Konferans Bildirisi
BibTex RIS Kaynak Göster

Astrohelicoidal Hypersurfaces in 4-space

Yıl 2019, Cilt: 11, 40 - 45, 30.12.2019

Öz

We consider an astrohelicoidal hypersurface which its profile curve has astroid curve in the four dimensional Euclidean space ${\mathbb{E}}^{4}$. We also calculate Gaussian curvature and the mean curvature, and Weingarten relation of the hypersurface. Moreover, projecting hypersurface into 3-spaces, we draw some figures.

Kaynakça

  • Arslan, K., K\i l\i \c{c} Bayram, B., Bulca, B., \"{O}zt\"{u}rk, G., \textit{Generalized rotation surfaces in $\mathbb{E}^{4}$}, Results Math., \textbf{61}(2012), 315--327.
  • Eisenhart, L.P., A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications, N.Y., 1909.
  • Forsyth, A.R., Lectures on the Differential Geometry of Curves and Surfaces, Cambridge Un. press, 2nd ed. 1920.
  • Ganchev, G., Milousheva, V., \textit{General rotational surfaces in the 4-dimensional Minkowski space}, Turk. J. Math., \textbf{38}(2014), 883--895.
  • Gray, A., Salamon, S., Abbena, E., Modern Differential Geometry of Curves and Surfaces with Mathematica, Third ed. Chapman \& Hall/CRC Press, Boca Raton, 2006.
  • G\"{u}ler, E., Hac\i saliho{\u{g}}lu, H.H., Kim, Y.H., \textit{The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-Space}, Symmetry, \textbf{10(9)}(2018), 1--11.
  • G\"{u}ler, E., Magid, M., Yayl\i, Y., \textit{Laplace Beltrami operator of a helicoidal hypersurface in four space}, J. Geom. Sym. Phys., \textbf{41}(2016), 77--95.
  • G\"{u}ler, E., Turgay, N.C., {\em Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space}, Mediterr. J. Math., \textbf{16(3)}(2019), 1--16.
  • Hac\i saliho{\u{g}}lu, H.H., Diferensiyel Geometri I, Ankara {\"U}n., Ankara, 1982.
  • Nitsche, J.C.C., Lectures on Minimal Surfaces. Vol. 1, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems, Cambridge Un. Press, Cambridge, 1989.
Yıl 2019, Cilt: 11, 40 - 45, 30.12.2019

Öz

Kaynakça

  • Arslan, K., K\i l\i \c{c} Bayram, B., Bulca, B., \"{O}zt\"{u}rk, G., \textit{Generalized rotation surfaces in $\mathbb{E}^{4}$}, Results Math., \textbf{61}(2012), 315--327.
  • Eisenhart, L.P., A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications, N.Y., 1909.
  • Forsyth, A.R., Lectures on the Differential Geometry of Curves and Surfaces, Cambridge Un. press, 2nd ed. 1920.
  • Ganchev, G., Milousheva, V., \textit{General rotational surfaces in the 4-dimensional Minkowski space}, Turk. J. Math., \textbf{38}(2014), 883--895.
  • Gray, A., Salamon, S., Abbena, E., Modern Differential Geometry of Curves and Surfaces with Mathematica, Third ed. Chapman \& Hall/CRC Press, Boca Raton, 2006.
  • G\"{u}ler, E., Hac\i saliho{\u{g}}lu, H.H., Kim, Y.H., \textit{The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-Space}, Symmetry, \textbf{10(9)}(2018), 1--11.
  • G\"{u}ler, E., Magid, M., Yayl\i, Y., \textit{Laplace Beltrami operator of a helicoidal hypersurface in four space}, J. Geom. Sym. Phys., \textbf{41}(2016), 77--95.
  • G\"{u}ler, E., Turgay, N.C., {\em Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space}, Mediterr. J. Math., \textbf{16(3)}(2019), 1--16.
  • Hac\i saliho{\u{g}}lu, H.H., Diferensiyel Geometri I, Ankara {\"U}n., Ankara, 1982.
  • Nitsche, J.C.C., Lectures on Minimal Surfaces. Vol. 1, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems, Cambridge Un. Press, Cambridge, 1989.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Erhan Güler 0000-0003-3264-6239

Ömer Kişi 0000-0001-6844-3092

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 11

Kaynak Göster

APA Güler, E., & Kişi, Ö. (2019). Astrohelicoidal Hypersurfaces in 4-space. Turkish Journal of Mathematics and Computer Science, 11, 40-45.
AMA Güler E, Kişi Ö. Astrohelicoidal Hypersurfaces in 4-space. TJMCS. Aralık 2019;11:40-45.
Chicago Güler, Erhan, ve Ömer Kişi. “Astrohelicoidal Hypersurfaces in 4-Space”. Turkish Journal of Mathematics and Computer Science 11, Aralık (Aralık 2019): 40-45.
EndNote Güler E, Kişi Ö (01 Aralık 2019) Astrohelicoidal Hypersurfaces in 4-space. Turkish Journal of Mathematics and Computer Science 11 40–45.
IEEE E. Güler ve Ö. Kişi, “Astrohelicoidal Hypersurfaces in 4-space”, TJMCS, c. 11, ss. 40–45, 2019.
ISNAD Güler, Erhan - Kişi, Ömer. “Astrohelicoidal Hypersurfaces in 4-Space”. Turkish Journal of Mathematics and Computer Science 11 (Aralık 2019), 40-45.
JAMA Güler E, Kişi Ö. Astrohelicoidal Hypersurfaces in 4-space. TJMCS. 2019;11:40–45.
MLA Güler, Erhan ve Ömer Kişi. “Astrohelicoidal Hypersurfaces in 4-Space”. Turkish Journal of Mathematics and Computer Science, c. 11, 2019, ss. 40-45.
Vancouver Güler E, Kişi Ö. Astrohelicoidal Hypersurfaces in 4-space. TJMCS. 2019;11:40-5.