Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 6 Sayı: 2, 239 - 251, 01.12.2020

Öz

Destekleyen Kurum

ORDU ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ

Proje Numarası

AR-1646 & BD- 1701

Kaynakça

  • Slizyte, R., Rustad, T., Storrr, I., (2005) Enzymatic hydrolysis of cod (Gadus morhua) by-products. Optimization of yield and properties of lipid and protein fractions. Process Biochemistry 40: 3680–3692.
  • Gbogouri, G.A., Linder, M., Fanni, J., Parmentier, M., (2006). Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology 108(9): 766-775.
  • Shahidi, F. (2007). Maximixing the Value of Marine by-products, Boca Ratón (USA), CRC Press.
  • Silva, R.V., Oliveira, J.T., Santos, B.L., Dias, F.C., Martinez, A., Lima, C.K., Miranda, A.L., (2017). Long-chain omega-3 fatty acids supplementation accelerates nerve regeneration and prevents neuropathic pain behavior in mice. Frontiers in Pharmacology 8: 723.
  • Kerry, J.P. & Murphy, S.C. (2007). Physical and chemical properties of lipid by-products from seafood waste. In: “Maximising the value of marine by-products”, Woodhead Publishing, pp. 22-46.
  • Chow, C.K. (2000). Fatty Acids in Foods and their Health Implications, Second Ed. (revised and expanded), Marcel Dekker Inc., New York–Basel.
  • Routray, W., Dave, D., Ramakrishnan, V.V., Murphy, W., (2018). Production of high quality fish oil by enzymatic protein hydrolysis from cultured Atlantic salmon by-products: Investigation on effect of various extraction parameters using central composite rotatable design. Waste and Biomass Valorization 9(11): 2003-2014.
  • Chantachum, S., Benjakul, S., Sriwirat, N., (2000). Separation and quality of fish oil from precooked and non-precooked tuna heads. Food Chemistry 69: 289–294.
  • Wu, T.H., Bechtel, P.J., (2008). Salmon by-product storage and oil extraction. Food Chemistry 111: 868–871.
  • Rubio-Rodríguez, N., Sara, M., Beltrán, S., Jaime, I., Sanz, M.T., Rovira, J., (2012). Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. Journal of Food Engineering 109(2): 238-248.
  • Nguyen, H., Odelola, O.A., Rangaswami, J., Amanullah, A., (2013). A review of nutritional factors in hypertension management. International Journal of Hypertension 2013.
  • Liu, Y., Ramakrishnan, V. V., Dave, D., (2020). Enzymatic hydrolysis of farmed Atlantic salmon by-products: Investigation of operational parameters on extracted oil yield and quality. Process Biochemistry 100: 10-19.
  • Rubio-Rodríguez, N., Beltran, S., Jaime, I., de Diego, S.M., Sanz, M.T., Carballido, J.R., (2010). Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovat. Food Sci. Emerg. Technol. 11(1): 1-12.
  • Liaset, B., Julshamn, K., Espe, M., (2003). Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with Protamex™. Process Biochemistry 38(12): 1747-1759.
  • Nguyen, T.T., Heimann, K., Zhang, W., (2020). Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Marine Drugs 18(8): 391.
  • Hathwar, S.C., Bijinu, B., Rai, A.K., Narayan, B., (2011). Simultaneous recovery of lipids and proteins by enzymatic hydrolysis of fish industry waste using different commercial proteases. Appl. Biochem. Biotechnol. 164: 115-124.
  • Mahmoud, K.A.S., Linder, M., Fanni, J., Parmentier, M., (2008). Characterisation of the lipid fractions obtained by proteolytic and chemical extractions from rainbow trout (Oncorhynchus mykiss) roe. Process Biochemistry 43(4): 376-383.
  • Batista, I., Ramos, C., Mendonca, R., Nunes, M.L., (2009). Enzymatic hydrolysis of sardine (Sardina pilchardus) by-products and lipid recovery. J. Aquat. Food Prod. Technol. 18: 120-134.
  • Linder, M., Belhaj, N., Sautot, P., Tehrany, E.A., (2010). From Krill to Whale: an overview of marine fatty acids and lipid compositions. Oléagineux, Corps gras, Lipides 17(4): 194-204.
  • Bligh, E.G., Dyer, W.J., (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Phy. 37: 911-917.
  • Korkmaz, K., Tokur, B., (2019). Proximate Composition of Three Different Fish (Trout, Anchovy and Whiting) Waste During Catching Season. Türk Denizcilik ve Deniz Bilimleri Dergisi 5(2): 133-140.
  • Ichihara, K.I., Shibahara, A., Yamamoto, K., Nakayama, T., (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids 31(5): 535-539.
  • Duncan, O.D., Beverly, D., (1955). A methodological analysis of segrega tion indices. American Sociological Review 20: 210-217.
  • Yeşilayer, N., Genç, N., (2013). Comparison of proximate and fatty acid compositions of wild brown trout and farmed rainbow trout. South African Journal of Animal Science 43(1): 89-97.
  • Kołakowska, A., Domiszewski, Z., Kozłowski, D., Gajowniczek, M., (2006). Effects of rainbow trout freshness on n‐3 polyunsaturated fatty acids in fish offal. European Journal of Lipid Science and Technology 108(9): 723-729.
  • Fiori, L., Solana, M., Tosi, P., Manfrini, M., Strim, C., Guella, G., (2012). Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids. Food Chemistry 134(2): 1088-1095.
  • Hixson, S.M., Parrish, C.C., Anderson, D.M., (2014). Use of camelina oil to replace fish oil in diets for farmed salmonids and Atlantic cod. Aquaculture 431: 44-52.
  • Alasalvar, C., Taylor, K.D.A., Zubcov, E., Shahidi, F., Alexis, M., (2002). Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food chemistry 79(2): 145-150.
  • Pickova, J., Mørkøre, T., (2007). Alternate oils in fish feeds. European Journal of Lipid Science and Technology 109(3): 256-263.
  • Simopoulos, A.P., (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21(6): 495–505.
  • Babajafari, S., Moosavi-Nasab, M., Nasrpour, S., Golmakani, M. T., Nikaein, F., (2017). Comparison of enzymatic hydrolysis and chemical methods for oil extraction from rainbow trout (oncorhynchus mykiss) waste and its influence on omega 3 fatty acid profile. International Journal of Nutrition Sciences 2(2): 58-65.
  • Głowacz‐Różyńska, A., Tynek, M., Malinowska‐Pańczyk, E., Martysiak‐Żurowska, D., Pawłowicz, R., Kołodziejska, I., (2016). Comparison of oil yield and quality obtained by different extraction procedures from salmon (Salmo salar) processing byproducts. European Journal of Lipid Science and Technology 118(11): 1759-1767.
  • Liu, X., McLachlan, A., Hunter, D., (2019). Vitamin and mineral supplements: The role of supplements and complementary medicines in osteoarthritis: An evidence-based guide to practice. AJP: The Australian Journal of Pharmacy 100(1180): 62-68.
  • Zhang, T.T., Xu, J., Wang, Y.M., Xue, C.H., (2019). Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Progress in Lipid Research 75: 100997.
  • Torstensen, B.E., Lie, Ø., Frøyland, L., (2000). Lipid metaboliems and tissu composition in Atlantic salmon (Salmo salar , L.)*/effects of capelin-, palm- and oleic acid enriched sunflower oil as dietary lipid sources. Lipids 35: 653-664.
  • Johansson, L., Kiessling, A., Kiessling, K.H., Berglund, L., (2000). Effects of altered ration levels on sensory characteristics, lipid content and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Food Quality and Preference 11(3): 247-254.
  • Lou, Y.R., Peng, Q.Y., Li, T., Medvecky, C.M., Lin, Y., Shih, W.J., Lu, Y.P., (2011). Effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 32(7): 1078-1084.
  • Dyall, S.C., Michael, G.J., Michael‐Titus, A.T., (2010). Omega‐3 fatty acids reverse age‐related decreases in nuclear receptors and increase neurogenesis in old rats. Journal of neuroscience research 88(10): 2091-2102.
  • Rose, D.P., Connolly, J.M., (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther. 83(3): 217–244, doi:10.1016/S0163-7258(99)00026-1.
  • Astorg, P., (2004). Dietary n–6 and n–3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes & Control 15(4): 367-386.
  • Leitzmann, M.F., Stampfer, M.J., Michaud, D.S., Augustsson, K., Colditz, G.C., Willett, W.C., Giovannucci, E.L., (2004). Dietary intake of n− 3 and n− 6 fatty acids and the risk of prostate cancer. The American journal of clinical nutrition 80(1): 204-216.
  • Lopez-Huertas, E., (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacology. Research 61(3): 200–207, doi:10.1016/j.phrs.2009.10.007.
  • Figueras, M., Olivan, M., Busquets, S., López‐Soriano, F.J., Argilés, J.M., (2011). Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. Obesity 19(2): 362-369.
  • Wall, R., Ross, R.P., Fitzgerald, G.F., Stanton, C., (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition reviews 68(5): 280-289.
  • Samieri, C., Féart, C., Proust-Lima, C., Peuchant, E., Tzourio, C., Stapf, C., Berr, C., Barberger-Gateau, P., (2011). Olive oil consumption, plasma oleic acid, and stroke incidence the three-city study. Neurology 77(5): 418–425.
  • NRC (1993). Nutrient requirements of fish, Washington DC, USA, National Academy Press.
  • Watanabe, T., (1982). Lipid Nutrition in Fish. Comp. Bichem. Physiol. 73(1): 3-15.
  • Castell, J.D., Sinnhuber, R.O., Wales, J.H., Lee, J.D., (1972). Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102: 77– 86.
  • Yone, Y. (1976). Nutritional studies of red sea bream. In: “Proceedings of the First International Conference on Aquaculture Nutrition”, (K.S. Price, W.N. Shaw & K.S. Danberg, eds.), pp. 39–64, University of Delaware, Lewes/Rehoboth, DE.
  • Buranapanidgit, J., Boonyaratpalin, M., Watanabe, T., Pechmanee, T., Yashiro, R. (1988). Essential fatty acid requirement of juvenile seabass Lates calcarifer, Technical paper No. 3. National Institute of Coastal Aquaculture, 21 pp., Department of Fisheries, Thailand.
  • Ramakrishnan, V.V., Ghaly, A.E., Brooks, M.S., Budge, S.M., (2013). Extraction of proteins from mackerel fish processing waste using alcalase enzyme. Bioprocess Biotech 3(2).
  • Linder, M., Fanni, J., Parmentier, M., (2005). Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar. Biotechnol. 7: 70-76.

EFFECT OF DIFFERENT TIME AND TEMPERATURE ON FATTY ACID COMPOSITION OF TROUT WASTE HYDROLYZED BY ALKALI PROTEASE ENZYME

Yıl 2020, Cilt: 6 Sayı: 2, 239 - 251, 01.12.2020

Öz

During enzymatic hydrolysis of trout (Onchorhunchus mykiss) by-products four lipid containing fractions were generated: oil, emulsion, fish protein hydrolysates and sludge. The raw material consisted of combinations of viscera, backbone and digestive tract and was hydrolysed with Alcalase enzyme at different time and temperature and determined fatty acid compositions of extracted oil from these waste. As a result of study, highest amount of fatty acids detected in the oil fractions extracted from trout waste by using alkali protease enzyme for all temperature were total mono-unsaturated fatty acids (44,05%-46,46%) followed by total polyunsaturated fatty acids (23,12%-24,41%) and total saturated fatty acids (21.94%- 23.74%). The highest total saturated fatty acids (ƩSFA), total polyunsaturated fatty acids (ƩPUFA), total n6 fatty acids (Ʃn6) of the trout wastes hydrolyzed at 40 C and 50 C were obtained after 4 hours of hydrolysis (p <0.05). The reaction time had significant effects on the fatty acid compositions of extracted oil fraction. It can be recommended that the waste can be an important additive that can meet the fatty acid requirement of human and the cultivated species.

Proje Numarası

AR-1646 & BD- 1701

Kaynakça

  • Slizyte, R., Rustad, T., Storrr, I., (2005) Enzymatic hydrolysis of cod (Gadus morhua) by-products. Optimization of yield and properties of lipid and protein fractions. Process Biochemistry 40: 3680–3692.
  • Gbogouri, G.A., Linder, M., Fanni, J., Parmentier, M., (2006). Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology 108(9): 766-775.
  • Shahidi, F. (2007). Maximixing the Value of Marine by-products, Boca Ratón (USA), CRC Press.
  • Silva, R.V., Oliveira, J.T., Santos, B.L., Dias, F.C., Martinez, A., Lima, C.K., Miranda, A.L., (2017). Long-chain omega-3 fatty acids supplementation accelerates nerve regeneration and prevents neuropathic pain behavior in mice. Frontiers in Pharmacology 8: 723.
  • Kerry, J.P. & Murphy, S.C. (2007). Physical and chemical properties of lipid by-products from seafood waste. In: “Maximising the value of marine by-products”, Woodhead Publishing, pp. 22-46.
  • Chow, C.K. (2000). Fatty Acids in Foods and their Health Implications, Second Ed. (revised and expanded), Marcel Dekker Inc., New York–Basel.
  • Routray, W., Dave, D., Ramakrishnan, V.V., Murphy, W., (2018). Production of high quality fish oil by enzymatic protein hydrolysis from cultured Atlantic salmon by-products: Investigation on effect of various extraction parameters using central composite rotatable design. Waste and Biomass Valorization 9(11): 2003-2014.
  • Chantachum, S., Benjakul, S., Sriwirat, N., (2000). Separation and quality of fish oil from precooked and non-precooked tuna heads. Food Chemistry 69: 289–294.
  • Wu, T.H., Bechtel, P.J., (2008). Salmon by-product storage and oil extraction. Food Chemistry 111: 868–871.
  • Rubio-Rodríguez, N., Sara, M., Beltrán, S., Jaime, I., Sanz, M.T., Rovira, J., (2012). Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. Journal of Food Engineering 109(2): 238-248.
  • Nguyen, H., Odelola, O.A., Rangaswami, J., Amanullah, A., (2013). A review of nutritional factors in hypertension management. International Journal of Hypertension 2013.
  • Liu, Y., Ramakrishnan, V. V., Dave, D., (2020). Enzymatic hydrolysis of farmed Atlantic salmon by-products: Investigation of operational parameters on extracted oil yield and quality. Process Biochemistry 100: 10-19.
  • Rubio-Rodríguez, N., Beltran, S., Jaime, I., de Diego, S.M., Sanz, M.T., Carballido, J.R., (2010). Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovat. Food Sci. Emerg. Technol. 11(1): 1-12.
  • Liaset, B., Julshamn, K., Espe, M., (2003). Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with Protamex™. Process Biochemistry 38(12): 1747-1759.
  • Nguyen, T.T., Heimann, K., Zhang, W., (2020). Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Marine Drugs 18(8): 391.
  • Hathwar, S.C., Bijinu, B., Rai, A.K., Narayan, B., (2011). Simultaneous recovery of lipids and proteins by enzymatic hydrolysis of fish industry waste using different commercial proteases. Appl. Biochem. Biotechnol. 164: 115-124.
  • Mahmoud, K.A.S., Linder, M., Fanni, J., Parmentier, M., (2008). Characterisation of the lipid fractions obtained by proteolytic and chemical extractions from rainbow trout (Oncorhynchus mykiss) roe. Process Biochemistry 43(4): 376-383.
  • Batista, I., Ramos, C., Mendonca, R., Nunes, M.L., (2009). Enzymatic hydrolysis of sardine (Sardina pilchardus) by-products and lipid recovery. J. Aquat. Food Prod. Technol. 18: 120-134.
  • Linder, M., Belhaj, N., Sautot, P., Tehrany, E.A., (2010). From Krill to Whale: an overview of marine fatty acids and lipid compositions. Oléagineux, Corps gras, Lipides 17(4): 194-204.
  • Bligh, E.G., Dyer, W.J., (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Phy. 37: 911-917.
  • Korkmaz, K., Tokur, B., (2019). Proximate Composition of Three Different Fish (Trout, Anchovy and Whiting) Waste During Catching Season. Türk Denizcilik ve Deniz Bilimleri Dergisi 5(2): 133-140.
  • Ichihara, K.I., Shibahara, A., Yamamoto, K., Nakayama, T., (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids 31(5): 535-539.
  • Duncan, O.D., Beverly, D., (1955). A methodological analysis of segrega tion indices. American Sociological Review 20: 210-217.
  • Yeşilayer, N., Genç, N., (2013). Comparison of proximate and fatty acid compositions of wild brown trout and farmed rainbow trout. South African Journal of Animal Science 43(1): 89-97.
  • Kołakowska, A., Domiszewski, Z., Kozłowski, D., Gajowniczek, M., (2006). Effects of rainbow trout freshness on n‐3 polyunsaturated fatty acids in fish offal. European Journal of Lipid Science and Technology 108(9): 723-729.
  • Fiori, L., Solana, M., Tosi, P., Manfrini, M., Strim, C., Guella, G., (2012). Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids. Food Chemistry 134(2): 1088-1095.
  • Hixson, S.M., Parrish, C.C., Anderson, D.M., (2014). Use of camelina oil to replace fish oil in diets for farmed salmonids and Atlantic cod. Aquaculture 431: 44-52.
  • Alasalvar, C., Taylor, K.D.A., Zubcov, E., Shahidi, F., Alexis, M., (2002). Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food chemistry 79(2): 145-150.
  • Pickova, J., Mørkøre, T., (2007). Alternate oils in fish feeds. European Journal of Lipid Science and Technology 109(3): 256-263.
  • Simopoulos, A.P., (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21(6): 495–505.
  • Babajafari, S., Moosavi-Nasab, M., Nasrpour, S., Golmakani, M. T., Nikaein, F., (2017). Comparison of enzymatic hydrolysis and chemical methods for oil extraction from rainbow trout (oncorhynchus mykiss) waste and its influence on omega 3 fatty acid profile. International Journal of Nutrition Sciences 2(2): 58-65.
  • Głowacz‐Różyńska, A., Tynek, M., Malinowska‐Pańczyk, E., Martysiak‐Żurowska, D., Pawłowicz, R., Kołodziejska, I., (2016). Comparison of oil yield and quality obtained by different extraction procedures from salmon (Salmo salar) processing byproducts. European Journal of Lipid Science and Technology 118(11): 1759-1767.
  • Liu, X., McLachlan, A., Hunter, D., (2019). Vitamin and mineral supplements: The role of supplements and complementary medicines in osteoarthritis: An evidence-based guide to practice. AJP: The Australian Journal of Pharmacy 100(1180): 62-68.
  • Zhang, T.T., Xu, J., Wang, Y.M., Xue, C.H., (2019). Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Progress in Lipid Research 75: 100997.
  • Torstensen, B.E., Lie, Ø., Frøyland, L., (2000). Lipid metaboliems and tissu composition in Atlantic salmon (Salmo salar , L.)*/effects of capelin-, palm- and oleic acid enriched sunflower oil as dietary lipid sources. Lipids 35: 653-664.
  • Johansson, L., Kiessling, A., Kiessling, K.H., Berglund, L., (2000). Effects of altered ration levels on sensory characteristics, lipid content and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Food Quality and Preference 11(3): 247-254.
  • Lou, Y.R., Peng, Q.Y., Li, T., Medvecky, C.M., Lin, Y., Shih, W.J., Lu, Y.P., (2011). Effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 32(7): 1078-1084.
  • Dyall, S.C., Michael, G.J., Michael‐Titus, A.T., (2010). Omega‐3 fatty acids reverse age‐related decreases in nuclear receptors and increase neurogenesis in old rats. Journal of neuroscience research 88(10): 2091-2102.
  • Rose, D.P., Connolly, J.M., (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther. 83(3): 217–244, doi:10.1016/S0163-7258(99)00026-1.
  • Astorg, P., (2004). Dietary n–6 and n–3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes & Control 15(4): 367-386.
  • Leitzmann, M.F., Stampfer, M.J., Michaud, D.S., Augustsson, K., Colditz, G.C., Willett, W.C., Giovannucci, E.L., (2004). Dietary intake of n− 3 and n− 6 fatty acids and the risk of prostate cancer. The American journal of clinical nutrition 80(1): 204-216.
  • Lopez-Huertas, E., (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacology. Research 61(3): 200–207, doi:10.1016/j.phrs.2009.10.007.
  • Figueras, M., Olivan, M., Busquets, S., López‐Soriano, F.J., Argilés, J.M., (2011). Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. Obesity 19(2): 362-369.
  • Wall, R., Ross, R.P., Fitzgerald, G.F., Stanton, C., (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition reviews 68(5): 280-289.
  • Samieri, C., Féart, C., Proust-Lima, C., Peuchant, E., Tzourio, C., Stapf, C., Berr, C., Barberger-Gateau, P., (2011). Olive oil consumption, plasma oleic acid, and stroke incidence the three-city study. Neurology 77(5): 418–425.
  • NRC (1993). Nutrient requirements of fish, Washington DC, USA, National Academy Press.
  • Watanabe, T., (1982). Lipid Nutrition in Fish. Comp. Bichem. Physiol. 73(1): 3-15.
  • Castell, J.D., Sinnhuber, R.O., Wales, J.H., Lee, J.D., (1972). Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102: 77– 86.
  • Yone, Y. (1976). Nutritional studies of red sea bream. In: “Proceedings of the First International Conference on Aquaculture Nutrition”, (K.S. Price, W.N. Shaw & K.S. Danberg, eds.), pp. 39–64, University of Delaware, Lewes/Rehoboth, DE.
  • Buranapanidgit, J., Boonyaratpalin, M., Watanabe, T., Pechmanee, T., Yashiro, R. (1988). Essential fatty acid requirement of juvenile seabass Lates calcarifer, Technical paper No. 3. National Institute of Coastal Aquaculture, 21 pp., Department of Fisheries, Thailand.
  • Ramakrishnan, V.V., Ghaly, A.E., Brooks, M.S., Budge, S.M., (2013). Extraction of proteins from mackerel fish processing waste using alcalase enzyme. Bioprocess Biotech 3(2).
  • Linder, M., Fanni, J., Parmentier, M., (2005). Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar. Biotechnol. 7: 70-76.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Koray Korkmaz 0000-0003-2940-6592

Bahar Tokur 0000-0002-7087-5801

Proje Numarası AR-1646 & BD- 1701
Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 23 Ekim 2020
Kabul Tarihi 25 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 2

Kaynak Göster

APA Korkmaz, K., & Tokur, B. (2020). EFFECT OF DIFFERENT TIME AND TEMPERATURE ON FATTY ACID COMPOSITION OF TROUT WASTE HYDROLYZED BY ALKALI PROTEASE ENZYME. Turkish Journal of Maritime and Marine Sciences, 6(2), 239-251.

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).