Detection of Biofilm Layer in Water Plumbing and Determination of its Effect on Water Quality
Yıl 2023,
, 20 - 45, 24.05.2023
Nurullah Said Yeken
,
Çağlan Günal
Öz
In this study, biofilm formation on the plumbing, the presence of pathogenic microorganisms in biofilms and their effects on water quality were examined by membrane filtration with dehydrated
medium method in 22 different buildings in a facility’s water network. A relation with biofilm formation and water quality deterioration with the age of the plumbing and the pipe material was also
studied. The results were expressed as colony forming units (CFU). According to the results of the galvanized metal pipes, the average colony count was determined as >200 CFU/250 mL, average
pathogen count was calculated as 107 CFU/250 mL and the highest deterioration in the water qualitywere observed. For the Polyethylene (PE) pipes, the average colony count was found as >200
CFU/250 mL and the average pathogen count was found as 145 CFU/250 mL. No physical and chemical changes in water quality were observed. For the Polypropylene Random Copolymer (PPRC)
pipes, neither physical/chemical change in water quality nor pathogenic growth were observed. The total colony count was found as 34 CFU/250 mL. Biofilm formation was detected at 15 points in the network. Pseudomonas aeruginosa was the most common detected pathogens in plumbing as 12 points from 22 buildings. The highest colony formation was Escherichia coli, which was detected in four of 22 plumbing as 600 CFU/250 mL colonies. It has been observed that more accumulations occurred in galvanized metal pipe surfaces, and microbiological growth was higher than PE and PPRC pipes.
Teşekkür
The authors thank to Prof Dr Hatim Elhatip, Prof Dr Kadir Halkman and Dr Feriha Yıldırım and Dr Melike Huri YAVUZ for technical contributions. We also thank, Gözde Tuğba KÖKSOY, Mustafa ŞİMŞİR and Mehmet GÜZEL for sampling and providing NPS sets.
Kaynakça
- Acehan, G. (2007). İçme Sularının Mikrobiyolojik Kirlenme Potansiyelinin İncelenmesi, (Publication No.) [Master’s thesis, Çukurova University]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=fxXvSTuGxU7RNdT4Q1HeIg&no =usQZiM-JgwFtIThOYgd21
- Boe-Hansen, R. (2001). Microbial growth in drinking water distribution systems. Environment & Resources DTU. Technical University of Denmark. https://backend.orbit.dtu.dk/ws/portalfiles/portal/127447176/MR2001_075_1_.pdf
- Camper, A.K., Brastrup, K., Sandvig, A., Clement, J., Spencer, C., & Capuzzi, A.J. (2003). Effect of distribution system materials on bacterial regrowth. Journal of American Water Works Association, 95(7), 107-121. https://doi.org/10.1002/j.1551-8833.2003.tb10412.x
- Critchley, M.M., Cromar, N.J., McClure, N.C., & Fallowfield, H.J. (2003), The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria, Journal of Applied Microbiology, 94(3), 501-507. https://doi.org/10.1046/j.1365-2672.2003.01857.x
- Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., & Lappin-Scott, H.M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711-745. https://doi.org/10.1146/annurev.mi. 49.100195.003431
- Freeman, C. & Lock, M.A. (1995). The biofilm polysaccharade matrix: A buffer against changing organic carbon supply? Limnology Oceanography, 40(2), 273- 278. https://doi.org/10.4319/lo.1995.40.2.0273
- Gray, N.F. (2008), Drinking Water Quality: Problems and Solutions (2nd ed.) Cambridge University Press.
- Hong W., Emilie B., Michele P., Anne K. C., Vincent R. H., & Amy P. (2017). Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Research, 117, 68-86. https://doi.org/10.1016/j.watres.2017.03.046
- Keskin, N.O., & Kahveci, E.F. (2019). Polietilen ve Demir Boru Sistemlerinde Oluşan Mikrobiyel Biyofilmlerin Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi, 31(1), 1-8. https://dergipark.org.tr/tr/download/article-file/796738
- Küçükgül, E.Y., & Özdağlar, D. (2004). İçme Suyunda Agresivitenin Saptanması ve Şebekede Korozyonun Önlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(3), 19-39. https://dergipark.org.tr/tr/pub/deumffmd/issue/40874/493497
- LeChevallier, M., Cawthon, C.D., & Lee, R.G. (1988). Factors promoting survival of bacteria in chlorinated water supplies. American Society for Microbiology Journals Applied Environmental Microbiology, 54(3), 649-654. https://doi.org/10.1128/aem.54.3.649-654.1988
- Liu, S., Gunawan, C., Barraud, N., Rice, A.S., Harry, J.E., & Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environmental Science and Technology, 50(17), 8954–8976. https://doi.org/10.1021/acs.est.6b00835
- Niquette, P., Servais, P., & Savoir, R. (2000). Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Research, 34(6), 1952–1956. https://doi.org/10.1016/S0043-1354(99)00307-3
- Percival S.L, Knapp J.S, Edyvean R.G.J, Wales D.S, Biofilms, mains water and stainless steel, Water Research,Volume 32, Issue 7, 1998, Pages 2187-2201. https://doi.org/10.1016/S0043- 1354(97)00415-6
- Pietrzyk, A., & Papciak, D. (2017). The influence of water treatment technology on the process of biofilm formation on the selected installation materials. Journal of Civil Engineering, Environment and Architecture, 64(2), 131–142. http://dx.doi.org/10.7862/rb.2017.87
- Sartorius (2020/10/31). Microbiological testing of foods, beverages, drinking water and pharmaceuticals.https://www.sartorius.com/download/459058/broch-microbiological-testingsm-4017-e-data.pdf
- Skjevrak, I., Lund, V., Ormerod, K., Due, A. & Herikstad, H. (2004). Biofilm in water pipelines; a potential source for off-flavours in the drinking water. Water Science & Technology, 49(9), 211– 217. https://doi.org/10.2166/wst.2004.0573
- Telgmann, U., Horn, H., & Morgenroth, E. (2004). Influence of growth history on sloughing and erosion from biofilm. Water Research, 38(17), 3671-3684. https://doi.org/10.1016/j.watres.2004.05.020
- Turkish Standards Institution, (2005). TS 266 Water Intended for Human Consumption Standard (İnsani Tüketim Amaçlı Sular) https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119 110104055047105102120088111043113104073082080080071077100076119105103072
- Türetgen, İ. (2005). Su Sistemlerinde Mikrobiyal Biyofilm Oluşumunun İncelenmesi (Publication No.) [Doctoral dissertation, İstanbul Üniversitesi Fen Bilimleri Enstitüsü]. Database or Archive Name yazılacak
- World Health Organization. (2017/10/16). Guidelines for drinking-water quality: Fourth Edition incorporating the first addendum. https://www.who.int/publications/i/item/9789241549950
- Zhang, Y., Love, N. & Edwards, M. (2009). Nitrification in drinking water systems. Critical Reviews in Environmental Science and Technology, 39(3), 153–208. https://doi.org/10.1080/10643380701631739
Yıl 2023,
, 20 - 45, 24.05.2023
Nurullah Said Yeken
,
Çağlan Günal
Kaynakça
- Acehan, G. (2007). İçme Sularının Mikrobiyolojik Kirlenme Potansiyelinin İncelenmesi, (Publication No.) [Master’s thesis, Çukurova University]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=fxXvSTuGxU7RNdT4Q1HeIg&no =usQZiM-JgwFtIThOYgd21
- Boe-Hansen, R. (2001). Microbial growth in drinking water distribution systems. Environment & Resources DTU. Technical University of Denmark. https://backend.orbit.dtu.dk/ws/portalfiles/portal/127447176/MR2001_075_1_.pdf
- Camper, A.K., Brastrup, K., Sandvig, A., Clement, J., Spencer, C., & Capuzzi, A.J. (2003). Effect of distribution system materials on bacterial regrowth. Journal of American Water Works Association, 95(7), 107-121. https://doi.org/10.1002/j.1551-8833.2003.tb10412.x
- Critchley, M.M., Cromar, N.J., McClure, N.C., & Fallowfield, H.J. (2003), The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria, Journal of Applied Microbiology, 94(3), 501-507. https://doi.org/10.1046/j.1365-2672.2003.01857.x
- Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., & Lappin-Scott, H.M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711-745. https://doi.org/10.1146/annurev.mi. 49.100195.003431
- Freeman, C. & Lock, M.A. (1995). The biofilm polysaccharade matrix: A buffer against changing organic carbon supply? Limnology Oceanography, 40(2), 273- 278. https://doi.org/10.4319/lo.1995.40.2.0273
- Gray, N.F. (2008), Drinking Water Quality: Problems and Solutions (2nd ed.) Cambridge University Press.
- Hong W., Emilie B., Michele P., Anne K. C., Vincent R. H., & Amy P. (2017). Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Research, 117, 68-86. https://doi.org/10.1016/j.watres.2017.03.046
- Keskin, N.O., & Kahveci, E.F. (2019). Polietilen ve Demir Boru Sistemlerinde Oluşan Mikrobiyel Biyofilmlerin Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi, 31(1), 1-8. https://dergipark.org.tr/tr/download/article-file/796738
- Küçükgül, E.Y., & Özdağlar, D. (2004). İçme Suyunda Agresivitenin Saptanması ve Şebekede Korozyonun Önlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(3), 19-39. https://dergipark.org.tr/tr/pub/deumffmd/issue/40874/493497
- LeChevallier, M., Cawthon, C.D., & Lee, R.G. (1988). Factors promoting survival of bacteria in chlorinated water supplies. American Society for Microbiology Journals Applied Environmental Microbiology, 54(3), 649-654. https://doi.org/10.1128/aem.54.3.649-654.1988
- Liu, S., Gunawan, C., Barraud, N., Rice, A.S., Harry, J.E., & Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environmental Science and Technology, 50(17), 8954–8976. https://doi.org/10.1021/acs.est.6b00835
- Niquette, P., Servais, P., & Savoir, R. (2000). Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Research, 34(6), 1952–1956. https://doi.org/10.1016/S0043-1354(99)00307-3
- Percival S.L, Knapp J.S, Edyvean R.G.J, Wales D.S, Biofilms, mains water and stainless steel, Water Research,Volume 32, Issue 7, 1998, Pages 2187-2201. https://doi.org/10.1016/S0043- 1354(97)00415-6
- Pietrzyk, A., & Papciak, D. (2017). The influence of water treatment technology on the process of biofilm formation on the selected installation materials. Journal of Civil Engineering, Environment and Architecture, 64(2), 131–142. http://dx.doi.org/10.7862/rb.2017.87
- Sartorius (2020/10/31). Microbiological testing of foods, beverages, drinking water and pharmaceuticals.https://www.sartorius.com/download/459058/broch-microbiological-testingsm-4017-e-data.pdf
- Skjevrak, I., Lund, V., Ormerod, K., Due, A. & Herikstad, H. (2004). Biofilm in water pipelines; a potential source for off-flavours in the drinking water. Water Science & Technology, 49(9), 211– 217. https://doi.org/10.2166/wst.2004.0573
- Telgmann, U., Horn, H., & Morgenroth, E. (2004). Influence of growth history on sloughing and erosion from biofilm. Water Research, 38(17), 3671-3684. https://doi.org/10.1016/j.watres.2004.05.020
- Turkish Standards Institution, (2005). TS 266 Water Intended for Human Consumption Standard (İnsani Tüketim Amaçlı Sular) https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119 110104055047105102120088111043113104073082080080071077100076119105103072
- Türetgen, İ. (2005). Su Sistemlerinde Mikrobiyal Biyofilm Oluşumunun İncelenmesi (Publication No.) [Doctoral dissertation, İstanbul Üniversitesi Fen Bilimleri Enstitüsü]. Database or Archive Name yazılacak
- World Health Organization. (2017/10/16). Guidelines for drinking-water quality: Fourth Edition incorporating the first addendum. https://www.who.int/publications/i/item/9789241549950
- Zhang, Y., Love, N. & Edwards, M. (2009). Nitrification in drinking water systems. Critical Reviews in Environmental Science and Technology, 39(3), 153–208. https://doi.org/10.1080/10643380701631739