Research Article
BibTex RIS Cite

THE EFFECTS OF PHOSPHORUS ON NUTRITIONAL CHARACTERISTICS OF FABA BEAN (Vicia faba L.)

Year 2023, Volume: 28 Issue: 2, 156 - 169, 24.12.2023
https://doi.org/10.17557/tjfc.1329074

Abstract

This study determines the effects of phosphorus, applied in various doses (0-30-60-90-120 kg ha-1), on the seed
yield, protein and amino acid content of the faba bean (Salkim, Filiz and Kitik). The study was conducted in the
2022 and 2023 growing seasons in the experimental field of the Faculty of Agriculture of Aydin Adnan Menderes
University. The effect of different interactions of cultivar and phosphorus dose on the seed yield and on the levels
of the amino acids aspartic acid, serine, alanine, arginine, threosine and histidine was found to be significant, as
was the effect of the phosphorus dose on the protein ratio. The optimum values for the seed yield (2.14t ha-1) and
protein (26.4%) were obtained when the phosphorus was applied at 60kg ha-1. Among the cultivars, Kitik
achieved a higher yield and protein ratio than the others. Arginine (1.056g/100g) and aspartic acid (1.125g/100g)
were the amino acids found in the greatest quantities in the faba beans. However, while methionine (0.087g/100g)
and cysteine (0.085g/100 g) were the essential amino acids present in the smallest quantities, the application of
phosphorus increased the levels of these amino acids. As a result, the changes brought about in the yield, protein
content and amino acid content of the faba bean cultivars by applying various doses of phosphorus were
determined, revealing ways in which the nutritional value of the seeds might be enhanced.

Supporting Institution

The first year of the study was financed as part of the Adnan Menderes University scientific research projects

Project Number

ZRF-21037

Thanks

The first year of the study was financed as part of the Adnan Menderes University scientific research projects (ZRF-21037) master thesis project by Hasibe ERTEN. The master thesis was written in the first year of the study.

References

  • Aktas, M. and A. Ates. 1998. Causes of Nutritional Disorders in Plants and Their Recognition. Nurol Publishing Inc. OstimAnkara. Apata, D.F. and A.D. Ologhobo. 1994. Biochemical evaluation of some Nigerian legume seeds. Food Chem. 49: 333-338.
  • Azevedo, R.A. and P.J. Lea. 2001. Lysine metabolism in higher plants. Amino Acids. 20(3): 261-279
  • Badolay, A.B.H.A.Y., J.S. Hooda and B.P.S. Malik. 2009. Correlation and path analysis in faba bean (Vicia faba L.). Journal of Haryana Agronomy. 25: 94-95.
  • Betts, M.J. and R.B. Russell. 2003. Amino acid properties and consequences of substitutions. Bioinformatics for geneticists 289-316. https://doi.org/10.1002/0470867302.ch14.
  • Bolland, M.D.A, Siddique, K.H.M. and R.F. Brennen. 2000. Grain yield responses of faba bean (Vicia faba L.) to applications fertilizer phosphorus and Zinc. Australian Journal Experimental Agriculture 40(6):849- 857.
  • Bolat, I. and O. Kara. 2017. Plant nutrients: sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry. 19(1): 218-228.
  • Bonora, M., S. Patergnani, A. Rimessi, E. De Marchi, J.M. Suski, A. Bononi and P. Pinton, 2012. ATP synthesis and storage. Purinergic signalling. 8: 343-357.
  • Cooper, P.J.M., P.J. Gregory, D. Tully and H.C. Harris. 1987. Improving Water Use Efficiency of Annual Crops in the Rainfed Farming Systems of West Asia and Africa. Experimental Agriculture 23: 113-158.
  • Crépon, K., P. Marget, C. Peyronnet, P. Marget, C. Peyronnet, B. Carrouée. 2010. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop Res. 115:329–339. https://doi.org/10.1016/j.fcr.2009.09.016.
  • Caglar, H., O. Erekul and A. Yigit. 2017. Determination of grain yield and amino acid contents of maize varieties grown in different locations. Adnan Menderes University Journal of Faculty of Agriculture 14(1): 65-70. https://doi.org/10.25308/aduziraat.298235.
  • Cakmak, I., N. Sari, H. Marschner, M. Kalayci, A. Yilmaz, S. Eker and K.Y. Gulut. 1996. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil. 180:173–181.
  • Daly, K., D. Styles, S. Lalor and D.P. 2015. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur J Soil Sci. 66:792– 801. https://doi.org/10.1111/ejss.12260.
  • Dodd, J. R. and A.P. Mallarino. 2005. Soil‐test phosphorus and crop grain yield responses to long‐term phosphorus fertilization for corn‐soybean rotations. Soil Science Society of America Journal 69(4):1118-1128. https://doi.org/10.2136/sssaj2004.0279.
  • El Mazlouzi, M., C. Morel, T. Robert, B. Yan and A. Mollier. 2020. Phosphorus uptake and partitioning in two durum wheat cultivars with contrasting biomass allocation as affected by different P supply during grain filling. Plant and Soil. 449:179-192. https://doi.org/10.1007/s11104-020-04444-0.
  • Ethiopian Institute of Agricultural Research (EIAR). 2011. Faba bean producing manual. Holetta Agricultural Research Center. Addis Ababa, Ethiopia. http://dx.doi.org/10.18805/ijare.v0iOF.11180.
  • Eyupoglu, F. 1999. Fertility Status of Soils in Turkey. T.C. Prime Ministry General Directorate of Rural Services Directorate of Soil and Fertilizer Research Institute Publications. General Publication No:220. Technical Publishing No: T-67.
  • Farzana, W. and I.A. Khalil. 1999. Protein quality of tropical food legumes. Journal of Science and Technology. 23:13–19.
  • Faucon, M.P., D. Houben, J.P. Reynoird, A.M. MercadalDulaurent, R. Armand and H. Lambers, H. 2015. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Advances in Agronomy. 134:51-79. https://doi.org/10.1016/bs.agron.2015.06.003.
  • Gasim, S., S.A. Hamad, A. Abdelmula and I.A. Mohamed. 2015. Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan. Food Science and Nutrition 3(6):539-547.
  • Gislum, R., E. Micklander and J. Nielsen. 2004. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Res. 88:269–277.
  • Cucci, G., G. Lacolla, C. Summo and A. Pasqualone. 2019. Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Scientia Horticulturae 243:338-343.
  • Guevara, O., V.H. Rodriguez, M.E. Espinosa and P. Yu. 2022. Research progress on faba bean and faba forage in food and feed types, physiochemical, nutritional, and molecular structural characteristics with molecular spectroscopy. Critical Reviews in Food Science and Nutrition.62(31):8675- 8685. https://doi.org/10.1080/10408398.2021.1931805
  • Henry, J.L., A.E. Slinkard and T.J. Hogg. 1995. The effect of phosphorus fertilizer on establishment, yield and quality of pea, lentil and faba bean. Canadian journal of Plant Science 75(2):395-398. https://doi.org/10.4141/cjps95-066
  • Ho, M.D., J. Rosas, K. Brown and J. Lynch. 2005. Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology. 32:737–748. https://doi.org/10.1071/FP05043.
  • Hoffmann, D., Q. Jiang, A. Men, M. Kinkema and P.M. Gresshoff. 2007. Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus. Journal of Plant Physiology 164(4):460-469. https://doi.org/10.1016/j.jplph.2006.12.005.
  • Khalil, A.H. and E.H. Mansour. 1995. The effect of cooking, autoclavingand germination on the nutritional quality of faba beans. Food Chemistry. 54:177–182. https://doi.org/10.1016/0308-8146(95)00024-D.
  • Khattab, R.Y., S.D. Arntfld and C.M. Nyachoti. 2009. Nutritional quality of legume seeds as afected by some physical treatments. Part 1: protein quality evaluation. Food Sci Technol. 42(6):1107–1112. https://doi.org/10.1016/j.lwt.2009.02.008.
  • Kim, D.M. and J.R. Swartz. 1999. Prolonging cell‐free protein synthesis with a novel ATP regeneration system. Biotechnology and Bioengineering 66(3):180-188. https://doi.org/10.1002/(SICI)1097- 0290(1999)66:3%3C180::AID-BIT6%3E3.0.CO;2-S.
  • Labba, I.C.M., H. Frokiaer and A.S. Sandberg. 2021. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International. 140, 110038. https://doi.org/10.1016/j.foodres.2020.110038.
  • Lazali, M. and J.J. Drevon. 2021. Mechanisms and adaptation strategies of tolerance to phosphorus deficiency in legumes. Communications in Soil Science and Plant Analysis. 52(13):1469-1483. https://doi.org/10.1080/00103624.2021.1885693.
  • Legesse, H., N.D. Robi, S. Gebeyehu, G. Bultosa and F. Mekbib. 2016. Growth and dry matter partitioning of common bean (Phaseolus vulgaris L.) genotypes as infuenced by aluminum toxicity. Journal of Experimental Agriculture International. 14(3):1–13. DOI: https://doi.org/10.9734/JEAI/2016/4049.
  • Liang, K., Q. Zhang, M. Gu and W. Cong. 2013. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology. 25:311-318. https://link.springer.com/article/10.1007/s10811-012-9865-6.
  • L’opez-Bellido, F.J., L.L’opez-Bellido and R.J. L’opez-Bellido. 2005. Competition, growth and yield of faba bean (Vicia faba L.). European Journal of Agronomy. 23:359–378. https://doi.org/10.1016/j.eja.2005.02.002.
  • Makoudi, B., A. Kabbadj, M. Mouradi, L. Amenc, O. Domergue, M. Blair, D. Jean‑Jacques and C. Ghoulam. 2018. Phosphorus deficiency increases nodule phytase activity of faba bean– rhizobia symbiosis. Acta Physiologiae Plantarum. 40:1-10. https://doi.org/10.1007/s11738-018-2619-6.
  • Malhotra, H., S. Vandana, R. Pandey. 2018. Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance. 171-190. https://link.springer.com/chapter/10.1007/978-981-10-9044- 8_7.
  • Mallarino, A.P., J.E. Sawyer and S.K. Barnhart. 2013. A General Guide for Crop Nutrient and Limestone Recommendations in Iowa. Extension and Outreach Publications (Book 82). http://lib.dr.iastate.edu/extension_pubs/82.
  • Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd. Edition. Academic Press, Inc. London, G.B., p.446.
  • Matar, A., J. Tarrent and J. Ryan. 1992. Soil and Fertilizer Phosphorus and Crop Responses in the Dryland Mediterranen Zone. Advences in Soil Sci.18:81-146. https://link.springer.com/chapter/10.1007/978-1-4612-2844- 8_3 (access date:5.07.2023)
  • Masood, T., R. Gul, F. Munsif, F. Jalal, Z. Hussain, N. Noreen, H. Khan, N. Din and H. Khan. 2011. Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal of Agriculture 27(2):167-170.
  • Mikkelsen, M.D. and B.A. Halkier. 2003. Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava. Plant Physiology. 131(2): 773-779. https://doi.org/10.1104/pp.013425.
  • Mitran, T., R.S. Meena, R. Lal, J. Layek, S. Kumar and R. Datta. 2018. Role of soil phosphorus on legume production. Legumes for soil health and sustainable management, 487- 510.Muchhal, U.S., Padro, J.M. and Raghothama, K.G. (1996) Phosphate transporters from higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93:10519–10523. https://link.springer.com/chapter/10.1007/978-981-13-0253- 4_15.
  • Okan, O. and A. Ozgumus. 1987. Phosphorusstatus of Bursa plain soils and methods to be used in determining the amount of available phosphorus in these soils. Journal of Uludag University Faculty of Agriculture. 6(1):129-139.
  • Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean. 1954. Enstlmatlon of available phosphorus In soils by extraction with sodium bicarbonate, USDA Circ. 939.
  • Raghothama, K.G. 2000. Phosphate transport and signaling. Current opinion in plant biology. 3(3):182-187. https://doi.org/10.1016/S1369-5266(00)80063-1
  • Santner, A., L.I.A. Calderon-Villalobos and M. Estelle. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature chemical biology. 5(5):301-307.
  • Schulze, J. and J.J. Drevon. 2005. P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J Exp Bot. 56:1779–1784. https://doi.org/10.1093/jxb/eri166
  • Simola, R.S. 1968. Comparatıve Studıes on The Amino Acid Pools of Three Lathyrus Species. Department of Botany, University of Helsinki. file:///C:/Users/Feride/Downloads/299944_081_1968%20(1) .pdf. accessed 11.07.2023)
  • Steel, R.G.D. and J.H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2. ed. New York: McGraw-Hill Publ. Company.
  • Sulieman, S. and L.S.P. Tran. 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus defciency. Plant Sci. 239:36–43. https://doi.org/10.1016/j.plantsci.2015.06.018
  • Tadele B., S. Zemach and L. Alemu. 2016. Response of Faba Bean (Vicia faba L.) to phosphorus fertiliizer and farm yard manure on acidic soils in Boloso sore Woreda, Wolaita Zone, Southern Ethiopia Food Science and Quality Management. 53. ISSN: 2224-6088 (Paper) ISSN 2225-0557 (Online).
  • Yurtsever, N. and B. Alkan. 1975. A study on the calibration of some soil analysis methods used in the determination of phosphorus requirements of Black Sea region soils by field trials. Scientific and Technological Research Institution of Turkey Publications No. 1220, Ankara.
  • Yurtsever, N. and B. Alkan. 1976. Calibration of some soil analysis methods used in determination of phosphorus requirements of Black Sea region soils with sunflower and corn field trials, Scientific and Technological Research Institution of Turkey, Ankara.
Year 2023, Volume: 28 Issue: 2, 156 - 169, 24.12.2023
https://doi.org/10.17557/tjfc.1329074

Abstract

Project Number

ZRF-21037

References

  • Aktas, M. and A. Ates. 1998. Causes of Nutritional Disorders in Plants and Their Recognition. Nurol Publishing Inc. OstimAnkara. Apata, D.F. and A.D. Ologhobo. 1994. Biochemical evaluation of some Nigerian legume seeds. Food Chem. 49: 333-338.
  • Azevedo, R.A. and P.J. Lea. 2001. Lysine metabolism in higher plants. Amino Acids. 20(3): 261-279
  • Badolay, A.B.H.A.Y., J.S. Hooda and B.P.S. Malik. 2009. Correlation and path analysis in faba bean (Vicia faba L.). Journal of Haryana Agronomy. 25: 94-95.
  • Betts, M.J. and R.B. Russell. 2003. Amino acid properties and consequences of substitutions. Bioinformatics for geneticists 289-316. https://doi.org/10.1002/0470867302.ch14.
  • Bolland, M.D.A, Siddique, K.H.M. and R.F. Brennen. 2000. Grain yield responses of faba bean (Vicia faba L.) to applications fertilizer phosphorus and Zinc. Australian Journal Experimental Agriculture 40(6):849- 857.
  • Bolat, I. and O. Kara. 2017. Plant nutrients: sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry. 19(1): 218-228.
  • Bonora, M., S. Patergnani, A. Rimessi, E. De Marchi, J.M. Suski, A. Bononi and P. Pinton, 2012. ATP synthesis and storage. Purinergic signalling. 8: 343-357.
  • Cooper, P.J.M., P.J. Gregory, D. Tully and H.C. Harris. 1987. Improving Water Use Efficiency of Annual Crops in the Rainfed Farming Systems of West Asia and Africa. Experimental Agriculture 23: 113-158.
  • Crépon, K., P. Marget, C. Peyronnet, P. Marget, C. Peyronnet, B. Carrouée. 2010. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop Res. 115:329–339. https://doi.org/10.1016/j.fcr.2009.09.016.
  • Caglar, H., O. Erekul and A. Yigit. 2017. Determination of grain yield and amino acid contents of maize varieties grown in different locations. Adnan Menderes University Journal of Faculty of Agriculture 14(1): 65-70. https://doi.org/10.25308/aduziraat.298235.
  • Cakmak, I., N. Sari, H. Marschner, M. Kalayci, A. Yilmaz, S. Eker and K.Y. Gulut. 1996. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil. 180:173–181.
  • Daly, K., D. Styles, S. Lalor and D.P. 2015. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur J Soil Sci. 66:792– 801. https://doi.org/10.1111/ejss.12260.
  • Dodd, J. R. and A.P. Mallarino. 2005. Soil‐test phosphorus and crop grain yield responses to long‐term phosphorus fertilization for corn‐soybean rotations. Soil Science Society of America Journal 69(4):1118-1128. https://doi.org/10.2136/sssaj2004.0279.
  • El Mazlouzi, M., C. Morel, T. Robert, B. Yan and A. Mollier. 2020. Phosphorus uptake and partitioning in two durum wheat cultivars with contrasting biomass allocation as affected by different P supply during grain filling. Plant and Soil. 449:179-192. https://doi.org/10.1007/s11104-020-04444-0.
  • Ethiopian Institute of Agricultural Research (EIAR). 2011. Faba bean producing manual. Holetta Agricultural Research Center. Addis Ababa, Ethiopia. http://dx.doi.org/10.18805/ijare.v0iOF.11180.
  • Eyupoglu, F. 1999. Fertility Status of Soils in Turkey. T.C. Prime Ministry General Directorate of Rural Services Directorate of Soil and Fertilizer Research Institute Publications. General Publication No:220. Technical Publishing No: T-67.
  • Farzana, W. and I.A. Khalil. 1999. Protein quality of tropical food legumes. Journal of Science and Technology. 23:13–19.
  • Faucon, M.P., D. Houben, J.P. Reynoird, A.M. MercadalDulaurent, R. Armand and H. Lambers, H. 2015. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Advances in Agronomy. 134:51-79. https://doi.org/10.1016/bs.agron.2015.06.003.
  • Gasim, S., S.A. Hamad, A. Abdelmula and I.A. Mohamed. 2015. Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan. Food Science and Nutrition 3(6):539-547.
  • Gislum, R., E. Micklander and J. Nielsen. 2004. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Res. 88:269–277.
  • Cucci, G., G. Lacolla, C. Summo and A. Pasqualone. 2019. Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Scientia Horticulturae 243:338-343.
  • Guevara, O., V.H. Rodriguez, M.E. Espinosa and P. Yu. 2022. Research progress on faba bean and faba forage in food and feed types, physiochemical, nutritional, and molecular structural characteristics with molecular spectroscopy. Critical Reviews in Food Science and Nutrition.62(31):8675- 8685. https://doi.org/10.1080/10408398.2021.1931805
  • Henry, J.L., A.E. Slinkard and T.J. Hogg. 1995. The effect of phosphorus fertilizer on establishment, yield and quality of pea, lentil and faba bean. Canadian journal of Plant Science 75(2):395-398. https://doi.org/10.4141/cjps95-066
  • Ho, M.D., J. Rosas, K. Brown and J. Lynch. 2005. Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology. 32:737–748. https://doi.org/10.1071/FP05043.
  • Hoffmann, D., Q. Jiang, A. Men, M. Kinkema and P.M. Gresshoff. 2007. Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus. Journal of Plant Physiology 164(4):460-469. https://doi.org/10.1016/j.jplph.2006.12.005.
  • Khalil, A.H. and E.H. Mansour. 1995. The effect of cooking, autoclavingand germination on the nutritional quality of faba beans. Food Chemistry. 54:177–182. https://doi.org/10.1016/0308-8146(95)00024-D.
  • Khattab, R.Y., S.D. Arntfld and C.M. Nyachoti. 2009. Nutritional quality of legume seeds as afected by some physical treatments. Part 1: protein quality evaluation. Food Sci Technol. 42(6):1107–1112. https://doi.org/10.1016/j.lwt.2009.02.008.
  • Kim, D.M. and J.R. Swartz. 1999. Prolonging cell‐free protein synthesis with a novel ATP regeneration system. Biotechnology and Bioengineering 66(3):180-188. https://doi.org/10.1002/(SICI)1097- 0290(1999)66:3%3C180::AID-BIT6%3E3.0.CO;2-S.
  • Labba, I.C.M., H. Frokiaer and A.S. Sandberg. 2021. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International. 140, 110038. https://doi.org/10.1016/j.foodres.2020.110038.
  • Lazali, M. and J.J. Drevon. 2021. Mechanisms and adaptation strategies of tolerance to phosphorus deficiency in legumes. Communications in Soil Science and Plant Analysis. 52(13):1469-1483. https://doi.org/10.1080/00103624.2021.1885693.
  • Legesse, H., N.D. Robi, S. Gebeyehu, G. Bultosa and F. Mekbib. 2016. Growth and dry matter partitioning of common bean (Phaseolus vulgaris L.) genotypes as infuenced by aluminum toxicity. Journal of Experimental Agriculture International. 14(3):1–13. DOI: https://doi.org/10.9734/JEAI/2016/4049.
  • Liang, K., Q. Zhang, M. Gu and W. Cong. 2013. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology. 25:311-318. https://link.springer.com/article/10.1007/s10811-012-9865-6.
  • L’opez-Bellido, F.J., L.L’opez-Bellido and R.J. L’opez-Bellido. 2005. Competition, growth and yield of faba bean (Vicia faba L.). European Journal of Agronomy. 23:359–378. https://doi.org/10.1016/j.eja.2005.02.002.
  • Makoudi, B., A. Kabbadj, M. Mouradi, L. Amenc, O. Domergue, M. Blair, D. Jean‑Jacques and C. Ghoulam. 2018. Phosphorus deficiency increases nodule phytase activity of faba bean– rhizobia symbiosis. Acta Physiologiae Plantarum. 40:1-10. https://doi.org/10.1007/s11738-018-2619-6.
  • Malhotra, H., S. Vandana, R. Pandey. 2018. Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance. 171-190. https://link.springer.com/chapter/10.1007/978-981-10-9044- 8_7.
  • Mallarino, A.P., J.E. Sawyer and S.K. Barnhart. 2013. A General Guide for Crop Nutrient and Limestone Recommendations in Iowa. Extension and Outreach Publications (Book 82). http://lib.dr.iastate.edu/extension_pubs/82.
  • Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd. Edition. Academic Press, Inc. London, G.B., p.446.
  • Matar, A., J. Tarrent and J. Ryan. 1992. Soil and Fertilizer Phosphorus and Crop Responses in the Dryland Mediterranen Zone. Advences in Soil Sci.18:81-146. https://link.springer.com/chapter/10.1007/978-1-4612-2844- 8_3 (access date:5.07.2023)
  • Masood, T., R. Gul, F. Munsif, F. Jalal, Z. Hussain, N. Noreen, H. Khan, N. Din and H. Khan. 2011. Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal of Agriculture 27(2):167-170.
  • Mikkelsen, M.D. and B.A. Halkier. 2003. Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava. Plant Physiology. 131(2): 773-779. https://doi.org/10.1104/pp.013425.
  • Mitran, T., R.S. Meena, R. Lal, J. Layek, S. Kumar and R. Datta. 2018. Role of soil phosphorus on legume production. Legumes for soil health and sustainable management, 487- 510.Muchhal, U.S., Padro, J.M. and Raghothama, K.G. (1996) Phosphate transporters from higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93:10519–10523. https://link.springer.com/chapter/10.1007/978-981-13-0253- 4_15.
  • Okan, O. and A. Ozgumus. 1987. Phosphorusstatus of Bursa plain soils and methods to be used in determining the amount of available phosphorus in these soils. Journal of Uludag University Faculty of Agriculture. 6(1):129-139.
  • Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean. 1954. Enstlmatlon of available phosphorus In soils by extraction with sodium bicarbonate, USDA Circ. 939.
  • Raghothama, K.G. 2000. Phosphate transport and signaling. Current opinion in plant biology. 3(3):182-187. https://doi.org/10.1016/S1369-5266(00)80063-1
  • Santner, A., L.I.A. Calderon-Villalobos and M. Estelle. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature chemical biology. 5(5):301-307.
  • Schulze, J. and J.J. Drevon. 2005. P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J Exp Bot. 56:1779–1784. https://doi.org/10.1093/jxb/eri166
  • Simola, R.S. 1968. Comparatıve Studıes on The Amino Acid Pools of Three Lathyrus Species. Department of Botany, University of Helsinki. file:///C:/Users/Feride/Downloads/299944_081_1968%20(1) .pdf. accessed 11.07.2023)
  • Steel, R.G.D. and J.H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2. ed. New York: McGraw-Hill Publ. Company.
  • Sulieman, S. and L.S.P. Tran. 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus defciency. Plant Sci. 239:36–43. https://doi.org/10.1016/j.plantsci.2015.06.018
  • Tadele B., S. Zemach and L. Alemu. 2016. Response of Faba Bean (Vicia faba L.) to phosphorus fertiliizer and farm yard manure on acidic soils in Boloso sore Woreda, Wolaita Zone, Southern Ethiopia Food Science and Quality Management. 53. ISSN: 2224-6088 (Paper) ISSN 2225-0557 (Online).
  • Yurtsever, N. and B. Alkan. 1975. A study on the calibration of some soil analysis methods used in the determination of phosphorus requirements of Black Sea region soils by field trials. Scientific and Technological Research Institution of Turkey Publications No. 1220, Ankara.
  • Yurtsever, N. and B. Alkan. 1976. Calibration of some soil analysis methods used in determination of phosphorus requirements of Black Sea region soils with sunflower and corn field trials, Scientific and Technological Research Institution of Turkey, Ankara.
There are 52 citations in total.

Details

Primary Language English
Subjects Cereals and Legumes
Journal Section Articles
Authors

Hasibe Erten 0000-0003-1705-3259

Feride Öncan Sümer 0000-0002-6087-6966

Project Number ZRF-21037
Publication Date December 24, 2023
Published in Issue Year 2023 Volume: 28 Issue: 2

Cite

APA Erten, H., & Öncan Sümer, F. (2023). THE EFFECTS OF PHOSPHORUS ON NUTRITIONAL CHARACTERISTICS OF FABA BEAN (Vicia faba L.). Turkish Journal Of Field Crops, 28(2), 156-169. https://doi.org/10.17557/tjfc.1329074

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474