Araştırma Makalesi
BibTex RIS Kaynak Göster

FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith)

Yıl 2018, , 63 - 69, 24.03.2018
https://doi.org/10.23902/trkjnat.334792

Öz

Dünya
çapında pek çok ülkede olduğu gibi Türkiye’de de Fusarium culmorum (W.G. Smith) başak yanıklığı ve kök çürüklüğü
hastalıkları ile arpa ve buğday tarım alanlarında ekonomik kayıplara yol açar.
Bu çalışmada, Türkiye’den köken alan 33 F.
culmorum
izolatının in vitro
büyüme kapasitesi ile FcMgv1, FcStuA ve FcVeA genetik benzerliği aracılığı ile elde edilen fenotipik ve
genetik karakterlerin ilişkisi incelenmiştir. Doğrusal büyüme oranı değerleri
inkübasyonun 4. ve 7. günlerinde kaydedilmiştir. Ortalama doğrusal büyüme
oranlarının 7,58±1.06 ve 14,7±1.26mm/gün arasında olduğu görülmüştür. Göreceli
olarak yüksek LGR değerlerine sahip olduğu belirlenen F2 ile 18F izolatları ile
göreceli olarak düşük LGR değerlerine sahip olduğu belirlenen 12F ve F19
izolatları multilokus temelli genotiplendirme analizlerinde kullanılmak üzere
seçilmiştir. FcMgv1, FcStuA ve FcVeA genlerine ait
sırasıyla 1733, 2001 ve 1898bç ürünler elde edilmiştir. Genler dizilenmiş, bir
araya getirilmiş ve BLASTn ile maksimum olasılık topoloji analizi yapılmıştır.
Her bir genin nükleotid dizisi NCBI'da 0,0-0,0 E-değeri ve 1188-3256 arası bit
skoru vermiştir. Hizalama analizi en az %89 ön yükleme değeri ile
sonuçlanmıştır. Ayrıca, benzer büyüme oranına sahip izolatlar filogenetik
analizlerde aynı alt kümede yer almıştır. Bu çalışmada elde edilen bulgular,
fungal yaşam için gerekli olan bu üç genin, genetik karakterizasyonda ve
fenotipik ve genotipik özellikleri arasında ilişki kurulmasında
kullanılabileceğini ortaya konmuştur. 

Kaynakça

  • 1. Albayrak, G., Yörük, E., Gazdagli, A. & Sharifnabi, B. 2016. Genetic diversity among Fusarium graminearum and F. culmorum isolates based on ISSR markers. Archieves of Biological Sciences, 68(2): 333-343.
  • 2. Bornet, B. & Branchard, M. 2001. Nonanchored inter simple sequence repeat (ISSR) Markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter, 19: 209-215.
  • 3. Chung, W.H., Ishii, H., Nishimura, K., Ohshima, M., Iwama, T. & Yoshimatsu H. 2008. Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. Journal of General Plant Pathology, 10: 110-118.
  • 4. Desjardins, A.E. & Proctor, R.H. 2007. Molecular biology of Fusarium mycotoxins, International Journal of Food Microbiology, 119: 47-50.
  • 5. Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H.C. & Xu, J. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility heterokaryon formation, and plant infection. International Society for Molecular Plant-Microbe Interactions, 11: 1119-1127.
  • 6. Irzykowska, L., Bocianowski, J. & Baturo-Cieśniewska, A. 2013. Association of mating-type with mycelium growth rate and genetic variability of Fusarium culmorum. Central European Journal of Biology, 8(7): 701-711.
  • 7. Jiang, J., Liu, X., Yin, Y. & Ma, Z. 2011. Involment of a Velvet protein FgVeA in the regulation of asexual development lipid and seconder metabolisms in virulance in Fusarium graminearum. PLoS ONE, 6(11): e28291.
  • 8. Llorens, A., Hinojo, M.J., Mateo, R., Medina, A., Valle-Algarre, F.M., Gonzalez-Jaen, M.T. & Jimenez, M. 2006. Variability and characterization of mycotoxin producing Fusarium spp. isolates by PCR-RFLP analysis of the IGS-rDNA region. Antonie van Leeuwenhoek, 89: 465-478.
  • 9. Miedaner, T., Schilling, A.G. & Geiger, H.H. 2001. Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. Journal of Phytopathology, 149: 641-648.
  • 10. Miedaner, T., Cumagun, C.J.R. & Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156: 129-139.
  • 11. Mishra, P.K., Fox, R.T.V. & Culham, A. 2003. Inter simple sequence repeat and aggressiveness analysis revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Annals of Applied Biology, 143: 291-301.
  • 12. Nicholson, P., Simpson, D.R., Weston, G., Rezanoor, H.N. & Lees, A.K. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53: 17-37.
  • 13. Niessen, L. 2007. PCR-based diagnosis and quantification of mycotoxin producing fungi. International Journal of Food Microbiology, 119: 38-46.
  • 14. Obanor, F., Erginbas-Orakci, G., Tunali, B., Nicol, J.M. & Chakraborty, S. 2010. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biology, 114: 753-765.
  • 15. O’Donnell, K., Kistler, H.C., Tacke, B.K. & Casper, H.H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences, 97(14): 7905-7910.
  • 16. Pasquali, M., Spanu, F., Scherm, B., Balmas, V., Hoffmann, L., Beyer, M. & Migheli, Q. 2013. FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS ONE, 8(2): e57429.
  • 17. Pasquali, M. & Migheli, Q. 2014. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. International Journal of Food Microbiology, 189: 164-182.
  • 18. Pasquali, M., Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., Boutigny, A.L., Chrpová, J., Czembor, E., Gagkaeva, T., González-Jaén, M.T., Hofgaard, I.S., Köycü, N.D., Hoffmann, L., Lević, J., Marín, P., Miedaner, T., Migheli, Q., Moretti, A., Müller, M.E., Munaut, F., Parikka, P., Pallez-Barthel, M., Piec, J., Scauflaire, J., Scherm, B., Stanković, S., Thrane, U., Uhlig, S., Vanheule, A., Yli-Mattila, T. & Vogelgsang, S. 2016. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 7: e406.
  • 19. Przemieniecki, S.W., Kurowski, T.P. & Korzekwa, K. 2014. Chemotypes and geographic distribution of the Fusarium graminearum species complex. Environmental Biotechnology, 10(2): 45-54.
  • 20. Rozen, S. & Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132: 365-386.
  • 21. Sarver, B.A.J., Ward, T.J., Gale, L.R., Broz, K., Kistler, H.C., Aoki, T., Nicholson, P., Carter, J. & O'Donnell, K. 2011. Novel fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology, 48:1096-1107.
  • 22. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725-2529.
  • 23. van der Lee, T., Zhang, H., van Diepeningen, A. & Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Additives and Contaminants: Part A, 32(4): 453-460.
  • 24. Ward, T.J., Clear, R.M., Rooney, A.P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D.E., Gilbert, J., Geiser, D.M. & Nowicki, T.W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45: 473-484.
  • 25. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Asid Research, 18(22): 6531-6535.
  • 26. Yli-Mattila, T., Gagkaeva, T., Ward, T.J., Aoki, T., Kıstler, H.C. & O'Donnell, K. 2009. A Novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia, 101: 841-852.
  • 27. Yli-Mattila, T., Hietaniemiv, R., Hussientcarlobos-Lopez, A. & Cumagun, C.Jr. 2013. Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms, 1: 162-174.
  • 28. Yörük, E., Tunali, B., Kansu, B., Ölmez, F., Uz, G., Zümrüt, I.M., Sarıkaya, A. & Meyva, G. 2016. Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey. Journal of Plant Diseases and Protection, 123: 177-186.
  • 29. Yörük, E. & Sefer, Ö. 2017. Polymorphisms in FgMgv1, FgStuA and FgVeA genes associated with growth of Fusarium graminearum. Pp. 358-366. In: Arapgirlioğlu, H., Atık, A., Elliott, R.L. & Turgeon E. (eds), Researches on science and art in 21st century Turkey, Gece Kitaplığı, Ankara Volume 1, 364 pp.

FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith)

Yıl 2018, , 63 - 69, 24.03.2018
https://doi.org/10.23902/trkjnat.334792

Öz

Fusarium culmorum (W.G. Smith) leads
to
economic losses in wheat and
barley fields in Turkey as well as in many countries worldwide as a result of
head blight and crown rot diseases. In this study, in vitro growth capacity of 33 F.
culmorum
isolates originating from Turkey and the relationship between phenotypic
and genetic characteristics obtained based on similarities of FcMgv1, FcStuA and FcVeA genes
were
investigated. Linear growth rate
values were recorded at 4th and 7th days of incubation.
The mean linear growth rate values ranged from 7.58±1.06
to 14.7±1.26
mm/day. The isolates F2 and 18F with relatively high linear
growth values and the isolates 12F and F19 with relatively low linear growth
values, were selected to be used in multiloci based genotyping analysis. FcMgv1, FcStuA and FcVeA genes
were amplified in lengths of 1733, 2001 and 1898bp, respectively. The genes
were sequenced, aligned and then subjected to BLASTn and to maximum likelihood
topology analysis. Nucleotide sequence of each gene showed maximum hit with
associated genes deposited in NCBI with 0.0-0.0 E-values and 1188 to 3256 bit
scores. Alignment analysis resulted in at least 89% bootstrap support.
Moreover, isolates with similar linear growth rates were co-clustered in
phylogenetic analysis. The findings obtained in this study showed that the
three genes which are essential for fungal survival could be used in genetic
characterization analysis and in revealing the associations between their
genetic and phenotypic characteristics.

Kaynakça

  • 1. Albayrak, G., Yörük, E., Gazdagli, A. & Sharifnabi, B. 2016. Genetic diversity among Fusarium graminearum and F. culmorum isolates based on ISSR markers. Archieves of Biological Sciences, 68(2): 333-343.
  • 2. Bornet, B. & Branchard, M. 2001. Nonanchored inter simple sequence repeat (ISSR) Markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter, 19: 209-215.
  • 3. Chung, W.H., Ishii, H., Nishimura, K., Ohshima, M., Iwama, T. & Yoshimatsu H. 2008. Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. Journal of General Plant Pathology, 10: 110-118.
  • 4. Desjardins, A.E. & Proctor, R.H. 2007. Molecular biology of Fusarium mycotoxins, International Journal of Food Microbiology, 119: 47-50.
  • 5. Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H.C. & Xu, J. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility heterokaryon formation, and plant infection. International Society for Molecular Plant-Microbe Interactions, 11: 1119-1127.
  • 6. Irzykowska, L., Bocianowski, J. & Baturo-Cieśniewska, A. 2013. Association of mating-type with mycelium growth rate and genetic variability of Fusarium culmorum. Central European Journal of Biology, 8(7): 701-711.
  • 7. Jiang, J., Liu, X., Yin, Y. & Ma, Z. 2011. Involment of a Velvet protein FgVeA in the regulation of asexual development lipid and seconder metabolisms in virulance in Fusarium graminearum. PLoS ONE, 6(11): e28291.
  • 8. Llorens, A., Hinojo, M.J., Mateo, R., Medina, A., Valle-Algarre, F.M., Gonzalez-Jaen, M.T. & Jimenez, M. 2006. Variability and characterization of mycotoxin producing Fusarium spp. isolates by PCR-RFLP analysis of the IGS-rDNA region. Antonie van Leeuwenhoek, 89: 465-478.
  • 9. Miedaner, T., Schilling, A.G. & Geiger, H.H. 2001. Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. Journal of Phytopathology, 149: 641-648.
  • 10. Miedaner, T., Cumagun, C.J.R. & Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156: 129-139.
  • 11. Mishra, P.K., Fox, R.T.V. & Culham, A. 2003. Inter simple sequence repeat and aggressiveness analysis revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Annals of Applied Biology, 143: 291-301.
  • 12. Nicholson, P., Simpson, D.R., Weston, G., Rezanoor, H.N. & Lees, A.K. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53: 17-37.
  • 13. Niessen, L. 2007. PCR-based diagnosis and quantification of mycotoxin producing fungi. International Journal of Food Microbiology, 119: 38-46.
  • 14. Obanor, F., Erginbas-Orakci, G., Tunali, B., Nicol, J.M. & Chakraborty, S. 2010. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biology, 114: 753-765.
  • 15. O’Donnell, K., Kistler, H.C., Tacke, B.K. & Casper, H.H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences, 97(14): 7905-7910.
  • 16. Pasquali, M., Spanu, F., Scherm, B., Balmas, V., Hoffmann, L., Beyer, M. & Migheli, Q. 2013. FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS ONE, 8(2): e57429.
  • 17. Pasquali, M. & Migheli, Q. 2014. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. International Journal of Food Microbiology, 189: 164-182.
  • 18. Pasquali, M., Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., Boutigny, A.L., Chrpová, J., Czembor, E., Gagkaeva, T., González-Jaén, M.T., Hofgaard, I.S., Köycü, N.D., Hoffmann, L., Lević, J., Marín, P., Miedaner, T., Migheli, Q., Moretti, A., Müller, M.E., Munaut, F., Parikka, P., Pallez-Barthel, M., Piec, J., Scauflaire, J., Scherm, B., Stanković, S., Thrane, U., Uhlig, S., Vanheule, A., Yli-Mattila, T. & Vogelgsang, S. 2016. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 7: e406.
  • 19. Przemieniecki, S.W., Kurowski, T.P. & Korzekwa, K. 2014. Chemotypes and geographic distribution of the Fusarium graminearum species complex. Environmental Biotechnology, 10(2): 45-54.
  • 20. Rozen, S. & Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132: 365-386.
  • 21. Sarver, B.A.J., Ward, T.J., Gale, L.R., Broz, K., Kistler, H.C., Aoki, T., Nicholson, P., Carter, J. & O'Donnell, K. 2011. Novel fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology, 48:1096-1107.
  • 22. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725-2529.
  • 23. van der Lee, T., Zhang, H., van Diepeningen, A. & Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Additives and Contaminants: Part A, 32(4): 453-460.
  • 24. Ward, T.J., Clear, R.M., Rooney, A.P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D.E., Gilbert, J., Geiser, D.M. & Nowicki, T.W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45: 473-484.
  • 25. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Asid Research, 18(22): 6531-6535.
  • 26. Yli-Mattila, T., Gagkaeva, T., Ward, T.J., Aoki, T., Kıstler, H.C. & O'Donnell, K. 2009. A Novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia, 101: 841-852.
  • 27. Yli-Mattila, T., Hietaniemiv, R., Hussientcarlobos-Lopez, A. & Cumagun, C.Jr. 2013. Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms, 1: 162-174.
  • 28. Yörük, E., Tunali, B., Kansu, B., Ölmez, F., Uz, G., Zümrüt, I.M., Sarıkaya, A. & Meyva, G. 2016. Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey. Journal of Plant Diseases and Protection, 123: 177-186.
  • 29. Yörük, E. & Sefer, Ö. 2017. Polymorphisms in FgMgv1, FgStuA and FgVeA genes associated with growth of Fusarium graminearum. Pp. 358-366. In: Arapgirlioğlu, H., Atık, A., Elliott, R.L. & Turgeon E. (eds), Researches on science and art in 21st century Turkey, Gece Kitaplığı, Ankara Volume 1, 364 pp.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Emre Yörük

Özlem Sefer Bu kişi benim

Yayımlanma Tarihi 24 Mart 2018
Gönderilme Tarihi 15 Ağustos 2017
Kabul Tarihi 21 Mart 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Yörük, E., & Sefer, Ö. (2018). FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith). Trakya University Journal of Natural Sciences, 19(1), 63-69. https://doi.org/10.23902/trkjnat.334792
AMA Yörük E, Sefer Ö. FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith). Trakya Univ J Nat Sci. Nisan 2018;19(1):63-69. doi:10.23902/trkjnat.334792
Chicago Yörük, Emre, ve Özlem Sefer. “FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium Culmorum (W.G. Smith)”. Trakya University Journal of Natural Sciences 19, sy. 1 (Nisan 2018): 63-69. https://doi.org/10.23902/trkjnat.334792.
EndNote Yörük E, Sefer Ö (01 Nisan 2018) FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith). Trakya University Journal of Natural Sciences 19 1 63–69.
IEEE E. Yörük ve Ö. Sefer, “FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith)”, Trakya Univ J Nat Sci, c. 19, sy. 1, ss. 63–69, 2018, doi: 10.23902/trkjnat.334792.
ISNAD Yörük, Emre - Sefer, Özlem. “FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium Culmorum (W.G. Smith)”. Trakya University Journal of Natural Sciences 19/1 (Nisan 2018), 63-69. https://doi.org/10.23902/trkjnat.334792.
JAMA Yörük E, Sefer Ö. FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith). Trakya Univ J Nat Sci. 2018;19:63–69.
MLA Yörük, Emre ve Özlem Sefer. “FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium Culmorum (W.G. Smith)”. Trakya University Journal of Natural Sciences, c. 19, sy. 1, 2018, ss. 63-69, doi:10.23902/trkjnat.334792.
Vancouver Yörük E, Sefer Ö. FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith). Trakya Univ J Nat Sci. 2018;19(1):63-9.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.