönmez, A., Budakçı, M., 2013. Effect of thermal ageing on the gloss and the adhesion strength of the wood varnish layers. Bioresources, 8(2): 1852-1867.
  • Demirkir, C., Aydin, İ., Colak, S., Colakoglu, G., 2014. Effects of plasma treatment and sanding process on surface roughness of wood veneers. Turkish Journal of Agriculture and Forestry, 38: 663–667. https://doi.org/10.3906/tar-1312-108
  • DIN 53799, 1986. Decorative laminated sheets on basis of aminoplastic resins; test method. Deutsches Institut für Normung, Berlin.
  • DIN EN 13329, 2021. Laminate floor coverings - Elements with a surface layer based on aminoplastic thermosetting resins - Specifications, requirements and test methods. Deutsches Institut für Normung, Berlin.
  • Ettwein, F., Rohrer-Vanzo, V., Langthaler, G., Werner, A., Stern, T., Moser, O., Leitner, R., Regenfelder, K., 2017. Consumer’s perception of high gloss furniture: instrumental gloss measurement versus visual gloss evaluation. European Journal of Wood and Wood Products, 75: 1009–1016. https://doi.org/10.1007/s00107-017-1197-4
  • Evans, P., Vollmer, S., Kim, J., Chan, G., Kraushaar Gibson, S., 2016. Improving the Performance of Clear Coatings on Wood through the Aggregation of Marginal Gains. Coatings, 6(4), 66. https://doi.org/10.3390/coatings6040066
  • Gascón-Garrido, P., Mainusch, N., Militz, H., Viöl, W., Mai, C., 2016. Effects of copper-plasma deposition on weathering properties of wood surfaces. Applied Surface Science, 366: 112–119. https://doi.org/10.1016/j.apsusc.2016.01.060
  • Ged, G., Obein, G., Silvestri, Z., Le Rohellec, J., Vienot, F., 2010. Recognizing real materials from their glossy appearance. Journal of Vision, 10: 18–18. https://doi.org/10.1167/10.9.18
  • Gérardin, P., 2016. New alternatives for wood preservation based on thermal and chemical modification of wood a review. Annals of Forest Science, 73: 559–570. https://doi.org/10.1007/s13595-015-0531-4
  • Hon, D.N.S., 2006. Chemical Modification of Lignocellulosic Materials. Marcel Dekker, New York, NY, USA.
  • Ikei, H., Song, C., Miyazaki, Y., 2017. Physiological effects of touching coated wood. International Journal of Environmental Research and Public Health, 14(7):773. https://doi.org/10.3390/IJERPH14070773
  • Jintian, H., Guangjie, Z., 2004. Electroless plating of wood. Journal of Beijing Forestry University, 26: 88–92.
  • Kanokwijitsilp, T., Traiperm, P., Osotchan, T., Srikhirin, T., 2016. Development of abrasion resistance SiO2 nanocomposite coating for teak wood. Progress in Organic Coatings, 93: 118–126. https://doi.org/10.1016/j.porgcoat.2015.12.004 Karmakar, R., Maji, P., Ghosh, S.K., 2021. A Review on the nickel based metal matrix composite coating. Metals and Materials International, 27: 2134–2145. https://doi.org/10.1007/ s12540-020-00872-w
  • Kesik, H.I., Akyildiz, M.H., 2015. Effect of the heat treatment on the adhesion strength of water based wood varnishes. Wood Research, 60: 987–994.
  • Kissa, E., 1995. Coffee stain on textiles. Mechanisms of staining and stain removal. Journal of the American Oil Chemists’ Society, 72: 793–797. https://doi.org/10.1007/BF02541027
  • Li, J., Wang, L., Liu, H., 2010. A new process for preparing conducting wood veneers by electroless nickel plating. Surface and Coatings Technology, 204: 1200–1205. https://doi.org/10.1016/j.surfcoat.2009.10.032
  • Li-juan, W., Jian, L., Yi-xing, L., 2005. Surface characteristics of electroless nickel plated electromagnetic shielding wood veneer. J For Res (Harbin), 16: 233–236. https://doi.org/10.1007/ BF02856822
  • Liu, H., Li, J., Wang, L., 2010. Electroless nickel plating on APTHS modified wood veneer for EMI shielding. Applied Surface Science, 257(4): 1325–1330. https://doi.org/10.1016/j.apsusc. 2010.08.060
  • Nagasawa, C., Kumagai, Y., 1989. Electromagnetic shielding particleboards with nickel-plated wood particle. Journal of Wood Science, 35: 1092–1099.
  • Nejad, M., Shafaghi, R., Ali, H., Cooper, P., 2013. Coating performance on oil-heat treated wood for flooring. Bioresources, 8: 1881–1892. https://doi.org/10.15376/BIORES.8.2.1881-1892
  • Palmisani, J., Di Gilio, A., Cisternino, E., Tutino, M., de Gennaro, G., 2020. Volatile Organic Compound (VOC) emissions from a personal care polymer-based item: Simulation of the inhalation exposure scenario indoors under actual conditions of use. Sustainability, 12(7): 2577. https://doi.org/10.3390/ su12072577
  • Pánek, M., Šimůnková, K., Novák, D., Dvořák, O., Schönfelder, O., Šedivka, P., Kobetičová, K., 2020. Caffeine and TiO2 nanoparticles treatment of spruce and beech wood for ıncreasing transparent coating resistance against UV-Radiation and mould attacks. Coatings, 10: 1141. https://doi.org/10.3390/ coatings10121141
  • Papadopoulos, A.N., Taghiyari, H.R., 2019. Innovative wood surface treatments based on nanotechnology. Coatings, 9: 866. https://doi.org/10.3390/coatings9120866
  • Pavlič, M., Petrič, M., Žigon, J., 2021. Interactions of coating and wood flooring surface system properties. Coatings, 11: 91. https://doi.org/10.3390/coatings11010091
  • Philipp, C., 2010. The future of wood coatings. Eur. Coat. J., 1: 18–21.
  • Richter, K., Feist, W.C., Knaebe, M.T., 1995. The effect of surface roughness on the performance of finishes. Part 1. Roughness characterization and stain performance. Forest Products Journal, 45(7): 91-97.
  • Rowell, R., 1984. How to Access Research Remotely. American Chemical Society, Washington, DC.
  • Rowell, R.M., 2012. Handbook of Wood Chemistry and Wood Composites. CRC Press, Boca Raton. https://doi.org/10.1201/ 9780203492437
  • Sahoo, P., Das, S.K., 2011. Tribology of electroless nickel coatings – A review. Materials & Design, 32(4): 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013
  • Salca, E.A., Krystofiak, T., Lis, B., Mazela, B., Proszyk, S., 2016. Some coating properties of black alder wood as a function of varnish type and application method. Bioresources, 11: 7580-7594. https://doi.org/10.15376/biores.11.3.7580-7594 Salca, E.A., Krystofiak, T., Lis, B., 2017. Evaluation of selected properties of alder wood as functions of sanding and coating. Coatings, 7(10): 176. https://doi.org/10.3390/coatings7100176
  • Salca, E.A., Krystofiak, T., Lis, B., Hiziroglu, S., 2021. Glossiness evaluation of coated wood surfaces as function of varnish type and exposure to different conditions. Coatings, 11(5): 558. https://doi.org/10.3390/coatings11050558
  • Sandberg, D., 2016. Additives in Wood Products-Today and Future Development. Environmental Impacts of Traditional and Innovative Forest-based Bioproducts (Ed: Kutnar, A., Muthu, S. S), Springer, Singapore, pp. 105–172. https://doi.org/10.1007/978-981-10-0655-5_4
  • Shi, C., Tang, Z., Wang, Li, Wang, Lijuan, 2017. Preparation and characterization of conductive and corrosion-resistant wood-based composite by electroless Ni–W–P plating on birch veneer. Wood Science and Technology, 51: 685–698. https://doi.org/10.1007/s00226-016-0869-2
  • Slabejová, G., Smidriaková, M., Fekiac, J., 2016. Gloss of transparent coating on beech wood surface. Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58: 37–44. https://doi.org/10.17423/afx.2016.58.2.04
  • Sönmez, A., Budakçi, M., Pelit, H., 2011. The effect of the moisture content of wood on the layer performance of water-borne varnishes. Bioresources, 6: 3166–3178.
  • TABER, A., 1994. Operating Instructions 352/D-TABER ABRASER-Model 5131 & 5151 (translation-extract from the original operating instructions), Erichsen GmbH & Co KG, Hemer, Germany.
  • TS EN 15186, 2012. Furniture-Assessment of the surface resistance to scratching, Ankara.
  • TS EN ISO 2409, 2020. Paints and varnishes-Cross-cut test, Ankara.
  • Vardi, J., Golan, A., Levy, D., Gilead, I., 2010. Tracing sickle blade levels of wear and discard patterns: a new sickle gloss quantification method. J Archaeol Sci, 37: 1716–1724. https://doi.org/10.1016/j.jas.2010.01.031
  • Vidholdová, Z., Slabejová, G., Šmidriaková, M., 2021. Quality of oil- and wax-based surface finishes on thermally modified oak wood. Coatings, 11: 143. https://doi.org/10.3390/ coatings11020143
  • Wang, L., Liu, H., 2011. Electroless nickel plating on chitosan-modified wood veneer. Bioresources, 78: 15–24.
  • Wang, L., Li, J., Liu, H., 2011. A simple process for electroless plating nickel–phosphorus film on wood veneer. Wood Sci Technol, 45: 161–167. https://doi.org/10.1007/s00226-010-0303-0
  • Wang, L., Li, J., Liu, Y., 2006. Preparation of electromagnetic shielding wood-metal composite by electroless nickel plating. J For Res (Harbin), 17: 53–56. https://doi.org/10.1007/s11676-006-0013-5
  • Wegner, T.H., Jones, P.E., 2006. Advancing cellulose-based nanotechnology. Cellulose ,13: 115–118. https://doi.org/10.1007/ s10570-006-9056-1
  • Wegner, T.H., Winandy, J.E., Ritter, M.A., 2005. 2nd International Symposium on Nanotechnology in Construction, 13-16 November, Bilbao, Spain.
  • Williams, R.S., 1999. Finishing of Wood. Wood handbook: Wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General technical report, FPL; GTR-113.
  • Zhong, Z.W., Hiziroglu, S., Chan, C.T.M., 2013. Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement, 46: 1482–1487. https://doi.org/ 10.1016/j.measurement.2012.11.041

Nickel plating on wood and wood composite surfaces: Characterization of surface durability

Yıl 2023, Cilt: 24 Sayı: 4, 417 - 424, 28.12.2023
https://doi.org/10.18182/tjf.1301786

Öz

In this study, the performance of nickel plating on wooden surfaces was investigated. Black pine (BP), medium density fiber board (MDF) and particle board (PB) were used for the wooden samples. After the sample surfaces were sanded with 200, 500 and 1000 grit sandpaper and varnished with polyurethane varnish (150 g/m2), they were nickel plated using a spray gun and compressed air. After drying the samples at room temperature for 72 h, scratch analyses were performed according to TS EN 15186 (2012) and TS EN ISO 2409 (2020) and abrasion analyses were performed according to TS EN 13329 +A. The staining resistance of the samples was determined according to the DIN 53799 standard. According to the results, surface strength of the MDF samples was lower than those of PB and BP. The scratch analysis results for the black nickel coating were lower than those for TS EN 15186 (2012). However, it was higher according to TS EN ISO 2409 (2020) scratch analysis. In terms of stain resistance, all samples were found to be resistant to water, soap, tea, and acetone stains, except for coffee stains. Upon visual examination, a slight coffee stain was observed on the sample surfaces. As a result, in the light of surface strength analysis, it was concluded that the surfaces of wooden boards are not suitable for nickel plating.

Kaynakça

  • Amer, J., 2014. Influence of multiple electroless nickel coatings on beech wood: preparation and characterization. Compos Interfaces, 21: 191–201. https://doi.org/10.1080/15685543. 2014.854615
  • Bakraji, E.H., Salman, N., Al-kassiri, H., 2001. Gamma-radiation-induced wood–plastic composites from Syrian tree species. Radiation Physics and Chemistry, 61: 137–141. https://doi.org/10.1016/S0969-806X(00)00430-8
  • Bekhta, P., Proszyk, S., Lis, B., Krystofiak, T., 2014. Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betula verrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. European Journal of Wood and Wood Products, 72: 799–808. https://doi.org/10.1007/s00107-014-0843-3
  • Bulian, F., Graystone, J., 2009. Wood Coatings: Theory and Practice. Elsevier, Amsterdam, The Netherlands.
  • Cogulet, A., Blanchet, P., Landry, V., 2018. The multifactorial aspect of wood weathering: A review based on a holistic approach of wood degradation protected by clear coating. Bioresources, 13: 2116–2138. https://doi.org/10.15376/BIORES.13.1.COGULET
  • Csanady, E., Magos, E., Tolvaj, L., 2015. Gloss of Colour Surfaces. In Quality of Machined Wood Surfaces. Springer International Publishing, Cham, Switzerland.
  • de Gennaro, G., Loiotile, A.D., Fracchiolla, R., Palmisani, J., Saracino, M.R., Tutino, M., 2015. Temporal variation of VOC emission from solvent and water based wood stains. Atmos Environ, 115: 53–61. https://doi.org/10.1016/j.atmosenv.2015.04.021
  • Demirci, Z., Sönmez, A., Budakçı, M., 2013. Effect of thermal ageing on the gloss and the adhesion strength of the wood varnish layers. Bioresources, 8(2): 1852-1867.
  • Demirkir, C., Aydin, İ., Colak, S., Colakoglu, G., 2014. Effects of plasma treatment and sanding process on surface roughness of wood veneers. Turkish Journal of Agriculture and Forestry, 38: 663–667. https://doi.org/10.3906/tar-1312-108
  • DIN 53799, 1986. Decorative laminated sheets on basis of aminoplastic resins; test method. Deutsches Institut für Normung, Berlin.
  • DIN EN 13329, 2021. Laminate floor coverings - Elements with a surface layer based on aminoplastic thermosetting resins - Specifications, requirements and test methods. Deutsches Institut für Normung, Berlin.
  • Ettwein, F., Rohrer-Vanzo, V., Langthaler, G., Werner, A., Stern, T., Moser, O., Leitner, R., Regenfelder, K., 2017. Consumer’s perception of high gloss furniture: instrumental gloss measurement versus visual gloss evaluation. European Journal of Wood and Wood Products, 75: 1009–1016. https://doi.org/10.1007/s00107-017-1197-4
  • Evans, P., Vollmer, S., Kim, J., Chan, G., Kraushaar Gibson, S., 2016. Improving the Performance of Clear Coatings on Wood through the Aggregation of Marginal Gains. Coatings, 6(4), 66. https://doi.org/10.3390/coatings6040066
  • Gascón-Garrido, P., Mainusch, N., Militz, H., Viöl, W., Mai, C., 2016. Effects of copper-plasma deposition on weathering properties of wood surfaces. Applied Surface Science, 366: 112–119. https://doi.org/10.1016/j.apsusc.2016.01.060
  • Ged, G., Obein, G., Silvestri, Z., Le Rohellec, J., Vienot, F., 2010. Recognizing real materials from their glossy appearance. Journal of Vision, 10: 18–18. https://doi.org/10.1167/10.9.18
  • Gérardin, P., 2016. New alternatives for wood preservation based on thermal and chemical modification of wood a review. Annals of Forest Science, 73: 559–570. https://doi.org/10.1007/s13595-015-0531-4
  • Hon, D.N.S., 2006. Chemical Modification of Lignocellulosic Materials. Marcel Dekker, New York, NY, USA.
  • Ikei, H., Song, C., Miyazaki, Y., 2017. Physiological effects of touching coated wood. International Journal of Environmental Research and Public Health, 14(7):773. https://doi.org/10.3390/IJERPH14070773
  • Jintian, H., Guangjie, Z., 2004. Electroless plating of wood. Journal of Beijing Forestry University, 26: 88–92.
  • Kanokwijitsilp, T., Traiperm, P., Osotchan, T., Srikhirin, T., 2016. Development of abrasion resistance SiO2 nanocomposite coating for teak wood. Progress in Organic Coatings, 93: 118–126. https://doi.org/10.1016/j.porgcoat.2015.12.004 Karmakar, R., Maji, P., Ghosh, S.K., 2021. A Review on the nickel based metal matrix composite coating. Metals and Materials International, 27: 2134–2145. https://doi.org/10.1007/ s12540-020-00872-w
  • Kesik, H.I., Akyildiz, M.H., 2015. Effect of the heat treatment on the adhesion strength of water based wood varnishes. Wood Research, 60: 987–994.
  • Kissa, E., 1995. Coffee stain on textiles. Mechanisms of staining and stain removal. Journal of the American Oil Chemists’ Society, 72: 793–797. https://doi.org/10.1007/BF02541027
  • Li, J., Wang, L., Liu, H., 2010. A new process for preparing conducting wood veneers by electroless nickel plating. Surface and Coatings Technology, 204: 1200–1205. https://doi.org/10.1016/j.surfcoat.2009.10.032
  • Li-juan, W., Jian, L., Yi-xing, L., 2005. Surface characteristics of electroless nickel plated electromagnetic shielding wood veneer. J For Res (Harbin), 16: 233–236. https://doi.org/10.1007/ BF02856822
  • Liu, H., Li, J., Wang, L., 2010. Electroless nickel plating on APTHS modified wood veneer for EMI shielding. Applied Surface Science, 257(4): 1325–1330. https://doi.org/10.1016/j.apsusc. 2010.08.060
  • Nagasawa, C., Kumagai, Y., 1989. Electromagnetic shielding particleboards with nickel-plated wood particle. Journal of Wood Science, 35: 1092–1099.
  • Nejad, M., Shafaghi, R., Ali, H., Cooper, P., 2013. Coating performance on oil-heat treated wood for flooring. Bioresources, 8: 1881–1892. https://doi.org/10.15376/BIORES.8.2.1881-1892
  • Palmisani, J., Di Gilio, A., Cisternino, E., Tutino, M., de Gennaro, G., 2020. Volatile Organic Compound (VOC) emissions from a personal care polymer-based item: Simulation of the inhalation exposure scenario indoors under actual conditions of use. Sustainability, 12(7): 2577. https://doi.org/10.3390/ su12072577
  • Pánek, M., Šimůnková, K., Novák, D., Dvořák, O., Schönfelder, O., Šedivka, P., Kobetičová, K., 2020. Caffeine and TiO2 nanoparticles treatment of spruce and beech wood for ıncreasing transparent coating resistance against UV-Radiation and mould attacks. Coatings, 10: 1141. https://doi.org/10.3390/ coatings10121141
  • Papadopoulos, A.N., Taghiyari, H.R., 2019. Innovative wood surface treatments based on nanotechnology. Coatings, 9: 866. https://doi.org/10.3390/coatings9120866
  • Pavlič, M., Petrič, M., Žigon, J., 2021. Interactions of coating and wood flooring surface system properties. Coatings, 11: 91. https://doi.org/10.3390/coatings11010091
  • Philipp, C., 2010. The future of wood coatings. Eur. Coat. J., 1: 18–21.
  • Richter, K., Feist, W.C., Knaebe, M.T., 1995. The effect of surface roughness on the performance of finishes. Part 1. Roughness characterization and stain performance. Forest Products Journal, 45(7): 91-97.
  • Rowell, R., 1984. How to Access Research Remotely. American Chemical Society, Washington, DC.
  • Rowell, R.M., 2012. Handbook of Wood Chemistry and Wood Composites. CRC Press, Boca Raton. https://doi.org/10.1201/ 9780203492437
  • Sahoo, P., Das, S.K., 2011. Tribology of electroless nickel coatings – A review. Materials & Design, 32(4): 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013
  • Salca, E.A., Krystofiak, T., Lis, B., Mazela, B., Proszyk, S., 2016. Some coating properties of black alder wood as a function of varnish type and application method. Bioresources, 11: 7580-7594. https://doi.org/10.15376/biores.11.3.7580-7594 Salca, E.A., Krystofiak, T., Lis, B., 2017. Evaluation of selected properties of alder wood as functions of sanding and coating. Coatings, 7(10): 176. https://doi.org/10.3390/coatings7100176
  • Salca, E.A., Krystofiak, T., Lis, B., Hiziroglu, S., 2021. Glossiness evaluation of coated wood surfaces as function of varnish type and exposure to different conditions. Coatings, 11(5): 558. https://doi.org/10.3390/coatings11050558
  • Sandberg, D., 2016. Additives in Wood Products-Today and Future Development. Environmental Impacts of Traditional and Innovative Forest-based Bioproducts (Ed: Kutnar, A., Muthu, S. S), Springer, Singapore, pp. 105–172. https://doi.org/10.1007/978-981-10-0655-5_4
  • Shi, C., Tang, Z., Wang, Li, Wang, Lijuan, 2017. Preparation and characterization of conductive and corrosion-resistant wood-based composite by electroless Ni–W–P plating on birch veneer. Wood Science and Technology, 51: 685–698. https://doi.org/10.1007/s00226-016-0869-2
  • Slabejová, G., Smidriaková, M., Fekiac, J., 2016. Gloss of transparent coating on beech wood surface. Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58: 37–44. https://doi.org/10.17423/afx.2016.58.2.04
  • Sönmez, A., Budakçi, M., Pelit, H., 2011. The effect of the moisture content of wood on the layer performance of water-borne varnishes. Bioresources, 6: 3166–3178.
  • TABER, A., 1994. Operating Instructions 352/D-TABER ABRASER-Model 5131 & 5151 (translation-extract from the original operating instructions), Erichsen GmbH & Co KG, Hemer, Germany.
  • TS EN 15186, 2012. Furniture-Assessment of the surface resistance to scratching, Ankara.
  • TS EN ISO 2409, 2020. Paints and varnishes-Cross-cut test, Ankara.
  • Vardi, J., Golan, A., Levy, D., Gilead, I., 2010. Tracing sickle blade levels of wear and discard patterns: a new sickle gloss quantification method. J Archaeol Sci, 37: 1716–1724. https://doi.org/10.1016/j.jas.2010.01.031
  • Vidholdová, Z., Slabejová, G., Šmidriaková, M., 2021. Quality of oil- and wax-based surface finishes on thermally modified oak wood. Coatings, 11: 143. https://doi.org/10.3390/ coatings11020143
  • Wang, L., Liu, H., 2011. Electroless nickel plating on chitosan-modified wood veneer. Bioresources, 78: 15–24.
  • Wang, L., Li, J., Liu, H., 2011. A simple process for electroless plating nickel–phosphorus film on wood veneer. Wood Sci Technol, 45: 161–167. https://doi.org/10.1007/s00226-010-0303-0
  • Wang, L., Li, J., Liu, Y., 2006. Preparation of electromagnetic shielding wood-metal composite by electroless nickel plating. J For Res (Harbin), 17: 53–56. https://doi.org/10.1007/s11676-006-0013-5
  • Wegner, T.H., Jones, P.E., 2006. Advancing cellulose-based nanotechnology. Cellulose ,13: 115–118. https://doi.org/10.1007/ s10570-006-9056-1
  • Wegner, T.H., Winandy, J.E., Ritter, M.A., 2005. 2nd International Symposium on Nanotechnology in Construction, 13-16 November, Bilbao, Spain.
  • Williams, R.S., 1999. Finishing of Wood. Wood handbook: Wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General technical report, FPL; GTR-113.
  • Zhong, Z.W., Hiziroglu, S., Chan, C.T.M., 2013. Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement, 46: 1482–1487. https://doi.org/ 10.1016/j.measurement.2012.11.041
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Orhan Kelleci 0000-0003-4501-0854

Süheyla Esin Köksal 0000-0001-7970-8412

Erol Ulutepe 0009-0001-0236-5332

Yayımlanma Tarihi 28 Aralık 2023
Kabul Tarihi 1 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 24 Sayı: 4

Kaynak Göster

APA Kelleci, O., Köksal, S. E., & Ulutepe, E. (2023). Nickel plating on wood and wood composite surfaces: Characterization of surface durability. Turkish Journal of Forestry, 24(4), 417-424. https://doi.org/10.18182/tjf.1301786
AMA Kelleci O, Köksal SE, Ulutepe E. Nickel plating on wood and wood composite surfaces: Characterization of surface durability. Turkish Journal of Forestry. Aralık 2023;24(4):417-424. doi:10.18182/tjf.1301786
Chicago Kelleci, Orhan, Süheyla Esin Köksal, ve Erol Ulutepe. “Nickel Plating on Wood and Wood Composite Surfaces: Characterization of Surface Durability”. Turkish Journal of Forestry 24, sy. 4 (Aralık 2023): 417-24. https://doi.org/10.18182/tjf.1301786.
EndNote Kelleci O, Köksal SE, Ulutepe E (01 Aralık 2023) Nickel plating on wood and wood composite surfaces: Characterization of surface durability. Turkish Journal of Forestry 24 4 417–424.
IEEE O. Kelleci, S. E. Köksal, ve E. Ulutepe, “Nickel plating on wood and wood composite surfaces: Characterization of surface durability”, Turkish Journal of Forestry, c. 24, sy. 4, ss. 417–424, 2023, doi: 10.18182/tjf.1301786.
ISNAD Kelleci, Orhan vd. “Nickel Plating on Wood and Wood Composite Surfaces: Characterization of Surface Durability”. Turkish Journal of Forestry 24/4 (Aralık 2023), 417-424. https://doi.org/10.18182/tjf.1301786.
JAMA Kelleci O, Köksal SE, Ulutepe E. Nickel plating on wood and wood composite surfaces: Characterization of surface durability. Turkish Journal of Forestry. 2023;24:417–424.
MLA Kelleci, Orhan vd. “Nickel Plating on Wood and Wood Composite Surfaces: Characterization of Surface Durability”. Turkish Journal of Forestry, c. 24, sy. 4, 2023, ss. 417-24, doi:10.18182/tjf.1301786.
Vancouver Kelleci O, Köksal SE, Ulutepe E. Nickel plating on wood and wood composite surfaces: Characterization of surface durability. Turkish Journal of Forestry. 2023;24(4):417-24.