Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of various reinforcements modified with sodium hydroxide on mechanical and physical properties of epoxy based composites

Yıl 2024, Cilt: 25 Sayı: 3, 290 - 301, 30.09.2024
https://doi.org/10.18182/tjf.1483740

Öz

In this study; physical and mechanical properties of epoxy-natural fibre composites were investigated in relation to fibre type, reinforcement structure and alkali modification of the fibres. Woven and non-woven (mat) textile surfaces were used as reinforcing materials. The reinforcement used consists of hemp and jute fibres. Modification process was applied to the fibres in 5% NaOH solution. Composite samples were produced in 8 different combinations by vacuum infusion method. Tensile strength, modulus of elasticity in tension, elongation at break, flexural strength, modulus of elasticity in bending, impact resistance, water absorption properties and density values were investigated. As a result of the study, higher tensile, flexural and impact resistance was determined in the composites produced with the use of woven fabric compared to the use of mat. On the other hand, composites produced with woven fabrics showed higher water absorption properties. When the composites produced with woven fabrics were examined; it was observed that the samples containing hemp fibre exhibited higher mechanical properties than the samples containing jute fibre. In the composites produced with mat; the samples containing jute fibre exhibited higher mechanical properties than the samples containing hemp fibre. The matrix/reinforcement ratio of composites manufactured could not be kept constant as a result of the use of vacuum infusion method in composite production and the effect of other variables. As a result of alkali modification and usage of mat, it was found that the reinforcement ratio of composites decreased. It was observed that the mechanical properties of composites improved with the increase in the reinforcement ratio, as well as the water absorption properties of the composites.

Proje Numarası

2021/3-21D

Kaynakça

  • Agarwal, K., Agarwal, K. K., Roy, S., 2014. Investigations on physical and mechanical properties of short jute fiber reinforced epoxy composites. Frontiers in Manufacturing Engineering, 2(1): 1–7.
  • Ahmed, K. S., Vijayarangan, S., Rajput, C., 2006. Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. Journal of Reinforced Plastics and Composites, 25(15): 1549–1569.
  • Ashori, A., 2008. Wood–plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99(11): 4661–4667.
  • Asim, M., Jawaid, M., Abdan, K., Ishak, M. R., 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 13(3): 426–435.
  • ASTM D 256, 2002. Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 570-98, 2018. Standard Test Method for Water Absorption of Plastics. ASTM International, West Conshohocken. PA, USA.
  • ASTM D 638, 2004. Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 790, 2004. Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, Philadelphia, PA, USA.
  • ASTM D 792, 2004. Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, USA.
  • Bahrami, M., Abenojar, J., Martínez, M. Á., 2020. Recent progress in hybrid biocomposites: mechanical properties, water absorption, and flame retardancy. Materials, 13(22): 5145.
  • Barbhuiya, A. H., Choudhury, S. U., Ismail, K., 2016. Characteristics of murta bast fiber reinforced epoxy composites. Journal of Applied Polymer Science, 133(43): 1-9.
  • Bhoopathi, R., Ramesh, M., 2020. Influence of eggshell nanoparticles and effect of alkalization on characterization of industrial hemp fibre reinforced epoxy composites. Journal of Polymers and the Environment, 28(8): 2178–2190.
  • Chaitanya, A. K., Babu, D. K., Narendra, K. B., Sumanth, K., 2016. Investigation on the mechanical properties of banana fiber reinforced polyester composites. International Journal of Engineering Research and Application, 6(9): 76–82.
  • Chozhan, C. K., Alagar, M., Sharmila, R. J., Gnanasundaram, P., 2007. Thermo mechanical behaviour of unsaturated polyester toughened epoxy–clay hybrid nanocomposites. Journal of Polymer Research, 14(4): 319–328.
  • Glória, G. O., Teles, M. C. A., Lopes, F. P. D., Vieira, C. M. F., Margem, F. M., Gomes, M. de A., Monteiro, S. N., 2017. Tensile strength of polyester composites reinforced with PALF. Journal of Materials Research and Technology, 6(4): 401–405.
  • Islam, M. R., Beg, M. D. H., Gupta, A., 2012. Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites. Journal of Thermoplastic Composite Materials, 27(7): 909–932.
  • Islam, M. S., Alauddin, M., 2012. World production of jute: A comparative analysis of Bangladesh. International Journal of Management and Business Studies, 2(1): 14–22.
  • Jahan, E., Akter, M., Hasan, M., 2020. Effect of fibre ratio and chemical treatment on the properties of pineapple leaf and betel nut husk fibre-reinforced hybrid polypropylene composites. Advances in Materials and Processing Technologies, 6(3): 637–646.
  • Jawaid, M., Abdul Khalil, H. P. S., 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1): 1–18.
  • Jin, F.-L., Li, X., Park, S.-J., 2015. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29(1): 1–11.
  • Kumar, Y., Anandh, N., 2017. Fabrication and analysis of Jute/Hemp reinforced fiber. International Journal of Advance Research, Ideas and Innovations in Technology, 3(6): 982–990.
  • Li, J., Zhang, J. G., 2011. The influence of polyethylene-polyamine surface treatment of carbon nanotube on the TPB and friction and wear behavior of thermoplastic polyimide composite. Polymer-Plastics Technology and Engineering, 50(10): 996–999.
  • Li, X., Tabil, L. G., Panigrahi, S., 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1): 25–33.
  • Mehdi, H., Mehmood, A., 2019. Theoretical modelling and experimental investigation on mechanical properties of natural fiber reinforced by epoxy resin matrices. Journal of Materials Science & Surface Engineering, 6(5): 867–871.
  • Mishra, V., Biswas, S., 2013. Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering, 51: 561–566.
  • Mohanty, A. K., Vivekanandhan, S., Pin, J.-M., Misra, M., 2018. Composites from renewable and sustainable resources: challenges and innovations. Science, 362(6414): 536–542.
  • Mwaikambo, L. Y., Tucker, N., Clark, A. J., 2007. Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromolecular Materials and Engineering, 292(9): 993–1000.
  • Petchwattana, N., Covavisaruch, S., 2014. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 11(4), 630–637.
  • Pickering, K. L., Efendy, M. G. A., Le, T. M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83: 98–112.
  • Prabhu, R., Mendonca, S., D’Souza, R., Bhat, T. N., 2022. Effect of water absorption on the mechanical properties of alkaline treated bamboo and flax fiber reinforced epoxy composites. Trends in Sciences, 19(18): 5779–5779.
  • Ray, D., Sarkar, B. K., Rana, A. K., Bose, N. R., 2001. Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2): 129–135.
  • Saba, N., Alothman, O. Y., Almutairi, Z., Jawaid, M., Ghori, W., 2019. Date palm reinforced epoxy composites: tensile, impact and morphological properties. Journal of Materials Research and Technology, 8(5): 3959–3969.
  • Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M., Hassan, A., 2015. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6): 447–470.
  • Saba, N., Tahir, P. M., Jawaid, M., 2014. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers, 6(8): 2247–2273.
  • Sadaf, S. M., Siddik, M., Ahsan, Q., 2011. Physical and mechanical properties of jute mat reinforced epoxy composites. ASEAN Journal on Science and Technology for Development, 28(2): 115-121.
  • Scarponi, C., Schiavoni, E., Sánchez-Sáez, S., Barbero, E. J., Sarasini, F., 2012. Polypropylene/Hemp fabric reinforced composites: manufacturing and mechanical behaviour. Journal of Biobased Materials and Bioenergy, 6(4): 361–369.
  • Selver, E., Ucar, N., Gulmez, T., 2017. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. Journal of Industrial Textiles, 48(2): 494–520.
  • Sinha, A. K., Narang, H. K., Bhattacharya, S., 2017. Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 37(9): 879–895.
  • Song, X., Zheng, S., Huang, J., Zhu, P., Guo, Q., 2000. Miscibility, morphology and fracture toughness of tetrafunctional epoxy resin/poly (styrene-co-acrylonitrile) blends. Journal of Materials Science, 35(22): 5613–5619.
  • Thakur, V. K., Thakur, M. K., 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109: 102–117.
  • Thomsen, A. B., Bohn, V., Nielsen, K., Pallesen, B., Orgensen, M. S., 2000. Effects of chemical-physical pre-treatment processes on hemp fibers, Bioresource Hemp, 1-6.
  • Weikart, C. M., Miyama, M., Yasuda, H. K., 1999. Surface modification of conventional polymers by depositing plasma polymers of Trimethylsilane and of Trimethylsilane + O2. Journal of Colloid and Interface Science, 211(1): 28–38.
  • Yew, B. S., Muhamad, M., Mohamed, S. B., Wee, F. H., 2019. Effect of alkaline treatment on structural characterisation, thermal degradation and water absorption ability of coir fibre polymer composites. Sains Malaysiana, 48(3): 653–659.

Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi

Yıl 2024, Cilt: 25 Sayı: 3, 290 - 301, 30.09.2024
https://doi.org/10.18182/tjf.1483740

Öz

Bu çalışmada; epoksi- doğal lif kompozitlerinin fiziksel ve mekanik özellikleri üzerine lif türü, güçlendirici malzeme yapısı ve kullanılan liflerin alkali ile modifikasyonu işleminin etkileri incelenmiştir. Güçlendirici malzeme olarak; dokuma ve dokuma olmayan (keçe) yapıdaki tekstil yüzeyler kullanılmıştır. Kullanılan güçlendirici malzemeler kenevir ve jüt liflerinden elde edilmiştir. Liflere %5 NaOH solüsyonunda modifikasyon işlemi uygulanmıştır. Kompozit örnekler; vakum infüzyon yöntemi ile 8 farklı kombinasyonda üretilmiştir. Üretilen örneklerin; çekme direnci, çekmede elastikiyet modülü, kopmada uzama, eğilme direnci, eğilmede elastikiyet modülü, darbe direnci, su alma özellikleri ve yoğunluk değerleri ölçülmüştür. Yapılan çalışma sonucunda; üretilen kompozitlerde dokuma kumaş kullanımı ile keçe kullanımına kıyasla daha yüksek çekme, eğilme ve darbe direnci tespit edilmiştir. Buna karşılık dokuma kumaş ile üretilen kompozitler daha yüksek oranda su alma özellikleri göstermiştir. Dokuma kumaş ile üretilen kompozitler incelendiğinde; kenevir lifi içeren örneklerin, jüt lifi içeren örneklere göre daha yüksek mekanik özellikler sergilediği görülmüştür. Keçe ile üretilen kompozitlerde ise; jüt lifi içeren örnekler, kenevir lifi içeren örneklere göre daha yüksek mekanik özellikler sergilemiştir. Kompozit üretiminde vakum infüzyon yönteminin kullanılması ve diğer değişkenlerin etkisi sonucunda elde edilen grupların matris/güçlendirici malzeme oranı sabit tutulamamıştır. Alkali modifikasyonu ve keçe kullanımı sonucunda üretilen kompozitlerin içerdiği güçlendirici malzeme oranında azalma meydana gelmiştir. Kompozit örneklerin içerdiği güçlendirici malzeme oranının yükselmesiyle kompozitlerin mekanik özelliklerinin yükseldiği, bununla birlikte su alma özelliklerinin de arttığı gözlemlenmiştir.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri koordinasyon Birimi

Proje Numarası

2021/3-21D

Teşekkür

Bu çalışma, Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri koordinasyon Birimi tarafından “2021/3-21D Doktora Projesi” kapsamında desteklenmiştir.

Kaynakça

  • Agarwal, K., Agarwal, K. K., Roy, S., 2014. Investigations on physical and mechanical properties of short jute fiber reinforced epoxy composites. Frontiers in Manufacturing Engineering, 2(1): 1–7.
  • Ahmed, K. S., Vijayarangan, S., Rajput, C., 2006. Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. Journal of Reinforced Plastics and Composites, 25(15): 1549–1569.
  • Ashori, A., 2008. Wood–plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99(11): 4661–4667.
  • Asim, M., Jawaid, M., Abdan, K., Ishak, M. R., 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 13(3): 426–435.
  • ASTM D 256, 2002. Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 570-98, 2018. Standard Test Method for Water Absorption of Plastics. ASTM International, West Conshohocken. PA, USA.
  • ASTM D 638, 2004. Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 790, 2004. Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, Philadelphia, PA, USA.
  • ASTM D 792, 2004. Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, USA.
  • Bahrami, M., Abenojar, J., Martínez, M. Á., 2020. Recent progress in hybrid biocomposites: mechanical properties, water absorption, and flame retardancy. Materials, 13(22): 5145.
  • Barbhuiya, A. H., Choudhury, S. U., Ismail, K., 2016. Characteristics of murta bast fiber reinforced epoxy composites. Journal of Applied Polymer Science, 133(43): 1-9.
  • Bhoopathi, R., Ramesh, M., 2020. Influence of eggshell nanoparticles and effect of alkalization on characterization of industrial hemp fibre reinforced epoxy composites. Journal of Polymers and the Environment, 28(8): 2178–2190.
  • Chaitanya, A. K., Babu, D. K., Narendra, K. B., Sumanth, K., 2016. Investigation on the mechanical properties of banana fiber reinforced polyester composites. International Journal of Engineering Research and Application, 6(9): 76–82.
  • Chozhan, C. K., Alagar, M., Sharmila, R. J., Gnanasundaram, P., 2007. Thermo mechanical behaviour of unsaturated polyester toughened epoxy–clay hybrid nanocomposites. Journal of Polymer Research, 14(4): 319–328.
  • Glória, G. O., Teles, M. C. A., Lopes, F. P. D., Vieira, C. M. F., Margem, F. M., Gomes, M. de A., Monteiro, S. N., 2017. Tensile strength of polyester composites reinforced with PALF. Journal of Materials Research and Technology, 6(4): 401–405.
  • Islam, M. R., Beg, M. D. H., Gupta, A., 2012. Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites. Journal of Thermoplastic Composite Materials, 27(7): 909–932.
  • Islam, M. S., Alauddin, M., 2012. World production of jute: A comparative analysis of Bangladesh. International Journal of Management and Business Studies, 2(1): 14–22.
  • Jahan, E., Akter, M., Hasan, M., 2020. Effect of fibre ratio and chemical treatment on the properties of pineapple leaf and betel nut husk fibre-reinforced hybrid polypropylene composites. Advances in Materials and Processing Technologies, 6(3): 637–646.
  • Jawaid, M., Abdul Khalil, H. P. S., 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1): 1–18.
  • Jin, F.-L., Li, X., Park, S.-J., 2015. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29(1): 1–11.
  • Kumar, Y., Anandh, N., 2017. Fabrication and analysis of Jute/Hemp reinforced fiber. International Journal of Advance Research, Ideas and Innovations in Technology, 3(6): 982–990.
  • Li, J., Zhang, J. G., 2011. The influence of polyethylene-polyamine surface treatment of carbon nanotube on the TPB and friction and wear behavior of thermoplastic polyimide composite. Polymer-Plastics Technology and Engineering, 50(10): 996–999.
  • Li, X., Tabil, L. G., Panigrahi, S., 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1): 25–33.
  • Mehdi, H., Mehmood, A., 2019. Theoretical modelling and experimental investigation on mechanical properties of natural fiber reinforced by epoxy resin matrices. Journal of Materials Science & Surface Engineering, 6(5): 867–871.
  • Mishra, V., Biswas, S., 2013. Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering, 51: 561–566.
  • Mohanty, A. K., Vivekanandhan, S., Pin, J.-M., Misra, M., 2018. Composites from renewable and sustainable resources: challenges and innovations. Science, 362(6414): 536–542.
  • Mwaikambo, L. Y., Tucker, N., Clark, A. J., 2007. Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromolecular Materials and Engineering, 292(9): 993–1000.
  • Petchwattana, N., Covavisaruch, S., 2014. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 11(4), 630–637.
  • Pickering, K. L., Efendy, M. G. A., Le, T. M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83: 98–112.
  • Prabhu, R., Mendonca, S., D’Souza, R., Bhat, T. N., 2022. Effect of water absorption on the mechanical properties of alkaline treated bamboo and flax fiber reinforced epoxy composites. Trends in Sciences, 19(18): 5779–5779.
  • Ray, D., Sarkar, B. K., Rana, A. K., Bose, N. R., 2001. Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2): 129–135.
  • Saba, N., Alothman, O. Y., Almutairi, Z., Jawaid, M., Ghori, W., 2019. Date palm reinforced epoxy composites: tensile, impact and morphological properties. Journal of Materials Research and Technology, 8(5): 3959–3969.
  • Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M., Hassan, A., 2015. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6): 447–470.
  • Saba, N., Tahir, P. M., Jawaid, M., 2014. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers, 6(8): 2247–2273.
  • Sadaf, S. M., Siddik, M., Ahsan, Q., 2011. Physical and mechanical properties of jute mat reinforced epoxy composites. ASEAN Journal on Science and Technology for Development, 28(2): 115-121.
  • Scarponi, C., Schiavoni, E., Sánchez-Sáez, S., Barbero, E. J., Sarasini, F., 2012. Polypropylene/Hemp fabric reinforced composites: manufacturing and mechanical behaviour. Journal of Biobased Materials and Bioenergy, 6(4): 361–369.
  • Selver, E., Ucar, N., Gulmez, T., 2017. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. Journal of Industrial Textiles, 48(2): 494–520.
  • Sinha, A. K., Narang, H. K., Bhattacharya, S., 2017. Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 37(9): 879–895.
  • Song, X., Zheng, S., Huang, J., Zhu, P., Guo, Q., 2000. Miscibility, morphology and fracture toughness of tetrafunctional epoxy resin/poly (styrene-co-acrylonitrile) blends. Journal of Materials Science, 35(22): 5613–5619.
  • Thakur, V. K., Thakur, M. K., 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109: 102–117.
  • Thomsen, A. B., Bohn, V., Nielsen, K., Pallesen, B., Orgensen, M. S., 2000. Effects of chemical-physical pre-treatment processes on hemp fibers, Bioresource Hemp, 1-6.
  • Weikart, C. M., Miyama, M., Yasuda, H. K., 1999. Surface modification of conventional polymers by depositing plasma polymers of Trimethylsilane and of Trimethylsilane + O2. Journal of Colloid and Interface Science, 211(1): 28–38.
  • Yew, B. S., Muhamad, M., Mohamed, S. B., Wee, F. H., 2019. Effect of alkaline treatment on structural characterisation, thermal degradation and water absorption ability of coir fibre polymer composites. Sains Malaysiana, 48(3): 653–659.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ormancılık (Diğer)
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Mustafa Kadir Yalman 0009-0001-0901-4690

İlkay Atar 0000-0001-9527-1791

Fatih Mengeloğlu 0000-0002-2614-3662

Proje Numarası 2021/3-21D
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 14 Mayıs 2024
Kabul Tarihi 17 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 3

Kaynak Göster

APA Yalman, M. K., Atar, İ., & Mengeloğlu, F. (2024). Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi. Turkish Journal of Forestry, 25(3), 290-301. https://doi.org/10.18182/tjf.1483740
AMA Yalman MK, Atar İ, Mengeloğlu F. Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi. Turkish Journal of Forestry. Eylül 2024;25(3):290-301. doi:10.18182/tjf.1483740
Chicago Yalman, Mustafa Kadir, İlkay Atar, ve Fatih Mengeloğlu. “Epoksi Esaslı Kompozitlerin Mekanik Ve Fiziksel özellikleri üzerine Sodyum Hidroksit Ile Modifiye Edilmiş Farklı güçlendirici Malzemelerin Etkisi”. Turkish Journal of Forestry 25, sy. 3 (Eylül 2024): 290-301. https://doi.org/10.18182/tjf.1483740.
EndNote Yalman MK, Atar İ, Mengeloğlu F (01 Eylül 2024) Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi. Turkish Journal of Forestry 25 3 290–301.
IEEE M. K. Yalman, İ. Atar, ve F. Mengeloğlu, “Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi”, Turkish Journal of Forestry, c. 25, sy. 3, ss. 290–301, 2024, doi: 10.18182/tjf.1483740.
ISNAD Yalman, Mustafa Kadir vd. “Epoksi Esaslı Kompozitlerin Mekanik Ve Fiziksel özellikleri üzerine Sodyum Hidroksit Ile Modifiye Edilmiş Farklı güçlendirici Malzemelerin Etkisi”. Turkish Journal of Forestry 25/3 (Eylül 2024), 290-301. https://doi.org/10.18182/tjf.1483740.
JAMA Yalman MK, Atar İ, Mengeloğlu F. Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi. Turkish Journal of Forestry. 2024;25:290–301.
MLA Yalman, Mustafa Kadir vd. “Epoksi Esaslı Kompozitlerin Mekanik Ve Fiziksel özellikleri üzerine Sodyum Hidroksit Ile Modifiye Edilmiş Farklı güçlendirici Malzemelerin Etkisi”. Turkish Journal of Forestry, c. 25, sy. 3, 2024, ss. 290-01, doi:10.18182/tjf.1483740.
Vancouver Yalman MK, Atar İ, Mengeloğlu F. Epoksi esaslı kompozitlerin mekanik ve fiziksel özellikleri üzerine sodyum hidroksit ile modifiye edilmiş farklı güçlendirici malzemelerin etkisi. Turkish Journal of Forestry. 2024;25(3):290-301.