Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi

Yıl 2020, Cilt: 9 Sayı: 2, 80 - 87, 29.09.2020
https://doi.org/10.21657/topraksu.699821

Öz

Kurak ve yarı kurak bölge toprakların en önemli özelliklerinden bir tanesi genellikle yüksek kireç (K) içeriklerine sahip olmalarıdır. Kirecin toprak özellikleri üzerine etkileri bilinmekle birlikte, yüksek kireç içeriğinin etkileri konusunda yeterli çalışma bulunmamaktadır. Bu nedenle yapılan çalışmada taklidi yüksek kireç içeriğinin farklı iki tekstürdeki toprağın bazı fiziksel ve kimyasal özellikleri üzerine etkileri belirlenmiştir. Bu amaçla, yüksek kireç içeriğini taklit etmek için, kil ve kumlu tın tekstürdeki topraklara ağırlıkça %0, % 5, % 10 ve % 20 oranlarda kireç ilave edilip, tarla kapasitesinde bir ay süreyle inkübasyona bırakılmıştır. İnkübasyon sonu toprağın hacim ağırlığı (HA), tane yoğunluğu (TY), ağırlıklı ortalama çapı (AOÇ), agregat stabilitesi (AS), likit limiti, plastik limiti, plastiklik indisi, pH’sı, elektriksel iletkenliği (EC), organik karbon içeriği (OC), organik karbon mineralizasyonu (KM), toplam azotu (TN) ve C: N oranı gibi özelliklerine artan dozda kireç uygulamalarının etkileri belirlenmiştir. Buna göre, killi ve kumlu tın topraklarda %20 kireç uygulaması kontrole göre kıyaslandığında (%20 kireç uygulaması ölçümü / kontrol ölçümü) pH’yı aynı oranda artırmış (1.01), sırasıyla; CaCO3 içeriğini 2.09-2.59, C/N oranını 1.17-1.20; HA’yı 1.06-1.02; TY’yi 1.03-1.07 ve AOÇ’yi 1.41-1.36 oranlarında artırırken, EC’yi 0.84-0.96 ve likit limiti 0.86-0.94 oranlarında azaltmıştır. Kireç uygulamalarının diğer toprak özellikleri üzerindeki etkisi ise toprak tekstürüne bağlı olarak değişkenlik göstermiştir. Kireç içeriği dışında, kontrole göre toprak özelliklerinde ortaya çıkan en yüksek değişkenlik killi toprakta TN ve AOÇ değerlerinde, kumlu tın toprakta ise AS ve yine AOÇ değerlerinde olmuştur.

Destekleyen Kurum

Selçuk Üniversitesi Bilimsel Araştırma Projeleri (BAP)

Proje Numarası

18201034

Kaynakça

  • Achampong F, Anum R, Boadu F (2013). Effect of lime on plasticity, compaction and compressive strength characteristics of synthetic Low Cohesive (CL) and High Cohesive (CH) clayey soils. International Journal of Scientific & Engineering Research, 4: 2003-2018.
  • ASTM (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA.
  • Balasubramaniam A, Buensuceso B, Oh E, Bolton M, Bergado D, Lorenzo G (2005). Strength degradation and critical state seeking behaviour of lime treated soft clay. In: Best Practice and Recent Advances 1, International conference on deep mixing, Deep mixing, 5: pp 35-40, 23 – 25 May, Stockholm, Sweden.
  • Barker J, Rogers C, Boardman D (2006). Physiochemical changes in clay caused by ion migration from lime piles. Journal of Materials in Civil Engineering, 18 (2): 182-189.
  • Bell F (1988). Lime stabilization of clay soils: part 1, basic principles. Ground Engineering, 21 (1): 12-15.
  • Blake G, Hartge K (1986a). Particle density1. In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 377-382.
  • Blake G, Hartge K (1986b). Bulk density1, In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 363-375.
  • Boardman D, Glendinning S, Rogers C (2001).Development of stabilisation and solidification in lime–clay mixes. Géotechnique, 51 (6): 533-543.
  • Gee G, Bauder J (1986). Particle-size analysis, In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 383-411.
  • Gezgin S, Dursun N, Hamurcu M, Harmankaya M, Önder M, Sade B, Topal A, Soylu S, Akgün N, Yorgancilar M, Ceyhan E, Çiftçi N, Acar B, Gültekin İ, Işık Y, Şeker C, Babaoğlu M (2002). Determination of B contents of soils in central anatolian cultivated lands and its relations between soil and water characteristics. Boron in Plant and Animal Nutrition, Kluwer Academic / Plenum Publishers, New York. S 391-400.
  • Gugino B, Idowu O, Schindelbeck R, van Es H, Wolfe D, Moebius-Clune B, Thies J, Abawi G (2009). Cornell soil health assessment training manual (2nd ed), Cornell University, Geneva, New York, p. 65.
  • Gümüş İ, Şeker C (2014). Farklı organik gübrelerin mısır-buğday ekim nöbetinde buğdayın verimine bakiye etkileri. Toprak Su Dergisi, 3 (1): 1-5.
  • Gümüş İ, Negiş H, Şeker C, (2019). The Influence of biochar applications on modulus of rupture and aggregate stability of the soil possessing crusting problems. Toprak Su Dergisi, 8 (2): 81-86.
  • Kemper W, Rosenau R (1986). Aggregate stability and size distribution1, In: Methods of Soil Analysis: Part 1— Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 425-442.
  • Majzik A, Tombácz E (2007). Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation. Organic Geochemistry, 38 (8): 1319-1329.
  • Mclean E (1982). Soil pH and lime requirement, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Page A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 199-224.
  • Nelson R (1982) Carbonate and gypsum, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Page A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 181-197.
  • Paradelo, R., Virto, I. ve Chenu, C., 2015, Net effect of liming on soil organic carbon stocks: A review. Agriculture, Ecosystems & Environment, 202: 98-107.
  • Pohanish R (2017). Sittig's handbook of toxic and hazardous chemicals and carcinogens, William Andrew, p. 3564.
  • Rao S, Shivananda P (2005) Role of curing temperature in progress of lime-soil reactions. Geotechnical & Geological Engineering, 23 (1): 79.
  • Rhoades J (1982). Soluble salts1, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Page A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 167-179.
  • Rogers C, Glendinning S (1996). Modification of clay soils using lime. In: Lime Stabilisation. Proceedings of the seminar held at Loughborough University Civil and Building Engineering Department, pp. 99-114, 25 September, Loughborough, United Kingdom.
  • Shiel R, Rimmer D (1984). Changes in soil structure and biological activity on some meadow hay plots at Cockle Park. Northumberland, Plant and Soil, 76 (1-3): 349-356.
  • Smith H, Weldon, M. D (1941). A Comparison of Some Methods for the Determination of Soil Organic Matterl. Soil Science Society of America Journal, 5 (C): 177-182.
  • TSE (1987). TS 1900 İnşaat mühendisliğinde zemin laboratuar deneyleri. Türk Standartları Enstitüsü, Ankara, p. 133.
  • Wright A, Bailey J (2001). Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Communications in Soil Science and Plant Analysis, 32 (19-20): 3243-3258.
  • Wuddivira M, Camps‐Roach G (2007). Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science, 58 (3): 722-727.
  • Zhang X, Mavroulidou M, Gunn M (2017). A study of the water retention curve of lime-treated London Clay. Acta Geotechnica, 12 (1): 23-45.

Effect of Lime Application in Different Doses on Some Physical and Chemical Properties of Two Different Textured Soils

Yıl 2020, Cilt: 9 Sayı: 2, 80 - 87, 29.09.2020
https://doi.org/10.21657/topraksu.699821

Öz

One of the most important features of the arid and semiarid land soils is that they generally have high lime content. Although the effects of lime on the soil properties are generally known. However, there are not enough studies about the effects of high lime content in this region. For this reason, this study was aimed to make a simulation with the inherent lime content of the soils in this area and investigate its effect on some soil physical and chemical properties in the two contrasting texture soils. Clay and sandy loam soils which were obtained from this area, were mixed with micronized lime at the rate of 0, 5, 10, and, 20% (w/w), and then incubated at field capacity under laboratory conditions for one month. After the incubation period, the effects of increasing doses of lime applications on soil bulk density (HA), particle density (TY), mean weight diameter (AOÇ), aggregate stability (AS), liquid limit, plastic limit, plasticity index, pH, electrical conductivity (EC) organic carbon content (OC), mineralization of organic carbon (KM), total nitrogen (TN) and C/N ratio were determined. Accordingly, when 20% lime applications in clayey and sandy loam soils compared to controls (20% lime application measurement / control measurement) pH rations increased at the same level (1.01), while CaCO3, C / N and HA rations increased at the ratio of 2.09-2.59, 1.17-1.20 and 1.06-1.02; TY, AOÇ, EC and liquid limit decreased at the ratio of 1.03-1.07, 1.41-1.36, 0.84-0.96 and 0.86-0.94, respectively. The effects of lime applications on other soil properties varied depending on the soil texture. Except for the lime content, the highest variability in soil properties compared to the control were in TN and AOÇ values in clay soil and in AS and AOÇ values in sandy loam soil.

Proje Numarası

18201034

Kaynakça

  • Achampong F, Anum R, Boadu F (2013). Effect of lime on plasticity, compaction and compressive strength characteristics of synthetic Low Cohesive (CL) and High Cohesive (CH) clayey soils. International Journal of Scientific & Engineering Research, 4: 2003-2018.
  • ASTM (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA.
  • Balasubramaniam A, Buensuceso B, Oh E, Bolton M, Bergado D, Lorenzo G (2005). Strength degradation and critical state seeking behaviour of lime treated soft clay. In: Best Practice and Recent Advances 1, International conference on deep mixing, Deep mixing, 5: pp 35-40, 23 – 25 May, Stockholm, Sweden.
  • Barker J, Rogers C, Boardman D (2006). Physiochemical changes in clay caused by ion migration from lime piles. Journal of Materials in Civil Engineering, 18 (2): 182-189.
  • Bell F (1988). Lime stabilization of clay soils: part 1, basic principles. Ground Engineering, 21 (1): 12-15.
  • Blake G, Hartge K (1986a). Particle density1. In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 377-382.
  • Blake G, Hartge K (1986b). Bulk density1, In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 363-375.
  • Boardman D, Glendinning S, Rogers C (2001).Development of stabilisation and solidification in lime–clay mixes. Géotechnique, 51 (6): 533-543.
  • Gee G, Bauder J (1986). Particle-size analysis, In: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 383-411.
  • Gezgin S, Dursun N, Hamurcu M, Harmankaya M, Önder M, Sade B, Topal A, Soylu S, Akgün N, Yorgancilar M, Ceyhan E, Çiftçi N, Acar B, Gültekin İ, Işık Y, Şeker C, Babaoğlu M (2002). Determination of B contents of soils in central anatolian cultivated lands and its relations between soil and water characteristics. Boron in Plant and Animal Nutrition, Kluwer Academic / Plenum Publishers, New York. S 391-400.
  • Gugino B, Idowu O, Schindelbeck R, van Es H, Wolfe D, Moebius-Clune B, Thies J, Abawi G (2009). Cornell soil health assessment training manual (2nd ed), Cornell University, Geneva, New York, p. 65.
  • Gümüş İ, Şeker C (2014). Farklı organik gübrelerin mısır-buğday ekim nöbetinde buğdayın verimine bakiye etkileri. Toprak Su Dergisi, 3 (1): 1-5.
  • Gümüş İ, Negiş H, Şeker C, (2019). The Influence of biochar applications on modulus of rupture and aggregate stability of the soil possessing crusting problems. Toprak Su Dergisi, 8 (2): 81-86.
  • Kemper W, Rosenau R (1986). Aggregate stability and size distribution1, In: Methods of Soil Analysis: Part 1— Physical and Mineralogical Methods. Klute A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 425-442.
  • Majzik A, Tombácz E (2007). Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation. Organic Geochemistry, 38 (8): 1319-1329.
  • Mclean E (1982). Soil pH and lime requirement, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Page A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 199-224.
  • Nelson R (1982) Carbonate and gypsum, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Page A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 181-197.
  • Paradelo, R., Virto, I. ve Chenu, C., 2015, Net effect of liming on soil organic carbon stocks: A review. Agriculture, Ecosystems & Environment, 202: 98-107.
  • Pohanish R (2017). Sittig's handbook of toxic and hazardous chemicals and carcinogens, William Andrew, p. 3564.
  • Rao S, Shivananda P (2005) Role of curing temperature in progress of lime-soil reactions. Geotechnical & Geological Engineering, 23 (1): 79.
  • Rhoades J (1982). Soluble salts1, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Page A (Eds.), Soil Science Society of America, American Society of Agronomy, Madison, pp. 167-179.
  • Rogers C, Glendinning S (1996). Modification of clay soils using lime. In: Lime Stabilisation. Proceedings of the seminar held at Loughborough University Civil and Building Engineering Department, pp. 99-114, 25 September, Loughborough, United Kingdom.
  • Shiel R, Rimmer D (1984). Changes in soil structure and biological activity on some meadow hay plots at Cockle Park. Northumberland, Plant and Soil, 76 (1-3): 349-356.
  • Smith H, Weldon, M. D (1941). A Comparison of Some Methods for the Determination of Soil Organic Matterl. Soil Science Society of America Journal, 5 (C): 177-182.
  • TSE (1987). TS 1900 İnşaat mühendisliğinde zemin laboratuar deneyleri. Türk Standartları Enstitüsü, Ankara, p. 133.
  • Wright A, Bailey J (2001). Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Communications in Soil Science and Plant Analysis, 32 (19-20): 3243-3258.
  • Wuddivira M, Camps‐Roach G (2007). Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science, 58 (3): 722-727.
  • Zhang X, Mavroulidou M, Gunn M (2017). A study of the water retention curve of lime-treated London Clay. Acta Geotechnica, 12 (1): 23-45.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Qutaiba Abdulwahhab 0000-0003-1563-2142

Cevdet Şeker 0000-0002-8760-6990

Proje Numarası 18201034
Yayımlanma Tarihi 29 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Abdulwahhab, Q., & Şeker, C. (2020). Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi. Toprak Su Dergisi, 9(2), 80-87. https://doi.org/10.21657/topraksu.699821
AMA Abdulwahhab Q, Şeker C. Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi. TSD. Eylül 2020;9(2):80-87. doi:10.21657/topraksu.699821
Chicago Abdulwahhab, Qutaiba, ve Cevdet Şeker. “Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi”. Toprak Su Dergisi 9, sy. 2 (Eylül 2020): 80-87. https://doi.org/10.21657/topraksu.699821.
EndNote Abdulwahhab Q, Şeker C (01 Eylül 2020) Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi. Toprak Su Dergisi 9 2 80–87.
IEEE Q. Abdulwahhab ve C. Şeker, “Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi”, TSD, c. 9, sy. 2, ss. 80–87, 2020, doi: 10.21657/topraksu.699821.
ISNAD Abdulwahhab, Qutaiba - Şeker, Cevdet. “Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi”. Toprak Su Dergisi 9/2 (Eylül 2020), 80-87. https://doi.org/10.21657/topraksu.699821.
JAMA Abdulwahhab Q, Şeker C. Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi. TSD. 2020;9:80–87.
MLA Abdulwahhab, Qutaiba ve Cevdet Şeker. “Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi”. Toprak Su Dergisi, c. 9, sy. 2, 2020, ss. 80-87, doi:10.21657/topraksu.699821.
Vancouver Abdulwahhab Q, Şeker C. Farklı Dozlarda Kireç Uygulamasının İki Farklı Tekstürdeki Toprağın Bazı Fiziksel Ve Kimyasal Özellikleri Üzerine Etkisi. TSD. 2020;9(2):80-7.
Kapak Tasarım : Hüseyin Oğuzhan BEŞEN
Grafik Tasarım : Filiz ERYILMAZ
Basım Yeri : Gıda Tarım ve Hayvancılık Bakanlığı - Eğitim Yayım ve Yayınlar Dairesi Başkanlığı
İvedik Caddesi Bankacılar Sokak No : 10 Yenimahalle, Ankara Türkiye