Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 12 Sayı: 1, 1 - 7, 29.06.2020

Öz

Kaynakça

  • Bishop, E., Foundations of Constructive Analysis, New York: McGraw-Hill, 1967.
  • Bridges, D. S., Richman, F., Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, 1987.
  • Cherubini, A., Frigeri, A., \emph{Inverse semigroups with apartness}, Semigroup Forum, \textbf{98}(3)(2019), 571--588.
  • Crvenkovi\'c, S., Mitrovi\'c, M., Romano, D. A., \emph{Semigroups with apartness}, Math. Logic Quarterly, \textbf{59}(6)(2013), 407--414.
  • Crvenkovi\'c, S., Mitrovi\'c, M., Romano, D. A., \emph{Basic notions of (Constructive) semigroups with apartness}, Semigroup Forum, \textbf{92}(3)(2016), 659--674.
  • Hedayati, H., \emph{Isomorphisms via congruences on $\Gamma$-semigroups and $\Gamma$-ideals}, Thai J. Math., \textbf{11}(3)(2013), 563--575.
  • Kehayopulu, N., \emph{On ordered $\Gamma$-semigroups}, Sci. Math. Japonicae Online, \textbf{e-2010}, 37--43.
  • Kwon, Y. I., Li, S. K., \emph{Some special elements in ordered $\Gamma$-semigroups}. Kyungpook Math. J., \textbf{35}(3)(1996), 679--685.
  • Mines, R., Richman, F., Ruitenburg, W., A course of constructive algebra, Springer-Verlag, New York 1988.
  • Romano, D. A., \emph{Coequality relations, a survey}, Bull. Soc. Math. Banja Luka, \textbf{3}(1996), 1--36.
  • Romano, D. A., \emph{Co-ideals and co-filters in ordered set under co-quasiorder}, Bull. Int. Math. Virtual Inst., \textbf{8}(1)(2018), 177--188.
  • Romano, D. A., \emph{$\Gamma$-semigroups with apartness}, Bull. Allahabad Math. Soc., \textbf{34}(1)(2019), 71--83.
  • Romano, D. A., \emph{Some algebraic structures with apartness. A review}, J. Int. Math. Virtual Inst., \textbf{9}(2)(2019), 361--395.
  • Romano, D. A., \emph{On coequality relation on set with apartness}, Bull. Int. Math. Virtual Inst., \textbf{9}(1)(2019), 1--9.
  • Romano, D. A., \emph{Co-filters in $\Gamma$-semigroups ordered under co-order}, (To appear) Available at ResearchGate
  • Sen, M. K., \emph{On $\Gamma$-semigroups}. In: Proceeding of International Conference on 'Algebra and its Applications,(New Delhi, 1981)' (pp. 301--308). Lecture Notes in Pure and Appl. Math. 9, New York: Decker Publication, 1984.
  • Sen, M. K., Saha, N. K., \emph{On $\Gamma$-semigroup, I}, Bull. Calcutta Math. Soc., \textbf{78}(1986), 181--186.
  • Seth, A. \emph{$\Gamma$-group congruence on regular $\Gamma$-semigroups}. Inter. J. Math. Math. Sci., \textbf{15}(1)(1992), 103--106.
  • Siripitukdet, M., Iampan, A., \emph{On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups}, Thai J. Math., \textbf{4}(2)(2006), 403--415.
  • Troelstra, A. S., van Dalen, D., Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, 1988.

Semilattice Co-Congruence in $\Gamma$-Semigroups

Yıl 2020, Cilt: 12 Sayı: 1, 1 - 7, 29.06.2020

Öz

As a generalization of semigroups, Sen, in 1981, introduced the concept of $\Gamma$-semigroups. In the author's paper (D A. Romano. $\Gamma$-semigroups with apartness. \emph{Bull. Allahabad Math. Soc.}, 34(1)(2019), 71--83.) it is introduced and analyzed the concept of $\Gamma$-semigroups with apartness in Bishop's constructive framework. In this article, as a continuation of previous research, the concept of co-congruences in $\Gamma$-semigroups is introduced and analyzed. Additionally, it is investigated (co-ordered) semilattice co-congruence on (co-ordered) $\Gamma$-semigroup with apartness.

Kaynakça

  • Bishop, E., Foundations of Constructive Analysis, New York: McGraw-Hill, 1967.
  • Bridges, D. S., Richman, F., Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, 1987.
  • Cherubini, A., Frigeri, A., \emph{Inverse semigroups with apartness}, Semigroup Forum, \textbf{98}(3)(2019), 571--588.
  • Crvenkovi\'c, S., Mitrovi\'c, M., Romano, D. A., \emph{Semigroups with apartness}, Math. Logic Quarterly, \textbf{59}(6)(2013), 407--414.
  • Crvenkovi\'c, S., Mitrovi\'c, M., Romano, D. A., \emph{Basic notions of (Constructive) semigroups with apartness}, Semigroup Forum, \textbf{92}(3)(2016), 659--674.
  • Hedayati, H., \emph{Isomorphisms via congruences on $\Gamma$-semigroups and $\Gamma$-ideals}, Thai J. Math., \textbf{11}(3)(2013), 563--575.
  • Kehayopulu, N., \emph{On ordered $\Gamma$-semigroups}, Sci. Math. Japonicae Online, \textbf{e-2010}, 37--43.
  • Kwon, Y. I., Li, S. K., \emph{Some special elements in ordered $\Gamma$-semigroups}. Kyungpook Math. J., \textbf{35}(3)(1996), 679--685.
  • Mines, R., Richman, F., Ruitenburg, W., A course of constructive algebra, Springer-Verlag, New York 1988.
  • Romano, D. A., \emph{Coequality relations, a survey}, Bull. Soc. Math. Banja Luka, \textbf{3}(1996), 1--36.
  • Romano, D. A., \emph{Co-ideals and co-filters in ordered set under co-quasiorder}, Bull. Int. Math. Virtual Inst., \textbf{8}(1)(2018), 177--188.
  • Romano, D. A., \emph{$\Gamma$-semigroups with apartness}, Bull. Allahabad Math. Soc., \textbf{34}(1)(2019), 71--83.
  • Romano, D. A., \emph{Some algebraic structures with apartness. A review}, J. Int. Math. Virtual Inst., \textbf{9}(2)(2019), 361--395.
  • Romano, D. A., \emph{On coequality relation on set with apartness}, Bull. Int. Math. Virtual Inst., \textbf{9}(1)(2019), 1--9.
  • Romano, D. A., \emph{Co-filters in $\Gamma$-semigroups ordered under co-order}, (To appear) Available at ResearchGate
  • Sen, M. K., \emph{On $\Gamma$-semigroups}. In: Proceeding of International Conference on 'Algebra and its Applications,(New Delhi, 1981)' (pp. 301--308). Lecture Notes in Pure and Appl. Math. 9, New York: Decker Publication, 1984.
  • Sen, M. K., Saha, N. K., \emph{On $\Gamma$-semigroup, I}, Bull. Calcutta Math. Soc., \textbf{78}(1986), 181--186.
  • Seth, A. \emph{$\Gamma$-group congruence on regular $\Gamma$-semigroups}. Inter. J. Math. Math. Sci., \textbf{15}(1)(1992), 103--106.
  • Siripitukdet, M., Iampan, A., \emph{On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups}, Thai J. Math., \textbf{4}(2)(2006), 403--415.
  • Troelstra, A. S., van Dalen, D., Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, 1988.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Daniel A. Romano 0000-0003-1148-3258

Yayımlanma Tarihi 29 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 12 Sayı: 1

Kaynak Göster

APA Romano, D. A. (2020). Semilattice Co-Congruence in $\Gamma$-Semigroups. Turkish Journal of Mathematics and Computer Science, 12(1), 1-7.
AMA Romano DA. Semilattice Co-Congruence in $\Gamma$-Semigroups. TJMCS. Haziran 2020;12(1):1-7.
Chicago Romano, Daniel A. “Semilattice Co-Congruence in $\Gamma$-Semigroups”. Turkish Journal of Mathematics and Computer Science 12, sy. 1 (Haziran 2020): 1-7.
EndNote Romano DA (01 Haziran 2020) Semilattice Co-Congruence in $\Gamma$-Semigroups. Turkish Journal of Mathematics and Computer Science 12 1 1–7.
IEEE D. A. Romano, “Semilattice Co-Congruence in $\Gamma$-Semigroups”, TJMCS, c. 12, sy. 1, ss. 1–7, 2020.
ISNAD Romano, Daniel A. “Semilattice Co-Congruence in $\Gamma$-Semigroups”. Turkish Journal of Mathematics and Computer Science 12/1 (Haziran 2020), 1-7.
JAMA Romano DA. Semilattice Co-Congruence in $\Gamma$-Semigroups. TJMCS. 2020;12:1–7.
MLA Romano, Daniel A. “Semilattice Co-Congruence in $\Gamma$-Semigroups”. Turkish Journal of Mathematics and Computer Science, c. 12, sy. 1, 2020, ss. 1-7.
Vancouver Romano DA. Semilattice Co-Congruence in $\Gamma$-Semigroups. TJMCS. 2020;12(1):1-7.