Konferans Bildirisi
BibTex RIS Kaynak Göster

Vector-Valued Weighted Sobolev Spaces with Variable Exponent

Yıl 2019, Cilt: 11, 123 - 131, 30.12.2019

Öz

Our aim is to introduce the vector-valued weighted variable exponent Lebesgue spaces. We discuss two different type of H\"{o}lder inequalities in this spaces. We will also show that every elements of vector-valued weighted variable exponent Lebesgue spaces are locally integrable. Hence we can define vector-valued weighted variable exponent Sobolev spaces. Finally under some conditions we will investigate some basic properties of vector-valued weighted variable exponent Sobolev spaces.

Kaynakça

  • Amann, H., Linear and Quasilinear Parabolic Problems, Vol. I: Abstract Linear Theory, Birkh\"{a}user, Basel, 1995.
  • Amann, H., {\em Operator-valued Fourier multipliers, vector-valued Besov spaces and applications}, Math. Nachr., \textbf{186}(1997), 5--56.
  • Ayd\i n, I., {\em Weighted variable Sobolev spaces and capacity}, J Funct Space Appl, \textbf{2012}(2012), Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  • Cartan, H., Differential calculus, Hermann, Paris-France, 1971.
  • Cheng, C., Xu, J., {\em Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent}, J Math Inequal, \textbf{7(3)}(2013), 461--475.
  • Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Applied and Numerical Harmonic Analysis), Birkh\"{a}user/Springer, Heidelberg, 2013.
  • Diening, L., {\em Maximal function on generalized Lebesgue spaces $L^{p(.)}$}, Math. Inequal. Appl., \textbf{7(2)}(2004), 245--253.
  • Diening, L., Harjulehto, P., H\"{a}st\"{o}, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.
  • Diestel, J., UHL, J.J., Vector measures, Amer Math Soc, 1977.
  • Edmunds, E., Fiorenza, A., Meskhi, A., {\em On a measure of non-compactness for some classical operators}, Acta Math. Sin., \textbf{22(6)}(2006), 1847--1862.
  • K\"{o}nig, H., Eigenvalue Distribution of Compact Operators, Birkh\"{a}user, Basel, 1986.
  • Kov\'{a}\v{c}ik, O., R\'{a}kosnik, J., {\em On spaces $L^{p(x)}$ and $W^{k,p(x)}$}, Czech. Math. J., \textbf{41(116)}(1991), 592--618.
  • Pietsch, A., Eigenvalues and S-numbers, Cambridge Univ. Press, Cambridge, 1987.
  • Pr\"{u}ss, J., Evolutionary Integral Equations and Applications, Birkh\"{a}user, Basel, 1993.
Yıl 2019, Cilt: 11, 123 - 131, 30.12.2019

Öz

Kaynakça

  • Amann, H., Linear and Quasilinear Parabolic Problems, Vol. I: Abstract Linear Theory, Birkh\"{a}user, Basel, 1995.
  • Amann, H., {\em Operator-valued Fourier multipliers, vector-valued Besov spaces and applications}, Math. Nachr., \textbf{186}(1997), 5--56.
  • Ayd\i n, I., {\em Weighted variable Sobolev spaces and capacity}, J Funct Space Appl, \textbf{2012}(2012), Article ID 132690, 17 pages, doi:10.1155/2012/132690.
  • Cartan, H., Differential calculus, Hermann, Paris-France, 1971.
  • Cheng, C., Xu, J., {\em Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent}, J Math Inequal, \textbf{7(3)}(2013), 461--475.
  • Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Applied and Numerical Harmonic Analysis), Birkh\"{a}user/Springer, Heidelberg, 2013.
  • Diening, L., {\em Maximal function on generalized Lebesgue spaces $L^{p(.)}$}, Math. Inequal. Appl., \textbf{7(2)}(2004), 245--253.
  • Diening, L., Harjulehto, P., H\"{a}st\"{o}, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.
  • Diestel, J., UHL, J.J., Vector measures, Amer Math Soc, 1977.
  • Edmunds, E., Fiorenza, A., Meskhi, A., {\em On a measure of non-compactness for some classical operators}, Acta Math. Sin., \textbf{22(6)}(2006), 1847--1862.
  • K\"{o}nig, H., Eigenvalue Distribution of Compact Operators, Birkh\"{a}user, Basel, 1986.
  • Kov\'{a}\v{c}ik, O., R\'{a}kosnik, J., {\em On spaces $L^{p(x)}$ and $W^{k,p(x)}$}, Czech. Math. J., \textbf{41(116)}(1991), 592--618.
  • Pietsch, A., Eigenvalues and S-numbers, Cambridge Univ. Press, Cambridge, 1987.
  • Pr\"{u}ss, J., Evolutionary Integral Equations and Applications, Birkh\"{a}user, Basel, 1993.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

İsmail Aydın 0000-0001-8371-3185

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 11

Kaynak Göster

APA Aydın, İ. (2019). Vector-Valued Weighted Sobolev Spaces with Variable Exponent. Turkish Journal of Mathematics and Computer Science, 11, 123-131.
AMA Aydın İ. Vector-Valued Weighted Sobolev Spaces with Variable Exponent. TJMCS. Aralık 2019;11:123-131.
Chicago Aydın, İsmail. “Vector-Valued Weighted Sobolev Spaces With Variable Exponent”. Turkish Journal of Mathematics and Computer Science 11, Aralık (Aralık 2019): 123-31.
EndNote Aydın İ (01 Aralık 2019) Vector-Valued Weighted Sobolev Spaces with Variable Exponent. Turkish Journal of Mathematics and Computer Science 11 123–131.
IEEE İ. Aydın, “Vector-Valued Weighted Sobolev Spaces with Variable Exponent”, TJMCS, c. 11, ss. 123–131, 2019.
ISNAD Aydın, İsmail. “Vector-Valued Weighted Sobolev Spaces With Variable Exponent”. Turkish Journal of Mathematics and Computer Science 11 (Aralık 2019), 123-131.
JAMA Aydın İ. Vector-Valued Weighted Sobolev Spaces with Variable Exponent. TJMCS. 2019;11:123–131.
MLA Aydın, İsmail. “Vector-Valued Weighted Sobolev Spaces With Variable Exponent”. Turkish Journal of Mathematics and Computer Science, c. 11, 2019, ss. 123-31.
Vancouver Aydın İ. Vector-Valued Weighted Sobolev Spaces with Variable Exponent. TJMCS. 2019;11:123-31.