Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 10, 67 - 73, 29.12.2018

Öz

Kaynakça

  • Coddington, E.A., Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc., 134 (1973), 1-80.
  • Davis, R. H, Singular Normal Di_erential Operators, Tech. Rep., Dep. Math., California Univ., 1955.
  • Dunford, N., Schwartz, J. T., Linear Operators I, II, Second ed., Interscience, New York, 1958; 1963.
  • Gohberg, I.C., Krein, M.G., Introduction to the Theory of Linear Non-Self-Adjoint Operators, Amer. Math. Soc., Providence, RI, 1969.
  • Gorbachuk, M.L., Self-Adjoint Boundary Value Problems for the Di_erential Equations for Second Order with the Unbounded Operator Coefient, Funktsional. Anal. i Prilozhen. 5 (1971), 10-21 (in Russian).
  • Gorbachuk, V.I., Gorbachuk, M.L., Boundary Value Problems for Operator Di_erential Equations, Kluwer Academic, Dordrecht, 1991.
  • Hörmander, L., On the theory of general partial di_erential operators, Acta Mathematica, 94 (1955), 161-248.
  • Ipek Al, P., Yılmaz, B., Ismailov, Z.I., The general form of normal quasi-di_erential operators for first order and their spectrum, Turkish Journal of Mathematics and Computer Science, 8 (2018), 22-28.
  • Ismailov, Z. I., Compact inverses of first-order normal differential operators, J. Math., Anal. Appl. USA, 320,1(2006),266-278.
  • Kilpi, Y., Über lineare normale transformationen in Hilbertschen raum, Ann. Acad. Sci. Fenn. Math. Ser. AI 154 (1953).
  • Kilpi, Y., Ü ber die anzahl der hypermaximalen normalen fort setzungen normalen transformationen, Ann. Univ. Turkuensis. Ser. AI 65 (1963).
  • Kolmogorov, A.N., Fomin, S.V., Elements of the Theory of Functions and Functional Analysis, Dover Books on Mathematics, 1999.
  • Zettl, A., Sun, J., Survey article: Self-adjoint ordinary differential operators and their spectrum, Roky Mountain Journal of Mathematics, 45,1, (2015), 763-886.

Discreteness of Spectrum of Normal Differential Operators for First Order

Yıl 2018, Cilt: 10, 67 - 73, 29.12.2018

Öz

In this work, we investigate the discreteness of spectrum of normal extensions in detail. Later on, the asymptotical behavior of eigenvalues of any normal extension has been examined.

Kaynakça

  • Coddington, E.A., Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc., 134 (1973), 1-80.
  • Davis, R. H, Singular Normal Di_erential Operators, Tech. Rep., Dep. Math., California Univ., 1955.
  • Dunford, N., Schwartz, J. T., Linear Operators I, II, Second ed., Interscience, New York, 1958; 1963.
  • Gohberg, I.C., Krein, M.G., Introduction to the Theory of Linear Non-Self-Adjoint Operators, Amer. Math. Soc., Providence, RI, 1969.
  • Gorbachuk, M.L., Self-Adjoint Boundary Value Problems for the Di_erential Equations for Second Order with the Unbounded Operator Coefient, Funktsional. Anal. i Prilozhen. 5 (1971), 10-21 (in Russian).
  • Gorbachuk, V.I., Gorbachuk, M.L., Boundary Value Problems for Operator Di_erential Equations, Kluwer Academic, Dordrecht, 1991.
  • Hörmander, L., On the theory of general partial di_erential operators, Acta Mathematica, 94 (1955), 161-248.
  • Ipek Al, P., Yılmaz, B., Ismailov, Z.I., The general form of normal quasi-di_erential operators for first order and their spectrum, Turkish Journal of Mathematics and Computer Science, 8 (2018), 22-28.
  • Ismailov, Z. I., Compact inverses of first-order normal differential operators, J. Math., Anal. Appl. USA, 320,1(2006),266-278.
  • Kilpi, Y., Über lineare normale transformationen in Hilbertschen raum, Ann. Acad. Sci. Fenn. Math. Ser. AI 154 (1953).
  • Kilpi, Y., Ü ber die anzahl der hypermaximalen normalen fort setzungen normalen transformationen, Ann. Univ. Turkuensis. Ser. AI 65 (1963).
  • Kolmogorov, A.N., Fomin, S.V., Elements of the Theory of Functions and Functional Analysis, Dover Books on Mathematics, 1999.
  • Zettl, A., Sun, J., Survey article: Self-adjoint ordinary differential operators and their spectrum, Roky Mountain Journal of Mathematics, 45,1, (2015), 763-886.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Rukiye Öztürk Mert 0000-0001-8083-5304

Pembe İpek Al

Bülent Yılmaz

Zameddin İ. İsmailov

Yayımlanma Tarihi 29 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 10

Kaynak Göster

APA Öztürk Mert, R., İpek Al, P., Yılmaz, B., İ. İsmailov, Z. (2018). Discreteness of Spectrum of Normal Differential Operators for First Order. Turkish Journal of Mathematics and Computer Science, 10, 67-73.
AMA Öztürk Mert R, İpek Al P, Yılmaz B, İ. İsmailov Z. Discreteness of Spectrum of Normal Differential Operators for First Order. TJMCS. Aralık 2018;10:67-73.
Chicago Öztürk Mert, Rukiye, Pembe İpek Al, Bülent Yılmaz, ve Zameddin İ. İsmailov. “Discreteness of Spectrum of Normal Differential Operators for First Order”. Turkish Journal of Mathematics and Computer Science 10, Aralık (Aralık 2018): 67-73.
EndNote Öztürk Mert R, İpek Al P, Yılmaz B, İ. İsmailov Z (01 Aralık 2018) Discreteness of Spectrum of Normal Differential Operators for First Order. Turkish Journal of Mathematics and Computer Science 10 67–73.
IEEE R. Öztürk Mert, P. İpek Al, B. Yılmaz, ve Z. İ. İsmailov, “Discreteness of Spectrum of Normal Differential Operators for First Order”, TJMCS, c. 10, ss. 67–73, 2018.
ISNAD Öztürk Mert, Rukiye vd. “Discreteness of Spectrum of Normal Differential Operators for First Order”. Turkish Journal of Mathematics and Computer Science 10 (Aralık 2018), 67-73.
JAMA Öztürk Mert R, İpek Al P, Yılmaz B, İ. İsmailov Z. Discreteness of Spectrum of Normal Differential Operators for First Order. TJMCS. 2018;10:67–73.
MLA Öztürk Mert, Rukiye vd. “Discreteness of Spectrum of Normal Differential Operators for First Order”. Turkish Journal of Mathematics and Computer Science, c. 10, 2018, ss. 67-73.
Vancouver Öztürk Mert R, İpek Al P, Yılmaz B, İ. İsmailov Z. Discreteness of Spectrum of Normal Differential Operators for First Order. TJMCS. 2018;10:67-73.