Research Article
BibTex RIS Cite

High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver

Year 2024, Volume: 19 Issue: 2, 387 - 396, 30.09.2024
https://doi.org/10.55525/tjst.1448314

Abstract

Resolver is a shaft angle sensor, which is mechanically connected to the motor shaft and operates according to the induction principle. A high frequency sinusoidal signal is applied to its input and produces two signals in the form of sine and cosine at its output. The output signals include the angle information of the motor shaft. Using these signals, the shaft angle of the motor is determined. In the study, a sinusoidal signal at the 5 kHz frequency was applied to an input resolver as the conventional method. After, the fact that applied to two PWM signals which has a duty ratio d=0.5 at 20 kHz and 100 kHz frequency is proposed as different from the conventional method. These PWM signals are the input signals of the resolver. Thus, complex equipment will not be needed to produce the high frequency sinusoidal signal. With only a simple amplifier circuit, a high frequency input signal will be produced. More sensitive angle information will be obtained with high frequency stimulation. A simulation study of conventional and proposed methods has been performed in MATLAB/Simscape environment. As a result of the simulation study, the information on the motor angle obtained from both methods was compared by using figures and details. By increasing the applied PWM signal from 20 kHz to 100 kHz, measurement errors related to shaft angle change were minimized and more precise position information was obtained.

References

  • Benammar M, Ben-Brahim L, and Alhamadi MA, A high precision resolver-to-DC converter, IEEE Trans Instrum Meas 2005;5, 2289–2296.
  • Benammar M, Ben-Brahim L, and Alhamadi MA, A Novel Resolver-to-360° Linearized Converter. IEEE Sens J 2004; 4, 96–101.
  • Erbahan OZ, Alışkan I, Diagnostics of a Broken Rotor Bar Faults of Three-phase Squirrel Cage Induction Motor Using Acoustic Signals, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2019; 7(3), 935–950.
  • Ben-Brahim L, Benammar M, and Alhamadi MA, A resolver angle estimator based on its excitation signal, IEEE Trans Ind Electron 2009; 56:574–580.
  • Attaianese C, Tomasso G, Position measurement in industrial drives by means of low-cost resolver-to-digital converter, IEEE Trans Instrum Meas 2007;56: 2155–2159.
  • Pecly L, Schindeler R, Cleveland D, and Hashtrudi-Zaad K, High-Precision Resolver-to-Velocity Converter, IEEE Sens J 2017; 66(11): 2917–2928.
  • Ben-Brahim L, Benammar M, Alhamadi MA, Al-Emadi NA, and Al-Hitmi MA, A new low cost linear resolver converter, IEEE Sens J 2008; 8: 1620–1627.
  • Sarma S, Agrawal VK, and Udupa S, Software-based resolver-to-digital conversion using a DSP, IEEE Trans Ind Electron 2008; 55:371–379.
  • Sarma S, Agrawal VK, Udupa S, and Parameswaran K, Instantaneous angular position and speed measurement using a DSP based resolver-to-digital converter, Measurement 2008; 41(7): 788–796.
  • Khaburi DA, Software-based resolver-to-digital converter for DSP-based drives using an improved angle-tracking observer, IEEE Trans Instrum Meas 2012;61: 922–929.
  • Qamar NA, Hatziadoniu CJ, and Wang H, Speed error mitigation for a DSP-basedresolver-to-digital converter using autotuning filters, IEEE Trans Ind Electron 2015; 62: 1134–1139.
  • Wu Z, and Li Y, High-accuracy automatic calibration of resolver signals via two-step gradient estimators, IEEE Sensors Journal 2018; 18(7): 2883-2891.
  • Qin H, and Wu Z, Angle Tracking Observer with Improved Accuracy for Resolver-to-Digital Conversion, Symmetry 2019; 11(11): 1347.
  • Zhang J, and Wu Z, Composite state observer for resolver-to-digital conversion, Meas Sci Technol 2017;28: 1-10.
  • Kim YH, and Kim S, Software resolver-to-digital converter for compensation of amplitude imbalances using d-q transformation, J Electr Eng Technol 2013; 8: 1310-1319.
  • Celikel R, and Aydogmus O, A FPGA-Based Position Calculation for Shaft Resolvers, International Advanced Technologies Symposium (IATS’17), 2017; 368–374.
  • Karabeyli FA, and Alkar AZ, Enhancing the Accuracy for the Open-loop Resolver to Digital Converters, J Electr Eng Technol 2018;13: 192-200.
  • Celikel R and Aydogmus O, ANN-Based Noise Reduction for Shaft Resolver in Robotic Applications, 1st International Engineering and Technology Symposium, 2018;561–568.
  • Celikel R, ANN based angle tracking technique for shaft resolver, Measurement 2019;148: 1-10.
  • Shi T, Hao Y, Jiang G, Wang Z, and Xia C, A Method of Resolver-to-Digital Conversion Based on Square Wave Excitation, IEEE Trans Ind Electron 2018; 65(9): 7211-7219.
  • Sun L, Kong T, Wu C, Zhang L, Wang W, and Ding S, The Leaf-Style Axial Field Variable Reluctance Resolver With an Efficient Decoding System, IEEE Trans on Ind Electron 2024; 71(9): 11581-11591.
  • Hwang Y, and Jang P, New RDC Method Using Trapezoidal Excitation Signal Considering Resolver Nonliearity, IEEE Transactions on Instrumentation and Measurement 2023; 72: 9000709.

Mil Resolver’li Endüstriyel Sürücü Sistemlerde Pozisyon Kontrolü İçin Yüksek Hassasiyetli Açı Ölçümü

Year 2024, Volume: 19 Issue: 2, 387 - 396, 30.09.2024
https://doi.org/10.55525/tjst.1448314

Abstract

Resolver motor miline mekanik olarak bağlanan ve indükleme prensibine göre çalışan mil açısı algılayıcısıdır. Girişine yüksek frekanslı sinusoidal sinyal uygulanır ve çıkışında sinus ve cosinus formunda iki adet sinyal üretir. Bu çıkış sinyalleri, motor milinin pozisyon bilgisini içerir. Bu sinyaller kullanılarak motorun mil açısının tespiti yapılır. Bu çalışmada resolver’in girişine önce geleneksel yöntem olarak 5 kHz frekansında bir sinusoidal sinyal uygulanmıştır. Daha sonra bu geleneksel yöntemden farklı olarak resolver’in davranışını analiz etmek amacı ile girişine 20 kHz ve 100 kHz frekansında d=0,5 görev periyoduna sahip iki ayrı PWM sinyalinin uygulanması önerilmiştir. Bu PWM sinyalleri resolveri’n giriş sinyallerini oluşturmaktadır. Böylece yüksek frekanslı sinusoidal sinyali üretmek için karmaşık donanıma ihtiyaç duyulmayacaktır. Sadece basit bir yükselteç devresi ile yüksek frekanslı giriş sinyali üretilmiş olacaktır. Yüksek frekanslı uyartım ile daha hassas açı bilgisi elde edilecektir. Geleneksel yöntem ile önerilen yönteme ilişkin benzetim çalışmaları MATLAB/Simscape ortamında gerçekleştirilmiştir. Benzetim çalışmaları sonucunda her iki yöntemden elde edilen motor açı bilgisi verilen grafikler yardımı ile detaylı olarak karşılaştırılmıştır. Uygulanan PWM sinyalinin 20 kHz ‘den 100 kHz ‘e yükseltilmesi ile birlikte mil açı değişimine ait ölçüm hataları minimize edilerek daha hassas konum bilgisi elde edilmiştir.

References

  • Benammar M, Ben-Brahim L, and Alhamadi MA, A high precision resolver-to-DC converter, IEEE Trans Instrum Meas 2005;5, 2289–2296.
  • Benammar M, Ben-Brahim L, and Alhamadi MA, A Novel Resolver-to-360° Linearized Converter. IEEE Sens J 2004; 4, 96–101.
  • Erbahan OZ, Alışkan I, Diagnostics of a Broken Rotor Bar Faults of Three-phase Squirrel Cage Induction Motor Using Acoustic Signals, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2019; 7(3), 935–950.
  • Ben-Brahim L, Benammar M, and Alhamadi MA, A resolver angle estimator based on its excitation signal, IEEE Trans Ind Electron 2009; 56:574–580.
  • Attaianese C, Tomasso G, Position measurement in industrial drives by means of low-cost resolver-to-digital converter, IEEE Trans Instrum Meas 2007;56: 2155–2159.
  • Pecly L, Schindeler R, Cleveland D, and Hashtrudi-Zaad K, High-Precision Resolver-to-Velocity Converter, IEEE Sens J 2017; 66(11): 2917–2928.
  • Ben-Brahim L, Benammar M, Alhamadi MA, Al-Emadi NA, and Al-Hitmi MA, A new low cost linear resolver converter, IEEE Sens J 2008; 8: 1620–1627.
  • Sarma S, Agrawal VK, and Udupa S, Software-based resolver-to-digital conversion using a DSP, IEEE Trans Ind Electron 2008; 55:371–379.
  • Sarma S, Agrawal VK, Udupa S, and Parameswaran K, Instantaneous angular position and speed measurement using a DSP based resolver-to-digital converter, Measurement 2008; 41(7): 788–796.
  • Khaburi DA, Software-based resolver-to-digital converter for DSP-based drives using an improved angle-tracking observer, IEEE Trans Instrum Meas 2012;61: 922–929.
  • Qamar NA, Hatziadoniu CJ, and Wang H, Speed error mitigation for a DSP-basedresolver-to-digital converter using autotuning filters, IEEE Trans Ind Electron 2015; 62: 1134–1139.
  • Wu Z, and Li Y, High-accuracy automatic calibration of resolver signals via two-step gradient estimators, IEEE Sensors Journal 2018; 18(7): 2883-2891.
  • Qin H, and Wu Z, Angle Tracking Observer with Improved Accuracy for Resolver-to-Digital Conversion, Symmetry 2019; 11(11): 1347.
  • Zhang J, and Wu Z, Composite state observer for resolver-to-digital conversion, Meas Sci Technol 2017;28: 1-10.
  • Kim YH, and Kim S, Software resolver-to-digital converter for compensation of amplitude imbalances using d-q transformation, J Electr Eng Technol 2013; 8: 1310-1319.
  • Celikel R, and Aydogmus O, A FPGA-Based Position Calculation for Shaft Resolvers, International Advanced Technologies Symposium (IATS’17), 2017; 368–374.
  • Karabeyli FA, and Alkar AZ, Enhancing the Accuracy for the Open-loop Resolver to Digital Converters, J Electr Eng Technol 2018;13: 192-200.
  • Celikel R and Aydogmus O, ANN-Based Noise Reduction for Shaft Resolver in Robotic Applications, 1st International Engineering and Technology Symposium, 2018;561–568.
  • Celikel R, ANN based angle tracking technique for shaft resolver, Measurement 2019;148: 1-10.
  • Shi T, Hao Y, Jiang G, Wang Z, and Xia C, A Method of Resolver-to-Digital Conversion Based on Square Wave Excitation, IEEE Trans Ind Electron 2018; 65(9): 7211-7219.
  • Sun L, Kong T, Wu C, Zhang L, Wang W, and Ding S, The Leaf-Style Axial Field Variable Reluctance Resolver With an Efficient Decoding System, IEEE Trans on Ind Electron 2024; 71(9): 11581-11591.
  • Hwang Y, and Jang P, New RDC Method Using Trapezoidal Excitation Signal Considering Resolver Nonliearity, IEEE Transactions on Instrumentation and Measurement 2023; 72: 9000709.
There are 22 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section TJST
Authors

Reşat Çelikel 0000-0002-9169-6466

Ahmet Gündoğdu 0000-0002-8333-3083

Publication Date September 30, 2024
Submission Date March 7, 2024
Acceptance Date September 20, 2024
Published in Issue Year 2024 Volume: 19 Issue: 2

Cite

APA Çelikel, R., & Gündoğdu, A. (2024). High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver. Turkish Journal of Science and Technology, 19(2), 387-396. https://doi.org/10.55525/tjst.1448314
AMA Çelikel R, Gündoğdu A. High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver. TJST. September 2024;19(2):387-396. doi:10.55525/tjst.1448314
Chicago Çelikel, Reşat, and Ahmet Gündoğdu. “High-Precision Angle Measurement for Position Control in Industrial Drives Systems With Shaft Resolver”. Turkish Journal of Science and Technology 19, no. 2 (September 2024): 387-96. https://doi.org/10.55525/tjst.1448314.
EndNote Çelikel R, Gündoğdu A (September 1, 2024) High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver. Turkish Journal of Science and Technology 19 2 387–396.
IEEE R. Çelikel and A. Gündoğdu, “High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver”, TJST, vol. 19, no. 2, pp. 387–396, 2024, doi: 10.55525/tjst.1448314.
ISNAD Çelikel, Reşat - Gündoğdu, Ahmet. “High-Precision Angle Measurement for Position Control in Industrial Drives Systems With Shaft Resolver”. Turkish Journal of Science and Technology 19/2 (September 2024), 387-396. https://doi.org/10.55525/tjst.1448314.
JAMA Çelikel R, Gündoğdu A. High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver. TJST. 2024;19:387–396.
MLA Çelikel, Reşat and Ahmet Gündoğdu. “High-Precision Angle Measurement for Position Control in Industrial Drives Systems With Shaft Resolver”. Turkish Journal of Science and Technology, vol. 19, no. 2, 2024, pp. 387-96, doi:10.55525/tjst.1448314.
Vancouver Çelikel R, Gündoğdu A. High-Precision Angle Measurement for Position Control in Industrial Drives Systems with Shaft Resolver. TJST. 2024;19(2):387-96.