Araştırma Makalesi
BibTex RIS Kaynak Göster

Polilaktid Esaslı Biyobozunur Kompozitlerde Doğal Bir Katkı Maddesi Olarak Genişletilmiş Perlit Mineralinin Kullanımı

Yıl 2024, Cilt: 19 Sayı: 1, 113 - 122, 28.03.2024
https://doi.org/10.55525/tjst.1348926

Öz

Polilaktit (PLA), tıptan paketlemeye kadar çeşitli uygulamalarda kullanılan, doğal kaynaklardan elde edilen ve biyolojik olarak parçalanabilen bir polimerdir. Bu çalışmada, biyokompozitler, doğal bir dolgu malzemesi olan perlit mineralinin (PER) biyolojik olarak parçalanabilen bir PLA matrisi ile %2.5, %5, %10 ve %15'lik ekleme oranlarında harmanlanarak hazırlanmıştır. Geliştirilen kompozitlerin işlenme, mekanik, erime akışı ve morfolojik özelliklerini belirlemek için kompozit numuneler üzerinde karıştırma kuvveti ölçümleri, çekme, Shore sertliği, darbe testleri, erime akış indisleri (MFI) ve taramalı elektron mikroskobu (SEM) değerlendirmeleri yapılmıştır. Çekme testi verileri incelendiğinde, perlit yüklemeleri ile çekme mukavemeti ve % uzama parametrelerinde ufak düşüşler görülmüştür. Perlit tozunun dahil edilmesi, PLA'nın darbe dayanımı değerini önemli ölçüde azaltmıştır. Yüksek miktarda PER içeren kompozitler, yüksek sertlik değerleri göstermiştir. MFI sonuçları analiz edildiğinde, PER ilavesinin PLA polimerinin erime akış özelliklerini arttırdığı bulunmuştur. Düşük PER miktarlarında, SEM mikrografları, PER partiküllerinin PLA fazında homojen bir şekilde dağıldığını ortaya çıkarmıştır. Kompozit morfolojisindeki partikül homojenliği, kompozitlerdeki PER yükleme oranı arttıkça bozulmuştur. Genel sonuçlara göre kompozitler arasında en yüksek performans %2,5 PER içeren numunede elde edilmiş ve bu numunenin PLA esaslı biyokompozit malzeme amaçlı uygulamalar için en uygun seçenek olduğu değerlendirilmiştir.

Kaynakça

  • Singh M, Garg M. Perlite-based building materials-a review of current applications, Construct. Build. Mater 1991; 5(2): 75-81.
  • Aksoy Ö, Alyamaç E, Mocan M, Sütçü M, Özveren-Uçar N, Seydibeyoğlu MÖ. Characterization of perlite powders from Izmir, Türkiye region, Physicochem. Prob. Miner. Proc 2022; 58(6); 155277.
  • Burriesci N, Arcoraci C, Antonucci P, Polizzotti G. Physico-chemical characterization of perlite of various origins, Mater. Lett 1985; 3(3): 103-110.
  • Daza A, Santamarıa C, Rodrıguez-Navarro DN, Camacho M, Orive R, Temprano F. Perlite as a carrier for bacterial inoculants, Soil Biol. Biochem 2000; 32(4): 567-572.
  • Altuntaş E, Arıkan AK. Odun-plastik kompozit malzemelerde genleştirilmiş perlit kullanımının araştırılması, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi 2022; 5(2): 142-154
  • Gencel O, Bayraktar OY, Kaplan G, Arslan O, Nodehi M, Benli A. et al., Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties, Construct. Build. Mater 2022; 320: 126187.
  • Öncül MK. Türkiye perlit endüstrisi, Scientific Mining J 1976; 15(1): 35-43
  • Biazar E, Keshel SH, Niazi V, Shiran NV, Saljooghi R, Jarrahi M, Arbastan AM. Morphological, cytotoxicity, and coagulation assessments of perlite as a new hemostatic biomaterial, RSC Adv 2023; 13(9): 6171-6180.
  • Turanlı L, Dernek C. The use of perlite in cement and concrete systems in the world and Turkey, Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi 2022; 4(2): 88-97.
  • Çoban O, Yilmaz T. Volcanic particle materials in polymer composites: A review, J. Mater. Sci 2022; 57: 16989–17020.
  • Raji M, Nekhlaoui S, El Hassani IE, Essassi EM, Essabir H, Rodrigue D, Bouhfid R. Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites, Compos. Part B Eng 2019; 165: 47-54.
  • Zhang X, Wen R, Tang C, Wu B, Huang Z, Min X, Huang Y, Liu Y, Fang M, Wu X. Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application, Energy Build 2016; 130: 113-121.
  • Oliveira AG de, Jandorno Jr JC, Rocha EB da, Sousa AM de, Silva AL da. Evaluation of expanded perlite behavior in PS/Perlite composites, Appl. Clay Sci 2019; 181: 105223.
  • Mahkam M, Vakhshouri L. Colon-specific drug delivery behavior of pH-responsive PMAA/perlite composite, Int. J. Mol. Sci 2010; 11(4): 1546-1556.
  • Koç S. Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization, MANAS J. Eng 2020; 8(2): 132-137.
  • Alghadi AM, Tirkes S, Tayfun U. Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral, Mater. Res. Express 2019; 7(1): 015301.
  • Tian H, Tagaya H. Dynamic mechanical property and photochemical stability of perlite/PVA and OMMT/PVA nanocomposites, J. Mater. Sci 2008; 43: 766-770.
  • Çabuk M. Electrorheologıcal propertıes of bıodegradable chıtosan/expanded perlıte composıtes, J Turkish Chem. Soc. Sect. A Chem 2016; 3(3): 119-130.
  • Arsalani N, Hayatifar M. Preparation and characterization of novel conducting polyaniline–perlite composites, Polym. Int 2005; 54(6): 933-938.
  • Özdemir F. Perlit içeriğinin odun plastik kompozitlerin yanma dayanımına etkisi, Bartın Orman Fakültesi Dergisi 2020; 22(3): 852-860.
  • Mattausch H, Laske S, Hohenwarter D, Holzer C. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds, AIP Conf. Proc 2015; 1664: 180002.
  • Öktem GA, Tincer T. A study on the yield stress of perlite-filled high-density polyethylenes, J. Mater. Sci 1993; 28: 6313-6317.
  • Sahraeian R, Hashemi SA, Esfandeh M, Ghasemi I. Preparation of nanocomposites based on LDPE/Perlite: mechanical and morphological studies, Polym. Polym. Compos 2012; 20(7): 639-646.
  • Atagür M, Sarikanat M, Uysalman T, Polat O, Elbeyli İY, Seki Y, Sever K. Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite, J. Elastom. Plast 2018; 50(8): 747-761.
  • Oktem GA, Tincer T. Preparation and characterization of perlite-filled high-density polyethylenes. 1. Mechanical properties, J. Appl. Polym. Sci 1994; 54(8): 1103-1114.
  • Öktem GA, Tincer T. Preparation and characterization of perlite-filled high-density polyethylenes. II. Thermal and flow properties, J. Appl. Polym. Sci 1994; 54(8), 1115-1122.
  • Sahraeian R, Esfandeh M. Mechanical and morphological properties of LDPE/perlite nanocomposite films, Polym. Bull 2017; 74: 1327-1341.
  • Heidari BS, Davachi SM, Sahraeian R, Esfandeh M, Rashedi H, Seyfi J. Investigating thermal and surface properties of low‐density polyethylene/nanoperlite nanocomposites for packaging applications, Polym. Compos 2019; 40(7): 2929-2237.
  • Ai MX, Cao LQ, Zhao XL, Xiang ZY, Guo XY. Preparation and characterization of polyurethane rigid foam/expanded perlite thermal insulation composites, Adv. Mater. Res 2010; 96: 141-144.
  • Rolon BG, Flores JB, Gutierrez VE. Design and manufacture of a fiber pyro expanded perlite/epoxy composite for thermal insulation, Int. J. Adv. Technol 2017; 8(03): 191.
  • Tian H, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites, J. Mater. Sci 2007; 42: 3244–3250
  • Aval ST, Davachi SM, Sahraeian R, Dadmohammadi Y, Heidari BS, Seyfi J, Hejazi I, Mosleh I, Abbaspourrad A. Nanoperlite effect on thermal, rheological, surface and cellular properties of poly lactic acid/nanoperlite nanocomposites for multipurpose applications, Polym. Test 2020; 91: 106779.
  • Pang X, Zhuang X, Tang Z, Chen X. Polylactic acid (PLA): Research, development and industrialization, Biotechnol. J 2010; 5(11): 1125-1136.
  • Dike AS. Preparation and characterization of calcite loaded poly (lactic acid) composite materials, Erzincan Univ. J. Sci. Technol 2020; 13(1): 162-170.
  • Ebrahimi F, Dana HR. Poly lactic acid (PLA) polymers: From properties to biomedical applications, Int. J. Polym. Mater. Polym. Biomater 2022; 71(15): 1117-1130.
  • Sreekumar K, Bindhu B, Veluraja K. Perspectives of polylactic acid from structure to applications, Polym. Renew. Resour 2021; 12(1-2): 60-74.
  • Alhaj I, Tirkes S, Hacioglu F, Tayfun U. Investigation of mechanical, thermal and melt flow performance of polycarbonate hybrid composites containing mica flakes and glass fiber, Adv. Mater. Lett 2020; 11(4): 20041501.
  • Mishra PK, Senthil P, Adarsh S, Anoop MS. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Compos. Commun 2021; 24: 100605.
  • Arslan Ç, Tayfu Ü, Dogan M. Examination of perlite-polymer interface interactions in polypropylene-based composites via several compatibilizers. Hittite J. Sci. Eng. 2023; 10(4), 323-329.
  • Leluk K, Frąckowiak S, Ludwiczak J, Rydzkowski T, Thakur VK. The impact of filler geometry on polylactic acid-based sustainable polymer composites, Molecules 2020; 26(1): 149.
  • Ahmed S, Jones FR. A review of particulate reinforcement theories for polymer composites, J. Mater. Sci 1990; 25: 4933-4942.
  • Kaplan A, Erdem A, Arslan C, Savas S, Tayfun U, Dogan M. The roles of filler amount and particle geometry on the mechanical, thermal, and tribological performance of polyamide 6 containing silicon-based nano-additives, Silicon 2023; 15 (7): 3165-3180.
  • Zare Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties, Compos. Part A Appl. Sci. Manuf 2016; 84:158-164.
  • Tayfun Ü, Yılmaz VM, Arslan Ç, Eklemeli imalat yönteminde filament olarak kullanılan polimerik malzemeler, J. Smart Systems 2023; 2 (1), 45-67.
  • Tayfun Ü, Tirkeş S, Doğan M, Tirkeş S, Zahmakıran M. Comparative performance study of acidic pumice and basic pumice inclusions for acrylonitrile–butadiene–styrene-based composite filaments, 3D Print. Addit. Manuf 2024; 11 (1), 276-286.
  • Wang S, Capoen L, D'hooge DR, Cardon L. Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly (lactic acid) filaments into 3D printed materials?, Plast. Rubber Compos 2018; 47(1): 9-16.
  • Cisneros-López EO, Pal AK, Rodriguez AU, Wu F, Misra K, Mielewski DF, Kiziltas A, Mohanty AK. Recycled poly (lactic acid)–based 3D printed sustainable biocomposites: a comparative study with injection molding, Mater. Today Sustain 2020; 7: 100027.
  • Kumar R, Singh R, Farina I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications, PSU Res Rev 2018; 2(2): 115-137.

Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites

Yıl 2024, Cilt: 19 Sayı: 1, 113 - 122, 28.03.2024
https://doi.org/10.55525/tjst.1348926

Öz

Polylactide (PLA) is a biodegradable polymer derived from natural resources used in various applications ranging from medical to packaging. In this study, biocomposites were developed by combining perlite mineral (PER), a natural filler material, with a biodegradable PLA matrix in incorporated contaminations of 2.5%, 5%, 10%, and 15%. The purpose of this work is to obtain composites having low production costs while retaining their main properties. Mixing force measurements, tensile, Shore hardness, impact tests, melt flow indices (MFI), and scanning electron microscopy (SEM) evaluations were carried out on composite samples to determine the processing, mechanical, melt flow, and morphological aspects of the developed composites. When the tensile test data were reviewed, minor decreases in the tensile strength and % elongation parameters were noticed with perlite loadings. The inclusion of perlite powder significantly reduced the impact strength value of PLA. Composites with high amounts of PER displayed elevated hardness values. While the MFI results were analyzed, it was deduced that the addition of PER increased the melt flow characteristics of the PLA polymer. At low PER quantities, SEM micrographs displayed that PER particles were homogeneously distributed in the PLA phase. The particle homogeneity in the composite morphology deteriorated as the PER loading ratio in the composites rose. According to the overall results, the highest performance among composites was achieved in the sample including 2.5% PER, and this sample was considered to be the most suitable option for applications regarding PLA-based biocomposite material purposes.

Kaynakça

  • Singh M, Garg M. Perlite-based building materials-a review of current applications, Construct. Build. Mater 1991; 5(2): 75-81.
  • Aksoy Ö, Alyamaç E, Mocan M, Sütçü M, Özveren-Uçar N, Seydibeyoğlu MÖ. Characterization of perlite powders from Izmir, Türkiye region, Physicochem. Prob. Miner. Proc 2022; 58(6); 155277.
  • Burriesci N, Arcoraci C, Antonucci P, Polizzotti G. Physico-chemical characterization of perlite of various origins, Mater. Lett 1985; 3(3): 103-110.
  • Daza A, Santamarıa C, Rodrıguez-Navarro DN, Camacho M, Orive R, Temprano F. Perlite as a carrier for bacterial inoculants, Soil Biol. Biochem 2000; 32(4): 567-572.
  • Altuntaş E, Arıkan AK. Odun-plastik kompozit malzemelerde genleştirilmiş perlit kullanımının araştırılması, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi 2022; 5(2): 142-154
  • Gencel O, Bayraktar OY, Kaplan G, Arslan O, Nodehi M, Benli A. et al., Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties, Construct. Build. Mater 2022; 320: 126187.
  • Öncül MK. Türkiye perlit endüstrisi, Scientific Mining J 1976; 15(1): 35-43
  • Biazar E, Keshel SH, Niazi V, Shiran NV, Saljooghi R, Jarrahi M, Arbastan AM. Morphological, cytotoxicity, and coagulation assessments of perlite as a new hemostatic biomaterial, RSC Adv 2023; 13(9): 6171-6180.
  • Turanlı L, Dernek C. The use of perlite in cement and concrete systems in the world and Turkey, Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi 2022; 4(2): 88-97.
  • Çoban O, Yilmaz T. Volcanic particle materials in polymer composites: A review, J. Mater. Sci 2022; 57: 16989–17020.
  • Raji M, Nekhlaoui S, El Hassani IE, Essassi EM, Essabir H, Rodrigue D, Bouhfid R. Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites, Compos. Part B Eng 2019; 165: 47-54.
  • Zhang X, Wen R, Tang C, Wu B, Huang Z, Min X, Huang Y, Liu Y, Fang M, Wu X. Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application, Energy Build 2016; 130: 113-121.
  • Oliveira AG de, Jandorno Jr JC, Rocha EB da, Sousa AM de, Silva AL da. Evaluation of expanded perlite behavior in PS/Perlite composites, Appl. Clay Sci 2019; 181: 105223.
  • Mahkam M, Vakhshouri L. Colon-specific drug delivery behavior of pH-responsive PMAA/perlite composite, Int. J. Mol. Sci 2010; 11(4): 1546-1556.
  • Koç S. Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization, MANAS J. Eng 2020; 8(2): 132-137.
  • Alghadi AM, Tirkes S, Tayfun U. Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral, Mater. Res. Express 2019; 7(1): 015301.
  • Tian H, Tagaya H. Dynamic mechanical property and photochemical stability of perlite/PVA and OMMT/PVA nanocomposites, J. Mater. Sci 2008; 43: 766-770.
  • Çabuk M. Electrorheologıcal propertıes of bıodegradable chıtosan/expanded perlıte composıtes, J Turkish Chem. Soc. Sect. A Chem 2016; 3(3): 119-130.
  • Arsalani N, Hayatifar M. Preparation and characterization of novel conducting polyaniline–perlite composites, Polym. Int 2005; 54(6): 933-938.
  • Özdemir F. Perlit içeriğinin odun plastik kompozitlerin yanma dayanımına etkisi, Bartın Orman Fakültesi Dergisi 2020; 22(3): 852-860.
  • Mattausch H, Laske S, Hohenwarter D, Holzer C. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds, AIP Conf. Proc 2015; 1664: 180002.
  • Öktem GA, Tincer T. A study on the yield stress of perlite-filled high-density polyethylenes, J. Mater. Sci 1993; 28: 6313-6317.
  • Sahraeian R, Hashemi SA, Esfandeh M, Ghasemi I. Preparation of nanocomposites based on LDPE/Perlite: mechanical and morphological studies, Polym. Polym. Compos 2012; 20(7): 639-646.
  • Atagür M, Sarikanat M, Uysalman T, Polat O, Elbeyli İY, Seki Y, Sever K. Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite, J. Elastom. Plast 2018; 50(8): 747-761.
  • Oktem GA, Tincer T. Preparation and characterization of perlite-filled high-density polyethylenes. 1. Mechanical properties, J. Appl. Polym. Sci 1994; 54(8): 1103-1114.
  • Öktem GA, Tincer T. Preparation and characterization of perlite-filled high-density polyethylenes. II. Thermal and flow properties, J. Appl. Polym. Sci 1994; 54(8), 1115-1122.
  • Sahraeian R, Esfandeh M. Mechanical and morphological properties of LDPE/perlite nanocomposite films, Polym. Bull 2017; 74: 1327-1341.
  • Heidari BS, Davachi SM, Sahraeian R, Esfandeh M, Rashedi H, Seyfi J. Investigating thermal and surface properties of low‐density polyethylene/nanoperlite nanocomposites for packaging applications, Polym. Compos 2019; 40(7): 2929-2237.
  • Ai MX, Cao LQ, Zhao XL, Xiang ZY, Guo XY. Preparation and characterization of polyurethane rigid foam/expanded perlite thermal insulation composites, Adv. Mater. Res 2010; 96: 141-144.
  • Rolon BG, Flores JB, Gutierrez VE. Design and manufacture of a fiber pyro expanded perlite/epoxy composite for thermal insulation, Int. J. Adv. Technol 2017; 8(03): 191.
  • Tian H, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites, J. Mater. Sci 2007; 42: 3244–3250
  • Aval ST, Davachi SM, Sahraeian R, Dadmohammadi Y, Heidari BS, Seyfi J, Hejazi I, Mosleh I, Abbaspourrad A. Nanoperlite effect on thermal, rheological, surface and cellular properties of poly lactic acid/nanoperlite nanocomposites for multipurpose applications, Polym. Test 2020; 91: 106779.
  • Pang X, Zhuang X, Tang Z, Chen X. Polylactic acid (PLA): Research, development and industrialization, Biotechnol. J 2010; 5(11): 1125-1136.
  • Dike AS. Preparation and characterization of calcite loaded poly (lactic acid) composite materials, Erzincan Univ. J. Sci. Technol 2020; 13(1): 162-170.
  • Ebrahimi F, Dana HR. Poly lactic acid (PLA) polymers: From properties to biomedical applications, Int. J. Polym. Mater. Polym. Biomater 2022; 71(15): 1117-1130.
  • Sreekumar K, Bindhu B, Veluraja K. Perspectives of polylactic acid from structure to applications, Polym. Renew. Resour 2021; 12(1-2): 60-74.
  • Alhaj I, Tirkes S, Hacioglu F, Tayfun U. Investigation of mechanical, thermal and melt flow performance of polycarbonate hybrid composites containing mica flakes and glass fiber, Adv. Mater. Lett 2020; 11(4): 20041501.
  • Mishra PK, Senthil P, Adarsh S, Anoop MS. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Compos. Commun 2021; 24: 100605.
  • Arslan Ç, Tayfu Ü, Dogan M. Examination of perlite-polymer interface interactions in polypropylene-based composites via several compatibilizers. Hittite J. Sci. Eng. 2023; 10(4), 323-329.
  • Leluk K, Frąckowiak S, Ludwiczak J, Rydzkowski T, Thakur VK. The impact of filler geometry on polylactic acid-based sustainable polymer composites, Molecules 2020; 26(1): 149.
  • Ahmed S, Jones FR. A review of particulate reinforcement theories for polymer composites, J. Mater. Sci 1990; 25: 4933-4942.
  • Kaplan A, Erdem A, Arslan C, Savas S, Tayfun U, Dogan M. The roles of filler amount and particle geometry on the mechanical, thermal, and tribological performance of polyamide 6 containing silicon-based nano-additives, Silicon 2023; 15 (7): 3165-3180.
  • Zare Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties, Compos. Part A Appl. Sci. Manuf 2016; 84:158-164.
  • Tayfun Ü, Yılmaz VM, Arslan Ç, Eklemeli imalat yönteminde filament olarak kullanılan polimerik malzemeler, J. Smart Systems 2023; 2 (1), 45-67.
  • Tayfun Ü, Tirkeş S, Doğan M, Tirkeş S, Zahmakıran M. Comparative performance study of acidic pumice and basic pumice inclusions for acrylonitrile–butadiene–styrene-based composite filaments, 3D Print. Addit. Manuf 2024; 11 (1), 276-286.
  • Wang S, Capoen L, D'hooge DR, Cardon L. Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly (lactic acid) filaments into 3D printed materials?, Plast. Rubber Compos 2018; 47(1): 9-16.
  • Cisneros-López EO, Pal AK, Rodriguez AU, Wu F, Misra K, Mielewski DF, Kiziltas A, Mohanty AK. Recycled poly (lactic acid)–based 3D printed sustainable biocomposites: a comparative study with injection molding, Mater. Today Sustain 2020; 7: 100027.
  • Kumar R, Singh R, Farina I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications, PSU Res Rev 2018; 2(2): 115-137.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Kompozit ve Hibrit Malzemeler, Polimerler ve Plastikler
Bölüm TJST
Yazarlar

Erkan Aksoy 0000-0002-0083-2574

Süha Tirkeş 0000-0002-1255-4524

Ümit Tayfun 0000-0001-5978-5162

Seha Tirkeş 0000-0002-9131-9951

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 23 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 19 Sayı: 1

Kaynak Göster

APA Aksoy, E., Tirkeş, S., Tayfun, Ü., Tirkeş, S. (2024). Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites. Turkish Journal of Science and Technology, 19(1), 113-122. https://doi.org/10.55525/tjst.1348926
AMA Aksoy E, Tirkeş S, Tayfun Ü, Tirkeş S. Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites. TJST. Mart 2024;19(1):113-122. doi:10.55525/tjst.1348926
Chicago Aksoy, Erkan, Süha Tirkeş, Ümit Tayfun, ve Seha Tirkeş. “Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites”. Turkish Journal of Science and Technology 19, sy. 1 (Mart 2024): 113-22. https://doi.org/10.55525/tjst.1348926.
EndNote Aksoy E, Tirkeş S, Tayfun Ü, Tirkeş S (01 Mart 2024) Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites. Turkish Journal of Science and Technology 19 1 113–122.
IEEE E. Aksoy, S. Tirkeş, Ü. Tayfun, ve S. Tirkeş, “Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites”, TJST, c. 19, sy. 1, ss. 113–122, 2024, doi: 10.55525/tjst.1348926.
ISNAD Aksoy, Erkan vd. “Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites”. Turkish Journal of Science and Technology 19/1 (Mart 2024), 113-122. https://doi.org/10.55525/tjst.1348926.
JAMA Aksoy E, Tirkeş S, Tayfun Ü, Tirkeş S. Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites. TJST. 2024;19:113–122.
MLA Aksoy, Erkan vd. “Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites”. Turkish Journal of Science and Technology, c. 19, sy. 1, 2024, ss. 113-22, doi:10.55525/tjst.1348926.
Vancouver Aksoy E, Tirkeş S, Tayfun Ü, Tirkeş S. Expanded Perlite Mineral As a Natural Additive Used In Polylactide-Based Biodegradable Composites. TJST. 2024;19(1):113-22.