Research Article
BibTex RIS Cite

STABILITY ANALYSIS OF SOME SOYBEAN GENOTYPES USING PARAMETRIC AND NONPARAMETRIC METHODS IN MULTI-ENVIRONMENTS

Year 2021, Volume: 26 Issue: 2, 262 - 271, 27.12.2021
https://doi.org/10.17557/tjfc.1033363

Abstract

Seed yields of 14 soybean genotypes were evaluated in four locations i.e. Adana, Şanlıurfa, Antalya and İzmir under second crop conditions through summer seasons from 2014 to 2016. The aims of research are to estimate the stability parameters in terms of seed yield of 14 soybean genotypes by used different stability analysis methods across eleven environmental conditions and to study interrelationship among these stability methods. The analysis of variance for seed yield revealed that the genotypes and the environments as well as the genotype x environment interactions (GEI) were statistically significant at P<0.01. Environmental effects were contributed of 51.04% to the total sum of squares whereas GEI and genotype effects were 20.8% and 2.59%, respectively. According to most of stability methods, BATEM 223, BATEM 306, BATEM 317 and KASM 02 were determined to be stable genotypes. These genotypes demonstrated superior adaptability with high yield performances in many environments. Results of correlation analysis indicated that seed yield was positively and significantly correlated with Di2 (P<0.01), Si(6) (P<0.05) and TOP (P<0.01) and showed a negative and significant correlation with Pi (P<0.01) and RS (P<0.01). In addition, the coefficient of regression (bi) had positively significant associated with CVi, αi (P<0.01) and Ri2 (P<0.05).

Supporting Institution

Tübitak

Project Number

113O082

Thanks

The authors thank TUBITAK for their financial support.

References

  • Al-Assily, Kh.A. S.M. Nasr, , Kh. A. Ali. 1996. Genotype × environment interaction, yield stability and adaptability for soybean (Glycine max L.). J. Agric. Sci. Mansoura Univ., 21: 3779-3789.
  • Becker, H.C., J. Leon. 1988. Stability analysis in plant breeding. Plant Breed., 101: 1-23.
  • Carvalho, C.G.P., C.A.A. Arias, J.F.F. Toledo, L.A. Almeida, R.A.S. Kiihl, M.F. Oliveira. 2002. Adaptability and stability study of soybean lines developed for high yield in Paraná State using four methodologies. Crop Breeding and Applied Biotechnology, 2(2): 247-256.
  • Chaudhary, K.R., J. Wu. 2012. Stability analysis for yield and seed quality of soybean [Glycine max (L.) Merril] across different environments in eastern South Dakota. Conference on Applied Statistics in Agriculture, Kansas State University.
  • Cheelo, P., D. Lungu, M. Mwala. 2017. GGE biplot analysis for identification of ideal soybean [Glycine max L. Merrill] test and production locations in Zambia. Journal of Experimental Agriculture International, 15(3): 1-15.
  • Cruz, C.D. 2006. Programa Genes – Estatística Experimental e Matrizes. Viçosa, MG: UFV.
  • Cruz, C.D., P.C.S. Carneiro. 2006. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 2: 585p
  • Cruz C.D., A.J. Regazzi, P.C.S. Carneiro. (2012). Biometric models applied to genetic improvement. Viçosa, MG: UFV, 1: 514.
  • Cucolotto, M., V.C. Pipolo, D.D. Garbuglio, N.S.F. Junior, D. Destro, M.K. Kamikoga. 2007. Genotype x environment interaction in soybean: evaluation through three methodologies. Crop Breeding and Applied Biotechnology, 7: 270-277.
  • Eberhart, S.A., W.A. Russelli. 1966. Stability parameters for comparing varieties. Crop Sci., 6: 36-40.
  • Edugbo, R.E., G.E. Nwofia, L.S. Fayeun. 2015. An assessment of soybean (Glycine max L. Merrill) grain yield in different environments using AMMI and GGE biplot models in humidorest fringes of southeast Nigeria. Agricultura Tropica et Subtropica, 48(3-4): 82-90.
  • EL-Refaey, R.A., E.H. EL-Seidy, M.A. El-Borai, T.M. Abu Sein. 2013. Phenotypic stability parameters of yield for some soybean genotypes. Egypt Journal of Plant Breed., 17(2): 455-466.
  • Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica, 47: 57-64.
  • Francis, T.R., L.W. Kannenberg. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can J. Plant Sci., 58: 1029-1034.
  • Freiria, G.H., L.S.A. Gonçalves, F.F. Furlan, N.S.F. Junior, W.F. Lima, C.E.C. Prete. 2018. Statistical methods to study adaptability and stability in breeding lines of food-type soybeans. Bragantia, 77(2): 253-264.
  • Gurmu, F., H. Mohammed, G. Alemaw. 2009. Genotype and environment interaction and stability of soybean for grain yield and nutritional quality. Afr. Crop Sci. J., 17: 87-99.
  • Hernandez, C.M., J. Crossa, A. Castillo. 1993. The area under the function: An index for selecting desirable genotypes. Theor. Appl. Genet., 87: 409-415.
  • Hossain, M.A., L. Rahman, A.K.M. Shamsuddin. 2003. Genotype and environment interaction and stability analysis in soybean. J. Biol. Sci., 3: 1026-1031.
  • Huehn, M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol., 10: 112-117.
  • Ilker, E., M. Kocaturk, A. Kadiroglu, M. Altınbaş, A. Yıldırım, G. Ozturk, H. Yıldız. 2018. Stability analyses for double cropping in soybean [(Glycine max L.) Merrill]. Turkish Journal of Field Crops, 23(2): 80-84.
  • Kang, M.S., J.D. Miller, L.L. Darrah. 1987. A note on relationship between stability variance and ecovalence. J. Hered., 78: 107.
  • Kang, M.S. 1988. A rank-sum method for selecting high yielding, stable corn genotypes. Cereal Research Communications, 16: 113-115.
  • Lin, C.S., M.R. Binns, L.P. Lefkovitch. 1986. Stability analysis: Where do we stand? Crop Sci., 26: 894-900.
  • Lin, C.S., M.R. Binns. 1988. A method of analysing cultivar × location × year experiments: A new stability parameter. Theor. Appl. Genet., 76: 425-430.
  • Morsy, A.R., W.M. Fares, A.M. El-Garhy, A.A.M. Ashrie. 2012. Evaluation of regression models and variance measures as stability parameters of some soybean genotypes. Alex. J. Agric. Res., 57(2): 141-152.
  • Morsy, A.R., W.M. Fares, S.B. Ragheb, M.A. Ibrahim. 2015. Stability analysis of some soybean genotypes using a simplified statistical model. J. Plant Production, Mansoura Univ., 6 (12): 1975 – 1990.
  • Nassar, R., M. Huehn. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43: 45-53.
  • Oliveira, A.B., J.B. Duarte, J.B. Pinheiro. 2003. Emprego da análise AMMI na avaliação da estabilidade produtiva em soja. Pesqui. Agropecu. Bras., 38: 357-364
  • Oliveira, L.G., O.T. Hamawaki, G.A. Simon, L.B. Sousa, A.P.O. Nogueira, D.F. Rezende, C.D.L. Hamawaki. 2012. Adaptability and stability of soybean yield in two soybean producing regions. Biosci. J., Uberlândia, 28(6): 852-861.
  • SAS Institute. 1999. SAS/STAT user’s guide. 8. Version. SAS Institute Inc. Cary. NC.
  • Pinthus, M.J. 1973. Estimates of genotypic value: a proposed method. Euphytica, 22: 345–351.
  • Plaisted, R.L., L.C.A. Peterson. 1959. Technique for evaluating the ability of selections and yield consistency in different locations or seasons. Am. Potato J., 36: 381-385.
  • Primomo, V.S., D.E. Falk, G.R. Ablett, J.W. Taner, I. Rajcan. 2002. Genotype x environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci., 42: 37-44.
  • Ramalho, M.A.P., D.F. Ferreira, A.C. de. Oliveira. 2012. Experimentação em genética e melhoramento de plantas. Lavras: Ufla, 305p.
  • Sousa, J.L.M., M. de M. Rocha, K.J.D. Silva, A.C. das Neves, R.R. de. Sousa. 2015. Potencial de genótipos de feijão-caupi para o mercado de vagens e grãos verdes. Pesquisa Agropecuária Brasileira, 50: 392-398.
  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29: 237-245.
  • Silveira, D.A., L.F. Pricinotto, M. Nardino, C.A. Bahry, C.E.C. Prete, L. Cruz. 2016. Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Paraná state using the AMMI and Eberhart and Russel methods. Semina, 37: 3973-3982.
  • Steel, R.G.D., J.H. Torrie. 1980. Principles and Procedures of Statistics. A biometrical approach. 2nd edition. McGraw-Hill, New York, USA, pp. 20-90.
  • Tadesse, M., A. Elmi, T. Mebrahtu, E. Abdulkadir. 1997. Stability analysis of vegetable soybean. Soybean Genetics Newsletter, 24: 214-216.
  • Tai, G.C.C. 1971. Genotypic stability analysis and its application to potato regional trials. Crop Sci., 11: 184–190.
  • Wricke, G. 1962. On a method of understanding the biological diversity in field research. Z. Pflanzenzucht, 47: 92-46.
  • Wricke, G., W.E. Weber. 1980. Erweiterte Analyse von Wechselwirkungen in Versuchsserien. In: W. Köpcke and K. Überla (Eds), Biometrie-heute und morgen. Springer Verlag 094 Berlin-Heidelberg-New York, pp. 87–95.
  • Yothasiri, A., T. Somwang, Y. Amnuay, S. Teera. 2000. Stability of soybean genotypes in Central Plain Thailand. Kasetsart J. Nat. Sci., 34: 315-322.
  • Yue, G.L., K.L. Roozeboom, W.T. Schapaugh, G.H. Liang. 1997. Evaluation of soybean cultivars using parametric and nonparametric stability estimates. Plant Breeding, 116: 271-275.
Year 2021, Volume: 26 Issue: 2, 262 - 271, 27.12.2021
https://doi.org/10.17557/tjfc.1033363

Abstract

Project Number

113O082

References

  • Al-Assily, Kh.A. S.M. Nasr, , Kh. A. Ali. 1996. Genotype × environment interaction, yield stability and adaptability for soybean (Glycine max L.). J. Agric. Sci. Mansoura Univ., 21: 3779-3789.
  • Becker, H.C., J. Leon. 1988. Stability analysis in plant breeding. Plant Breed., 101: 1-23.
  • Carvalho, C.G.P., C.A.A. Arias, J.F.F. Toledo, L.A. Almeida, R.A.S. Kiihl, M.F. Oliveira. 2002. Adaptability and stability study of soybean lines developed for high yield in Paraná State using four methodologies. Crop Breeding and Applied Biotechnology, 2(2): 247-256.
  • Chaudhary, K.R., J. Wu. 2012. Stability analysis for yield and seed quality of soybean [Glycine max (L.) Merril] across different environments in eastern South Dakota. Conference on Applied Statistics in Agriculture, Kansas State University.
  • Cheelo, P., D. Lungu, M. Mwala. 2017. GGE biplot analysis for identification of ideal soybean [Glycine max L. Merrill] test and production locations in Zambia. Journal of Experimental Agriculture International, 15(3): 1-15.
  • Cruz, C.D. 2006. Programa Genes – Estatística Experimental e Matrizes. Viçosa, MG: UFV.
  • Cruz, C.D., P.C.S. Carneiro. 2006. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 2: 585p
  • Cruz C.D., A.J. Regazzi, P.C.S. Carneiro. (2012). Biometric models applied to genetic improvement. Viçosa, MG: UFV, 1: 514.
  • Cucolotto, M., V.C. Pipolo, D.D. Garbuglio, N.S.F. Junior, D. Destro, M.K. Kamikoga. 2007. Genotype x environment interaction in soybean: evaluation through three methodologies. Crop Breeding and Applied Biotechnology, 7: 270-277.
  • Eberhart, S.A., W.A. Russelli. 1966. Stability parameters for comparing varieties. Crop Sci., 6: 36-40.
  • Edugbo, R.E., G.E. Nwofia, L.S. Fayeun. 2015. An assessment of soybean (Glycine max L. Merrill) grain yield in different environments using AMMI and GGE biplot models in humidorest fringes of southeast Nigeria. Agricultura Tropica et Subtropica, 48(3-4): 82-90.
  • EL-Refaey, R.A., E.H. EL-Seidy, M.A. El-Borai, T.M. Abu Sein. 2013. Phenotypic stability parameters of yield for some soybean genotypes. Egypt Journal of Plant Breed., 17(2): 455-466.
  • Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica, 47: 57-64.
  • Francis, T.R., L.W. Kannenberg. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can J. Plant Sci., 58: 1029-1034.
  • Freiria, G.H., L.S.A. Gonçalves, F.F. Furlan, N.S.F. Junior, W.F. Lima, C.E.C. Prete. 2018. Statistical methods to study adaptability and stability in breeding lines of food-type soybeans. Bragantia, 77(2): 253-264.
  • Gurmu, F., H. Mohammed, G. Alemaw. 2009. Genotype and environment interaction and stability of soybean for grain yield and nutritional quality. Afr. Crop Sci. J., 17: 87-99.
  • Hernandez, C.M., J. Crossa, A. Castillo. 1993. The area under the function: An index for selecting desirable genotypes. Theor. Appl. Genet., 87: 409-415.
  • Hossain, M.A., L. Rahman, A.K.M. Shamsuddin. 2003. Genotype and environment interaction and stability analysis in soybean. J. Biol. Sci., 3: 1026-1031.
  • Huehn, M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol., 10: 112-117.
  • Ilker, E., M. Kocaturk, A. Kadiroglu, M. Altınbaş, A. Yıldırım, G. Ozturk, H. Yıldız. 2018. Stability analyses for double cropping in soybean [(Glycine max L.) Merrill]. Turkish Journal of Field Crops, 23(2): 80-84.
  • Kang, M.S., J.D. Miller, L.L. Darrah. 1987. A note on relationship between stability variance and ecovalence. J. Hered., 78: 107.
  • Kang, M.S. 1988. A rank-sum method for selecting high yielding, stable corn genotypes. Cereal Research Communications, 16: 113-115.
  • Lin, C.S., M.R. Binns, L.P. Lefkovitch. 1986. Stability analysis: Where do we stand? Crop Sci., 26: 894-900.
  • Lin, C.S., M.R. Binns. 1988. A method of analysing cultivar × location × year experiments: A new stability parameter. Theor. Appl. Genet., 76: 425-430.
  • Morsy, A.R., W.M. Fares, A.M. El-Garhy, A.A.M. Ashrie. 2012. Evaluation of regression models and variance measures as stability parameters of some soybean genotypes. Alex. J. Agric. Res., 57(2): 141-152.
  • Morsy, A.R., W.M. Fares, S.B. Ragheb, M.A. Ibrahim. 2015. Stability analysis of some soybean genotypes using a simplified statistical model. J. Plant Production, Mansoura Univ., 6 (12): 1975 – 1990.
  • Nassar, R., M. Huehn. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43: 45-53.
  • Oliveira, A.B., J.B. Duarte, J.B. Pinheiro. 2003. Emprego da análise AMMI na avaliação da estabilidade produtiva em soja. Pesqui. Agropecu. Bras., 38: 357-364
  • Oliveira, L.G., O.T. Hamawaki, G.A. Simon, L.B. Sousa, A.P.O. Nogueira, D.F. Rezende, C.D.L. Hamawaki. 2012. Adaptability and stability of soybean yield in two soybean producing regions. Biosci. J., Uberlândia, 28(6): 852-861.
  • SAS Institute. 1999. SAS/STAT user’s guide. 8. Version. SAS Institute Inc. Cary. NC.
  • Pinthus, M.J. 1973. Estimates of genotypic value: a proposed method. Euphytica, 22: 345–351.
  • Plaisted, R.L., L.C.A. Peterson. 1959. Technique for evaluating the ability of selections and yield consistency in different locations or seasons. Am. Potato J., 36: 381-385.
  • Primomo, V.S., D.E. Falk, G.R. Ablett, J.W. Taner, I. Rajcan. 2002. Genotype x environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci., 42: 37-44.
  • Ramalho, M.A.P., D.F. Ferreira, A.C. de. Oliveira. 2012. Experimentação em genética e melhoramento de plantas. Lavras: Ufla, 305p.
  • Sousa, J.L.M., M. de M. Rocha, K.J.D. Silva, A.C. das Neves, R.R. de. Sousa. 2015. Potencial de genótipos de feijão-caupi para o mercado de vagens e grãos verdes. Pesquisa Agropecuária Brasileira, 50: 392-398.
  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29: 237-245.
  • Silveira, D.A., L.F. Pricinotto, M. Nardino, C.A. Bahry, C.E.C. Prete, L. Cruz. 2016. Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Paraná state using the AMMI and Eberhart and Russel methods. Semina, 37: 3973-3982.
  • Steel, R.G.D., J.H. Torrie. 1980. Principles and Procedures of Statistics. A biometrical approach. 2nd edition. McGraw-Hill, New York, USA, pp. 20-90.
  • Tadesse, M., A. Elmi, T. Mebrahtu, E. Abdulkadir. 1997. Stability analysis of vegetable soybean. Soybean Genetics Newsletter, 24: 214-216.
  • Tai, G.C.C. 1971. Genotypic stability analysis and its application to potato regional trials. Crop Sci., 11: 184–190.
  • Wricke, G. 1962. On a method of understanding the biological diversity in field research. Z. Pflanzenzucht, 47: 92-46.
  • Wricke, G., W.E. Weber. 1980. Erweiterte Analyse von Wechselwirkungen in Versuchsserien. In: W. Köpcke and K. Überla (Eds), Biometrie-heute und morgen. Springer Verlag 094 Berlin-Heidelberg-New York, pp. 87–95.
  • Yothasiri, A., T. Somwang, Y. Amnuay, S. Teera. 2000. Stability of soybean genotypes in Central Plain Thailand. Kasetsart J. Nat. Sci., 34: 315-322.
  • Yue, G.L., K.L. Roozeboom, W.T. Schapaugh, G.H. Liang. 1997. Evaluation of soybean cultivars using parametric and nonparametric stability estimates. Plant Breeding, 116: 271-275.
There are 44 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Pınar Cubukcu 0000-0001-8949-0832

Mehmet Kocatürk This is me 0000-0001-8385-1668

Emre İlker 0000-0002-4870-3907

Abdullah Kadiroğlu 0000-0002-4727-9585

Yasemin Vurarak 0000-0003-1048-788X

Yeşim Şahin This is me 0000-0002-4572-9108

Mehmet Karakuş 0000-0001-9017-1361

Ümran Akgün Yıldırım This is me 0000-0003-3843-1343

Abdurrahim Göksoy 0000-0002-0012-4412

Mehmet Sincik 0000-0002-1568-2564

Project Number 113O082
Publication Date December 27, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Cubukcu, P., Kocatürk, M., İlker, E., Kadiroğlu, A., et al. (2021). STABILITY ANALYSIS OF SOME SOYBEAN GENOTYPES USING PARAMETRIC AND NONPARAMETRIC METHODS IN MULTI-ENVIRONMENTS. Turkish Journal Of Field Crops, 26(2), 262-271. https://doi.org/10.17557/tjfc.1033363

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474