Konferans Bildirisi
BibTex RIS Kaynak Göster

On Some Connections Between Suborbital Graphs and Special Sequences

Yıl 2018, Cilt: 10, 134 - 143, 29.12.2018

Öz

In this work, we used the terms of identity alternate sequence and also the even terms of alternate
sequences of Fibonacci and Lucas, the famous number sequences, to establish connections with the special vertex
values of the paths of minimal length in the suborbital graphs. These types of vertices also give rise to special
continued fractions, hence from recurrence relations for continued fractions, values of these vertices and values of
these special sequences were associated.

Kaynakça

  • Akbas, M., On suborbital graphs for the modular group, Bull. London Math. Soc., 33, (2001), 647-652
  • Cuyt, A., Petersen, V.B., Verdonk,B., Waadeland, H., W.B., Jones, Handbook of Continued Fractions for Special Functions, Springer, NewYork, 2008.
  • Deger, A.H., Besenk, M., Guler, B.O., On suborbital graphsand related continued fractions, Applied Mathematics and Computation, 218(2011), 746-750.
  • Deger, A.H., Vertices of paths of minimal lengths on suborbital graphs, Filomat, 31 (2017), 913-923.
  • Deger, A.H., Relationships with the Fibonacci numbers and the special vertices of the suborbital graphs, Gümüşhane Üniversitesi Fen BilimleriEnstitüsü Dergisi, 7(2017),168-180.
  • Drmota, M., Fibonacci numbers and continued fraction expansions, in Applications on Fibonacci Numbers, Springer, Scotland, 4 (1993),185-197.
  • Jones, G.A., Singerman D., Wicks K., The modular group and generalized Farey graphs, London Math. Soc. Lecture Note Ser., 160, (1991),316-338.
  • Koshy, T., Fibonacci and Lucas numbers with applications, A Wiley- Interscience Publication, Canada, 2001.
  • Kushwaha, S., Sarma, R., Continued fractions arising from F1;2, The Ramanujan Journal, 46 (2018), 605-631.
  • Sims, C.C., Graphs and finite permutation groups, Math. Zeitschr., 95, (1967), 76-86.
Yıl 2018, Cilt: 10, 134 - 143, 29.12.2018

Öz

Kaynakça

  • Akbas, M., On suborbital graphs for the modular group, Bull. London Math. Soc., 33, (2001), 647-652
  • Cuyt, A., Petersen, V.B., Verdonk,B., Waadeland, H., W.B., Jones, Handbook of Continued Fractions for Special Functions, Springer, NewYork, 2008.
  • Deger, A.H., Besenk, M., Guler, B.O., On suborbital graphsand related continued fractions, Applied Mathematics and Computation, 218(2011), 746-750.
  • Deger, A.H., Vertices of paths of minimal lengths on suborbital graphs, Filomat, 31 (2017), 913-923.
  • Deger, A.H., Relationships with the Fibonacci numbers and the special vertices of the suborbital graphs, Gümüşhane Üniversitesi Fen BilimleriEnstitüsü Dergisi, 7(2017),168-180.
  • Drmota, M., Fibonacci numbers and continued fraction expansions, in Applications on Fibonacci Numbers, Springer, Scotland, 4 (1993),185-197.
  • Jones, G.A., Singerman D., Wicks K., The modular group and generalized Farey graphs, London Math. Soc. Lecture Note Ser., 160, (1991),316-338.
  • Koshy, T., Fibonacci and Lucas numbers with applications, A Wiley- Interscience Publication, Canada, 2001.
  • Kushwaha, S., Sarma, R., Continued fractions arising from F1;2, The Ramanujan Journal, 46 (2018), 605-631.
  • Sims, C.C., Graphs and finite permutation groups, Math. Zeitschr., 95, (1967), 76-86.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ümmügülsün Akbaba Bu kişi benim

Ali Hikmet Değer 0000-0003-0764-715X

Tuğba Tuylu Bu kişi benim

Yayımlanma Tarihi 29 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 10

Kaynak Göster

APA Akbaba, Ü., Değer, A. H., & Tuylu, T. (2018). On Some Connections Between Suborbital Graphs and Special Sequences. Turkish Journal of Mathematics and Computer Science, 10, 134-143.
AMA Akbaba Ü, Değer AH, Tuylu T. On Some Connections Between Suborbital Graphs and Special Sequences. TJMCS. Aralık 2018;10:134-143.
Chicago Akbaba, Ümmügülsün, Ali Hikmet Değer, ve Tuğba Tuylu. “On Some Connections Between Suborbital Graphs and Special Sequences”. Turkish Journal of Mathematics and Computer Science 10, Aralık (Aralık 2018): 134-43.
EndNote Akbaba Ü, Değer AH, Tuylu T (01 Aralık 2018) On Some Connections Between Suborbital Graphs and Special Sequences. Turkish Journal of Mathematics and Computer Science 10 134–143.
IEEE Ü. Akbaba, A. H. Değer, ve T. Tuylu, “On Some Connections Between Suborbital Graphs and Special Sequences”, TJMCS, c. 10, ss. 134–143, 2018.
ISNAD Akbaba, Ümmügülsün vd. “On Some Connections Between Suborbital Graphs and Special Sequences”. Turkish Journal of Mathematics and Computer Science 10 (Aralık 2018), 134-143.
JAMA Akbaba Ü, Değer AH, Tuylu T. On Some Connections Between Suborbital Graphs and Special Sequences. TJMCS. 2018;10:134–143.
MLA Akbaba, Ümmügülsün vd. “On Some Connections Between Suborbital Graphs and Special Sequences”. Turkish Journal of Mathematics and Computer Science, c. 10, 2018, ss. 134-43.
Vancouver Akbaba Ü, Değer AH, Tuylu T. On Some Connections Between Suborbital Graphs and Special Sequences. TJMCS. 2018;10:134-43.