Research Article
BibTex RIS Cite

Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application

Year 2020, Volume: 15 Issue: 1, 43 - 48, 03.03.2020

Abstract

Subatomic particles are continuously studied by researchers parallel to developing detectors and theories. In experiments, accelerated particles penetrate the considered target and even shielding. Thus, the protection of researchers and equipment from high energy particles is an important problem in the field of high energy physics. Because of the need, researchers are looking for new materials to be used for shielding (besides detectors, dosimeters, and many other applications). In this study, we have tested the interaction of proton, electron, and neutron for various energy levels with XSO4 (X= Ba, Be, Ca, Mg, and Sr) targets. XSO4 is in the powder structure, so it is mobile unlike concrete. We show the energy deposition of particles in the defined geometry. The simulation results show MgSO4 is significantly less responsive to proton and neutron beams. Thus, it is less likely a shielding material between the considered molecules. The other important conclusion, the most of the proton beams energy is absorbed by the listed molecules show similar responsiveness as concrete which makes these molecules possible alternatives as a shielding material in the high energy experiments.

References

  • H. Korkut, T. Korkut, A. Kara, M. Yiğit, and E. Tel, "Monte Carlo Simulations of 17.9–22.3 MeV Energetic Proton Irradiation Effects on bcc-Zirconium Fusionic Materials," Journal of Fusion Energy, vol. 35, no. 3, pp. 591-596, 2016.
  • P.Limkitjaroenporn, J. Kaewkhao, W. Chewpraditkul, and P. Limsuwan, "Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique," Procedia Engineering, vol. 32, pp. 847-854, 2012.
  • B. Aygün, T. Korkut, A. Karabulut, O. Gencel, and A. Karabulut, "Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite," International Journal of Polymer Analysis and Characterization vol. 20, no. 4, pp. 323-329, 2015.
  • R. H. Howell, P. A. Sterne, J. Hartley, and T. E. Cowan, "High energy beam lifetime analysis," Applied Surface Science, vol. 149, no. 1-4, pp. 103-105, 1999.
  • S. A. Leach et al., "Front-end electronics of the Compact High Energy Camera," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 952, p. 161746, 2020/02/01/ 2020.
  • T. T. Böhlen et al., "The FLUKA Code: Developments and Challenges for High Energy and Medical Applications," Nuclear Data Sheets, vol. 120, pp. 211-214, 2014.
  • A. Ferrari, P. R. Sala, A. Fasso`, and J. Ranft, "FLUKA: a multi-particle transport code," CERN-2005-10, pp. INFN/TC_05/11, SLAC-R-773 2005.
  • A. Hançerlioğullari, T. Korkut, and Y. G. A. Madee, "The Neutron Macroscopic Cross Sections Calculation of Some Minerals by Using FLUKA Monte Carlo Method," The Online Journal of Science and Technology vol. 7, no. 3, pp. 137-143, 2007.
  • A. Fassò, A. Ferrari, P. R. Sala, and J. Ranft, "FLUKA: Status and Prospects for Hadronic Applications," Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, no. 2001, pp. 955-960.
  • D. Sarıyer and R. Küçer, "Proton Hızlandırıcılarında Farklı Maddeler İçin Zırh Kalınlıklarının Analitik Yöntemle Belirlenmesi," Determination of Shielding Thicknesses by Using Analytical Method for Different Materials in Proton Accelerators., Article vol. 8, no. 1, pp. 100-105, 2013.
  • E. J. Callan, "Concrete for Radiation Shielding," Journal Proceedings American Concrete Institute, vol. 50, no. 9, pp. 17-44, 1953.
  • T. Nunomiya et al., "Measurements of Neutron Attenuation through Iron and Concrete at ISIS," Journal of Nuclear Science and Technology, vol. 37, no. 1, pp. 158-161, 2014.
  • D. Shealy and J. Hoffnagle, Laser beam shaping profiles and propagation. 2006, pp. 5118-5131.
  • V. Malka, J. Faure, Y. Glinec, and A. F. Lifschitz, "Laser-plasma accelerator: status and perspectives," (in English), Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 364, no. 1840, pp. 601-610, 2006.
  • Y. Glinec and V. Malka, High charge (0.5 nC) monoenergetic 170 +/-20 MeV electrons beam generated by 30 fs laser pulses. 2004.
  • N. Chanthima, P. Prongsamrong, J. Kaewkhao, and P. Limsuwan, "Simulated radiation attenuation properties of cement containing with BaSO4 and PbO," Procedia Engineering, vol. 32, pp. 976-981, 2012/01/01/ 2012.
  • A. Zezulová, T. Staněk, and T. Opravil, "The Influence of Barium Sulphate and Barium Carbonate on the Portland Cement," Procedia Engineering, vol. 151, pp. 42-49, 2016/01/01/ 2016.
  • A. Moussavi-Zarandi, "Determination of beryllium by use of photonuclear activation techniques," Applied Radiation and Isotopes, vol. 66, no. 2, pp. 158-161, 2008/02/01/ 2008.
  • B. S. Amin, S. Biswas, D. Lal, and B. L. K. Somayajulu, "Radiochemical measurements of 10Be and 7Be formation cross sections in oxygen by 135 and 550 MeV protons," Nuclear Physics A, vol. 195, no. 1, pp. 311-320, 1972/11/06/ 1972.
  • K. S. V. Nambi, "Self-dose and fading of CaSO4(Dy/Tm) and CaF2 (natural) TL phosphors in environmental radiation monitoring," Nuclear Instruments and Methods in Physics Research, vol. 197, no. 2, pp. 453-457, 1982/06/15/ 1982.
  • A. K. Bakshi, P. Suryanarayana, R. K. Sharma, N. K. Maheshwari, V. J. Joshi, and M. P. Chougaonkar, "Measurement of gamma attenuation for ANR end shield model using CaSO4:Dy phosphor," Annals of Nuclear Energy, vol. 55, pp. 205-210, 2013/05/01/ 2013.
  • K. Thapa and R. Jha, "Magnesium sulphate: a life saving drug," (in eng), JNMA; journal of the Nepal Medical Association, vol. 47, no. 171, pp. 104-108, 2008 Jul-Sep 2008.
  • V. P. Singh, M. E. Medhat, and N. M. Badiger, "Photon attenuation coefficients of thermoluminescent dosimetric materials by Geant4 toolkit, XCOMbprogram and experimental data: A comparison study," Annals of Nuclear Energy, vol. 68, pp. 96-100, 2014/06/01/ 2014.
  • M. A. H. Rushdi, A. A. Abdel-Fattah, and Y. S. Soliman, "Physico-chemical studies for strontium sulfate radiation dosimeter," Journal of Radiation Research and Applied Sciences, vol. 8, no. 2, pp. 221-225, 2015/04/01/ 2015.
  • CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. 2017.

XSO4 (X= Ba, Be, Ca, Mg, ve Sr)’ün Bilinen Parçacıklara (Proton, Elektron, ve Nötron)Tepkisinin Monte Carlo Çalışması: Bir Zırh Uygulaması

Year 2020, Volume: 15 Issue: 1, 43 - 48, 03.03.2020

Abstract

Detektörlerdeki ve teorilerdeki gelişmelere paralel olarak atom altı parçacıklar çalışılmaya devam edilmektedir. Deneylerde hızlandırılmış parçacıklar çalışılan hedeflerin ve hatta zırh içine bile nüfuz etmektedir. Bu sebepten dolayı araştırmacıları ve ekipmanları yüksek enerjili parçacıklardan korumak yüksek enerji araştırmalarında önemli bir problemdir. Bu ihtiyaçtan dolayı, araştırmacılar (detektör, dozimetre, ve diğer uygulamaların yanı sıra) zırh olarak kullanılabilecek yeni malzemeler arayışındadır. Bu çalışmada proton, elektron ve nötron ışınlarına maruz bıraktığımız XSO4 (X= Ba, Be, Ca, Mg, ve Sr) moleküllerini çeşitli enerji seviyeleri için inceledik. XSO4 pudra yapısındadır, böylece betonun aksine taşınabilirdir. Tanımlanan geometride enerji dağılımları incelendi. Yapılan analizler gösterdi ki MgSO4 diğer moleküllere kıyasla proton ve nötron ışınımlarına belirgin bir şekilde daha az tepki göstermiştir. Diğer bir önemli sonuç ise proton ışınımın enerjisinin büyük bir kısmı analiz konusu olan moleküller tarafından tutulmuştur, bu davranış referans noktası olarak kullandığımız beton ile benzerlikler göstermesi deney düzeneklerinde bu moleküllerin alternatif zırh malzemesi olarak kullanılabileceğini düşündürmektedir

References

  • H. Korkut, T. Korkut, A. Kara, M. Yiğit, and E. Tel, "Monte Carlo Simulations of 17.9–22.3 MeV Energetic Proton Irradiation Effects on bcc-Zirconium Fusionic Materials," Journal of Fusion Energy, vol. 35, no. 3, pp. 591-596, 2016.
  • P.Limkitjaroenporn, J. Kaewkhao, W. Chewpraditkul, and P. Limsuwan, "Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique," Procedia Engineering, vol. 32, pp. 847-854, 2012.
  • B. Aygün, T. Korkut, A. Karabulut, O. Gencel, and A. Karabulut, "Production and Neutron Irradiation Tests on a New Epoxy/Molybdenum Composite," International Journal of Polymer Analysis and Characterization vol. 20, no. 4, pp. 323-329, 2015.
  • R. H. Howell, P. A. Sterne, J. Hartley, and T. E. Cowan, "High energy beam lifetime analysis," Applied Surface Science, vol. 149, no. 1-4, pp. 103-105, 1999.
  • S. A. Leach et al., "Front-end electronics of the Compact High Energy Camera," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 952, p. 161746, 2020/02/01/ 2020.
  • T. T. Böhlen et al., "The FLUKA Code: Developments and Challenges for High Energy and Medical Applications," Nuclear Data Sheets, vol. 120, pp. 211-214, 2014.
  • A. Ferrari, P. R. Sala, A. Fasso`, and J. Ranft, "FLUKA: a multi-particle transport code," CERN-2005-10, pp. INFN/TC_05/11, SLAC-R-773 2005.
  • A. Hançerlioğullari, T. Korkut, and Y. G. A. Madee, "The Neutron Macroscopic Cross Sections Calculation of Some Minerals by Using FLUKA Monte Carlo Method," The Online Journal of Science and Technology vol. 7, no. 3, pp. 137-143, 2007.
  • A. Fassò, A. Ferrari, P. R. Sala, and J. Ranft, "FLUKA: Status and Prospects for Hadronic Applications," Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, no. 2001, pp. 955-960.
  • D. Sarıyer and R. Küçer, "Proton Hızlandırıcılarında Farklı Maddeler İçin Zırh Kalınlıklarının Analitik Yöntemle Belirlenmesi," Determination of Shielding Thicknesses by Using Analytical Method for Different Materials in Proton Accelerators., Article vol. 8, no. 1, pp. 100-105, 2013.
  • E. J. Callan, "Concrete for Radiation Shielding," Journal Proceedings American Concrete Institute, vol. 50, no. 9, pp. 17-44, 1953.
  • T. Nunomiya et al., "Measurements of Neutron Attenuation through Iron and Concrete at ISIS," Journal of Nuclear Science and Technology, vol. 37, no. 1, pp. 158-161, 2014.
  • D. Shealy and J. Hoffnagle, Laser beam shaping profiles and propagation. 2006, pp. 5118-5131.
  • V. Malka, J. Faure, Y. Glinec, and A. F. Lifschitz, "Laser-plasma accelerator: status and perspectives," (in English), Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 364, no. 1840, pp. 601-610, 2006.
  • Y. Glinec and V. Malka, High charge (0.5 nC) monoenergetic 170 +/-20 MeV electrons beam generated by 30 fs laser pulses. 2004.
  • N. Chanthima, P. Prongsamrong, J. Kaewkhao, and P. Limsuwan, "Simulated radiation attenuation properties of cement containing with BaSO4 and PbO," Procedia Engineering, vol. 32, pp. 976-981, 2012/01/01/ 2012.
  • A. Zezulová, T. Staněk, and T. Opravil, "The Influence of Barium Sulphate and Barium Carbonate on the Portland Cement," Procedia Engineering, vol. 151, pp. 42-49, 2016/01/01/ 2016.
  • A. Moussavi-Zarandi, "Determination of beryllium by use of photonuclear activation techniques," Applied Radiation and Isotopes, vol. 66, no. 2, pp. 158-161, 2008/02/01/ 2008.
  • B. S. Amin, S. Biswas, D. Lal, and B. L. K. Somayajulu, "Radiochemical measurements of 10Be and 7Be formation cross sections in oxygen by 135 and 550 MeV protons," Nuclear Physics A, vol. 195, no. 1, pp. 311-320, 1972/11/06/ 1972.
  • K. S. V. Nambi, "Self-dose and fading of CaSO4(Dy/Tm) and CaF2 (natural) TL phosphors in environmental radiation monitoring," Nuclear Instruments and Methods in Physics Research, vol. 197, no. 2, pp. 453-457, 1982/06/15/ 1982.
  • A. K. Bakshi, P. Suryanarayana, R. K. Sharma, N. K. Maheshwari, V. J. Joshi, and M. P. Chougaonkar, "Measurement of gamma attenuation for ANR end shield model using CaSO4:Dy phosphor," Annals of Nuclear Energy, vol. 55, pp. 205-210, 2013/05/01/ 2013.
  • K. Thapa and R. Jha, "Magnesium sulphate: a life saving drug," (in eng), JNMA; journal of the Nepal Medical Association, vol. 47, no. 171, pp. 104-108, 2008 Jul-Sep 2008.
  • V. P. Singh, M. E. Medhat, and N. M. Badiger, "Photon attenuation coefficients of thermoluminescent dosimetric materials by Geant4 toolkit, XCOMbprogram and experimental data: A comparison study," Annals of Nuclear Energy, vol. 68, pp. 96-100, 2014/06/01/ 2014.
  • M. A. H. Rushdi, A. A. Abdel-Fattah, and Y. S. Soliman, "Physico-chemical studies for strontium sulfate radiation dosimeter," Journal of Radiation Research and Applied Sciences, vol. 8, no. 2, pp. 221-225, 2015/04/01/ 2015.
  • CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. 2017.
There are 25 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Serkan Güldal 0000-0002-4247-0786

Publication Date March 3, 2020
Submission Date February 10, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

APA Güldal, S. (2020). Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application. Turkish Journal of Science and Technology, 15(1), 43-48.
AMA Güldal S. Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application. TJST. March 2020;15(1):43-48.
Chicago Güldal, Serkan. “Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application”. Turkish Journal of Science and Technology 15, no. 1 (March 2020): 43-48.
EndNote Güldal S (March 1, 2020) Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application. Turkish Journal of Science and Technology 15 1 43–48.
IEEE S. Güldal, “Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application”, TJST, vol. 15, no. 1, pp. 43–48, 2020.
ISNAD Güldal, Serkan. “Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application”. Turkish Journal of Science and Technology 15/1 (March 2020), 43-48.
JAMA Güldal S. Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application. TJST. 2020;15:43–48.
MLA Güldal, Serkan. “Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application”. Turkish Journal of Science and Technology, vol. 15, no. 1, 2020, pp. 43-48.
Vancouver Güldal S. Monte Carlo Study of XSO4 (X= Ba, Be, Ca, Mg, and Sr) Response to Common Particles (Proton, Electron, and Neutron): A Shielding Application. TJST. 2020;15(1):43-8.