Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 12 Sayı: 2, 161 - 165, 31.12.2020
https://doi.org/10.47000/tjmcs.616122

Öz

Kaynakça

  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 205, 1997.
  • Hacisalihoğlu, H.H., Diferensiyel Geometri, Cilt 1, İnönü Üniversitesi Yayinlari, Malatya 1994.
  • İlarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstratio Mathematica, 16(4)(2008), 931--939.
  • Kılıçoğlu, Ş., Şenyut, S., An examination on NP* curves in $E^3$, Turk. J. Math. Comput. Sci, 12(1)(2020), 26--30.
  • Körpınar, T., Sarıaydın, M.T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3-space, AMO, 15(2015), 71.
  • Lipschutz, M.M., Diferential Geometry, Schaum's Outlines.
  • Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry, 88(1)(2008), 120--126.
  • Schief, W.K., On the integrability of Bertrand curves and Razzaboni surfaces, Journal of Geometry and Physics, 45(1-2)(2003), 130--150.

On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$

Yıl 2020, Cilt: 12 Sayı: 2, 161 - 165, 31.12.2020
https://doi.org/10.47000/tjmcs.616122

Öz

In this paper we have defined and examined the new kind curves, with the principal normal vector of the first curve and the vector lying on the osculator plane of the second curve are linearly dependent. As a result we
have called these new curves as $N-T^{\ast }N^{\ast }$ curves. Also similiar to the other offset curves under the spesific condition, we give Frenet apparatus of the second curve based on the Frenet apparatus of the
first curve.

Kaynakça

  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 205, 1997.
  • Hacisalihoğlu, H.H., Diferensiyel Geometri, Cilt 1, İnönü Üniversitesi Yayinlari, Malatya 1994.
  • İlarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstratio Mathematica, 16(4)(2008), 931--939.
  • Kılıçoğlu, Ş., Şenyut, S., An examination on NP* curves in $E^3$, Turk. J. Math. Comput. Sci, 12(1)(2020), 26--30.
  • Körpınar, T., Sarıaydın, M.T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3-space, AMO, 15(2015), 71.
  • Lipschutz, M.M., Diferential Geometry, Schaum's Outlines.
  • Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry, 88(1)(2008), 120--126.
  • Schief, W.K., On the integrability of Bertrand curves and Razzaboni surfaces, Journal of Geometry and Physics, 45(1-2)(2003), 130--150.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Şeyda Kılıçoglu 0000-0003-0252-1574

Süleyman Şenyurt 0000-0003-1097-5541

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kılıçoglu, Ş., & Şenyurt, S. (2020). On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. Turkish Journal of Mathematics and Computer Science, 12(2), 161-165. https://doi.org/10.47000/tjmcs.616122
AMA Kılıçoglu Ş, Şenyurt S. On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. TJMCS. Aralık 2020;12(2):161-165. doi:10.47000/tjmcs.616122
Chicago Kılıçoglu, Şeyda, ve Süleyman Şenyurt. “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”. Turkish Journal of Mathematics and Computer Science 12, sy. 2 (Aralık 2020): 161-65. https://doi.org/10.47000/tjmcs.616122.
EndNote Kılıçoglu Ş, Şenyurt S (01 Aralık 2020) On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. Turkish Journal of Mathematics and Computer Science 12 2 161–165.
IEEE Ş. Kılıçoglu ve S. Şenyurt, “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”, TJMCS, c. 12, sy. 2, ss. 161–165, 2020, doi: 10.47000/tjmcs.616122.
ISNAD Kılıçoglu, Şeyda - Şenyurt, Süleyman. “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”. Turkish Journal of Mathematics and Computer Science 12/2 (Aralık 2020), 161-165. https://doi.org/10.47000/tjmcs.616122.
JAMA Kılıçoglu Ş, Şenyurt S. On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. TJMCS. 2020;12:161–165.
MLA Kılıçoglu, Şeyda ve Süleyman Şenyurt. “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”. Turkish Journal of Mathematics and Computer Science, c. 12, sy. 2, 2020, ss. 161-5, doi:10.47000/tjmcs.616122.
Vancouver Kılıçoglu Ş, Şenyurt S. On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. TJMCS. 2020;12(2):161-5.