INVESTIGATIONS OF 44Ti PRODUCTION FOR 44Ti/44Sc RADIONUCLIDE GENERATOR
Yıl 2022,
Cilt: 34 Sayı: 1, 30 - 39, 07.07.2022
Buğra Gökhun Bulduk
,
Volkan Yasakçı
,
Elif Tutun
,
Perihan Ünak
,
Ömer Aras
Öz
44Sc is a promising PET radionuclide because of its short half-life of approximately 4 hours and its ability to emit positrons. In this work, a 44Ti/44Sc generator was designed to produce 44Sc. The separation and purification studies were optimized by using 46Sc as tracer. Hydroxamate and Dowex resins were used for separation process 46Sc from titanium. Briefly a 44Ti/44Sc generator system may be a source of 44Sc production in hospitals in future. If it is made suitable for hospital use, a hospital will have the opportunity to work with this generator for many years with a single production.
Destekleyen Kurum
Ege Üniversitesi
Proje Numarası
FGA-2018-20118
Teşekkür
Buğra Gökhun Bulduk was supported by the TUBITAK 2211-C Priority Areas Domestic Doctorate Scholarship Program. Omer Aras was partially supported by the NIH/NCI Cancer Center Support Grant P30 CA008748.
Kaynakça
- Alliot, C., Kerdjoudj, R., Michel, N., Haddad, F., & Huclier-Markai, S. (2015). Cyclotron production of high purity 44m,44Sc with deuterons from 44CaCO3 targets. Nuclear Medicine and Biology, 42(6), 524–529. https://doi.org/10.1016/j.nucmedbio.2015.03.002
- Ayranov, M., & Schumann, D. (2010). Preparation of 26Al, 59Ni, 44Ti, 53Mn and 60Fe from a proton irradiated copper beam dump. Journal of Radioanalytical and Nuclear Chemistry, 286(3), 649–654. https://doi.org/10.1007/s10967-010-0732-0
- Bartoś, B., Majkowska, A., Krajewski, S., & Bilewicz, A. (2012). New separation method of no-carrier-added 47 Sc from titanium targets. Radiochimica Acta, 100(7), 457–462. https://doi.org/10.1524/ract.2012.1938
- Bulduk, B. G., Ünak, P., Yurt Kılçar, A., Kozguş Güldü, Ö., & Tekin, V. (2019). Analyzing of Production Conditions of 89Zr in the Particle Accelerator. Cumhuriyet Science Journal, 40(2), 388–395. https://doi.org/10.17776/csj.448616
- Daraban, L., Adam Rebeles, R., Hermanne, A., Tarkanyi, F., & Takacs, S. (2009). Study of the excitation functions for 43K, 43,44,44mSc and 44Ti by proton irradiation on 45Sc up to 37MeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(5), 755–759. https://doi.org/10.1016/j.nimb.2009.01.010
- Ferreira, C. L., Yapp, D. T. T., Mandel, D., Gill, R. K., Boros, E., Wong, M. Q., … Kiefer, G. E. (2012). 68 Ga Small Peptide Imaging: Comparison of NOTA and PCTA. Bioconjugate Chemistry, 23(11), 2239–2246. https://doi.org/10.1021/bc300348d
- Filosofov, D. V., Loktionova, N. S., & Rösch, F. (2010). A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochimica Acta, 98(3). https://doi.org/10.1524/ract.2010.1701
- Gagnon, K., Severin, G. W., Barnhart, T. E., Engle, J. W., Valdovinos, H. F., & Nickles, R. J. (2012). 45Ti extraction using hydroxamate resin. AIP Conference Proceedings, 1509(December), 211–214. https://doi.org/10.1063/1.4773970
- Hoehr, C., Oehlke, E., Benard, F., Lee, C. J., Hou, X., Badesso, B., … Schaffer, P. (2014). 44gSc production using a water target on a 13MeV cyclotron. Nuclear Medicine and Biology, 41(5), 401–406. https://doi.org/10.1016/j.nucmedbio.2013.12.016
- Jokerst, J. V., & Gambhir, S. S. (2011). Molecular Imaging with Theranostic Nanoparticles. Accounts of Chemical Research, 44(10), 1050–1060. https://doi.org/10.1021/ar200106e
- Kerdjoudj, R., Pniok, M., Alliot, C., Kubíček, V., Havlíčková, J., Rösch, F., … Huclier-Markai, S. (2016b). Scandium(III) complexes of monophosphorus acid DOTA analogues: A thermodynamic and radiolabelling study with 44Sc from cyclotron and from a 44Ti/44Sc generator. Dalton Transactions, 45(4), 1398–1409 https://doi.org/10.1039/c5dt04084a
- Lange, R., D’Auria, J., Giesen, U., Vincent, J., & Ruth, T. (1999). Preparation of a radioactive target. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 423(2–3), 247–255. https://doi.org/10.1016/S0168-9002(98)01289-3
- Lee, E.J., Kong, Y.B., Hur, M. G. (2016). Test production of Ti-44 using RFT-30 cyclotron. Cyclotrons2016, 108–109
- Pruszyński, M., Loktionova, N. S., Filosofov, D. V., & Rösch, F. (2010). Post-elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application. Applied Radiation and Isotopes, 68(9), 1636–1641. https://doi.org/10.1016/j.apradiso.2010.04.003
- Radchenko, V., Meyer, C. A. L., Engle, J. W., Naranjo, C. M., Unc, G. A., Mastren, T., … Fassbender, M. E. (2016). Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system. Journal of Chromatography A, 1477, 39–46. https://doi.org/10.1016/j.chroma.2016.11.047
- Radchenko, Valery, Engle, J. W., Medvedev, D. G., Maassen, J. M., Naranjo, C. M., Unc, G. A., … Fassbender, M. E. (2017). Proton-induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/44Sc generator development. Nuclear Medicine and Biology, 50, 25–32. https://doi.org/10.1016/j.nucmedbio.2017.03.006
- Roesch, F. (2012). Scandium-44: Benefits of a Long-Lived PET Radionuclide Available from the 44Ti/44Sc Generator System. Current Radiopharmaceuticals, 5(3), 187–201. https://doi.org/10.2174/1874471011205030187
- Sadeghi, M., Enferadi, M., & Nadi, H. (2011). 45Ti, a candidate for positron emission tomography: Study of the cyclotron production. Radiochemistry, 53(4), 411–414. https://doi.org/10.1134/S106636221104014X
- Severin, G. W., Engle, J. W., Valdovinos, H. F., Barnhart, T. E., & Nickles, R. J. (2012). Cyclotron produced 44gSc from natural calcium. Applied Radiation and Isotopes, 70(8), 1526–1530. https://doi.org/10.1016/j.apradiso.2012.04.030
- Szkliniarz, K., Sitarz, M., Walczak, R., Jastrzębski, J., Bilewicz, A., Choiński, J., … Zipper, W. (2016). Production of medical Sc radioisotopes with an alpha particle beam. Applied Radiation and Isotopes, 118, 182–189. https://doi.org/10.1016/j.apradiso.2016.07.001
- Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., … Verpelli, M. (2019). Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters. Journal of Radioanalytical and Nuclear Chemistry, 319(2), 487–531. https://doi.org/10.1007/s10967-018-6142-4
- Walczak, R., Krajewski, S., Szkliniarz, K., Sitarz, M., Abbas, K., Choiński, J., … Bilewicz, A. (2015). Cyclotron production of 43Sc for PET imaging. EJNMMI Physics, 2(1), 33. https://doi.org/10.1186/s40658-015-0136-x
- Wittwer, D., Dressler, R., Eichler, R., Gäggeler, H. W., Piguet, D., Serov, A., … Vögele, A. (2011). The thermal release of scandium from titanium metal – a simple way to produce pure 44 Sc for PET application. Radiochimica Acta, 99(3), 193–196. https://doi.org/10.1524/ract.2011.1832
- Yug, A., Novgorodov, A. F., Skripnik, A. V., D.V., F., Skripnik, A. V., Kaplun, V. G., … Rösch, F. (2005). 44Ti : Investigation of target preparation , irradiation and yields in the 45 Sc ( p , 2n ) process. In: Annual Report. Institute of Nuclear Chemistry, University of Mainz (2005), 1993.
Yıl 2022,
Cilt: 34 Sayı: 1, 30 - 39, 07.07.2022
Buğra Gökhun Bulduk
,
Volkan Yasakçı
,
Elif Tutun
,
Perihan Ünak
,
Ömer Aras
Proje Numarası
FGA-2018-20118
Kaynakça
- Alliot, C., Kerdjoudj, R., Michel, N., Haddad, F., & Huclier-Markai, S. (2015). Cyclotron production of high purity 44m,44Sc with deuterons from 44CaCO3 targets. Nuclear Medicine and Biology, 42(6), 524–529. https://doi.org/10.1016/j.nucmedbio.2015.03.002
- Ayranov, M., & Schumann, D. (2010). Preparation of 26Al, 59Ni, 44Ti, 53Mn and 60Fe from a proton irradiated copper beam dump. Journal of Radioanalytical and Nuclear Chemistry, 286(3), 649–654. https://doi.org/10.1007/s10967-010-0732-0
- Bartoś, B., Majkowska, A., Krajewski, S., & Bilewicz, A. (2012). New separation method of no-carrier-added 47 Sc from titanium targets. Radiochimica Acta, 100(7), 457–462. https://doi.org/10.1524/ract.2012.1938
- Bulduk, B. G., Ünak, P., Yurt Kılçar, A., Kozguş Güldü, Ö., & Tekin, V. (2019). Analyzing of Production Conditions of 89Zr in the Particle Accelerator. Cumhuriyet Science Journal, 40(2), 388–395. https://doi.org/10.17776/csj.448616
- Daraban, L., Adam Rebeles, R., Hermanne, A., Tarkanyi, F., & Takacs, S. (2009). Study of the excitation functions for 43K, 43,44,44mSc and 44Ti by proton irradiation on 45Sc up to 37MeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(5), 755–759. https://doi.org/10.1016/j.nimb.2009.01.010
- Ferreira, C. L., Yapp, D. T. T., Mandel, D., Gill, R. K., Boros, E., Wong, M. Q., … Kiefer, G. E. (2012). 68 Ga Small Peptide Imaging: Comparison of NOTA and PCTA. Bioconjugate Chemistry, 23(11), 2239–2246. https://doi.org/10.1021/bc300348d
- Filosofov, D. V., Loktionova, N. S., & Rösch, F. (2010). A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochimica Acta, 98(3). https://doi.org/10.1524/ract.2010.1701
- Gagnon, K., Severin, G. W., Barnhart, T. E., Engle, J. W., Valdovinos, H. F., & Nickles, R. J. (2012). 45Ti extraction using hydroxamate resin. AIP Conference Proceedings, 1509(December), 211–214. https://doi.org/10.1063/1.4773970
- Hoehr, C., Oehlke, E., Benard, F., Lee, C. J., Hou, X., Badesso, B., … Schaffer, P. (2014). 44gSc production using a water target on a 13MeV cyclotron. Nuclear Medicine and Biology, 41(5), 401–406. https://doi.org/10.1016/j.nucmedbio.2013.12.016
- Jokerst, J. V., & Gambhir, S. S. (2011). Molecular Imaging with Theranostic Nanoparticles. Accounts of Chemical Research, 44(10), 1050–1060. https://doi.org/10.1021/ar200106e
- Kerdjoudj, R., Pniok, M., Alliot, C., Kubíček, V., Havlíčková, J., Rösch, F., … Huclier-Markai, S. (2016b). Scandium(III) complexes of monophosphorus acid DOTA analogues: A thermodynamic and radiolabelling study with 44Sc from cyclotron and from a 44Ti/44Sc generator. Dalton Transactions, 45(4), 1398–1409 https://doi.org/10.1039/c5dt04084a
- Lange, R., D’Auria, J., Giesen, U., Vincent, J., & Ruth, T. (1999). Preparation of a radioactive target. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 423(2–3), 247–255. https://doi.org/10.1016/S0168-9002(98)01289-3
- Lee, E.J., Kong, Y.B., Hur, M. G. (2016). Test production of Ti-44 using RFT-30 cyclotron. Cyclotrons2016, 108–109
- Pruszyński, M., Loktionova, N. S., Filosofov, D. V., & Rösch, F. (2010). Post-elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application. Applied Radiation and Isotopes, 68(9), 1636–1641. https://doi.org/10.1016/j.apradiso.2010.04.003
- Radchenko, V., Meyer, C. A. L., Engle, J. W., Naranjo, C. M., Unc, G. A., Mastren, T., … Fassbender, M. E. (2016). Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system. Journal of Chromatography A, 1477, 39–46. https://doi.org/10.1016/j.chroma.2016.11.047
- Radchenko, Valery, Engle, J. W., Medvedev, D. G., Maassen, J. M., Naranjo, C. M., Unc, G. A., … Fassbender, M. E. (2017). Proton-induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/44Sc generator development. Nuclear Medicine and Biology, 50, 25–32. https://doi.org/10.1016/j.nucmedbio.2017.03.006
- Roesch, F. (2012). Scandium-44: Benefits of a Long-Lived PET Radionuclide Available from the 44Ti/44Sc Generator System. Current Radiopharmaceuticals, 5(3), 187–201. https://doi.org/10.2174/1874471011205030187
- Sadeghi, M., Enferadi, M., & Nadi, H. (2011). 45Ti, a candidate for positron emission tomography: Study of the cyclotron production. Radiochemistry, 53(4), 411–414. https://doi.org/10.1134/S106636221104014X
- Severin, G. W., Engle, J. W., Valdovinos, H. F., Barnhart, T. E., & Nickles, R. J. (2012). Cyclotron produced 44gSc from natural calcium. Applied Radiation and Isotopes, 70(8), 1526–1530. https://doi.org/10.1016/j.apradiso.2012.04.030
- Szkliniarz, K., Sitarz, M., Walczak, R., Jastrzębski, J., Bilewicz, A., Choiński, J., … Zipper, W. (2016). Production of medical Sc radioisotopes with an alpha particle beam. Applied Radiation and Isotopes, 118, 182–189. https://doi.org/10.1016/j.apradiso.2016.07.001
- Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., … Verpelli, M. (2019). Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters. Journal of Radioanalytical and Nuclear Chemistry, 319(2), 487–531. https://doi.org/10.1007/s10967-018-6142-4
- Walczak, R., Krajewski, S., Szkliniarz, K., Sitarz, M., Abbas, K., Choiński, J., … Bilewicz, A. (2015). Cyclotron production of 43Sc for PET imaging. EJNMMI Physics, 2(1), 33. https://doi.org/10.1186/s40658-015-0136-x
- Wittwer, D., Dressler, R., Eichler, R., Gäggeler, H. W., Piguet, D., Serov, A., … Vögele, A. (2011). The thermal release of scandium from titanium metal – a simple way to produce pure 44 Sc for PET application. Radiochimica Acta, 99(3), 193–196. https://doi.org/10.1524/ract.2011.1832
- Yug, A., Novgorodov, A. F., Skripnik, A. V., D.V., F., Skripnik, A. V., Kaplun, V. G., … Rösch, F. (2005). 44Ti : Investigation of target preparation , irradiation and yields in the 45 Sc ( p , 2n ) process. In: Annual Report. Institute of Nuclear Chemistry, University of Mainz (2005), 1993.