Research Article
BibTex RIS Cite

SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR

Year 2021, Volume: 22 Issue: 2, 255 - 262, 15.10.2021
https://doi.org/10.23902/trkjnat.969982

Abstract

3,4-dihydroxy-L-phenylalanine (L-DOPA) is one of the precursor molecules for the biosynthesis of neurotransmitters in the brain. Monitoring of L-DOPA levels as a drug or biomolecule in biological fluids is crucial for the treatment of patients suffering from Parkinson’s Disease. This study aimed to construct a cloud funnel mushroom (Clitocybe nebularis (Batsch), P. Kumm.) tissue homogenate-based biosensor for precise and sensitive detection of L-DOPA in artificial plasma and urine. For this purpose, in the fabrication of the biosensor, tissue homogenate of C. nebularis was immobilized into a carbon paste electrode by using graphite, mineral oil, gelatine and glutaraldehyde. The amperometric signals corresponding to 600 s were recorded as response current for each L-DOPA concentration. All amperometric measurements were carried out at ⁻700 mV (versus Ag|AgCl). The present biosensor successfully detected L-DOPA with a linear dynamic range at 2.5-100 µM and Limit of Detection (LOD) value as 0.76 µM, as well as standard deviation as ±0.41 µM and coefficient of variation as 0.82% (n=16). Additionally, the determination of L-DOPA spiked in artificial plasma and urine was carried out successfully. The present work would be the first study that utilized C. nebularis tissue as a biosensor component. 

References

  • 1. Ali, M., Barman, K., Jasimuddin, S. & Ghosh, S.K. 2014. Fluid interface-mediated nanoparticle membrane as an electrochemical sensor. RSC Advances, 4(106): 61404-61408. https://doi.org/10.1039/c4ra12149j
  • 2. Ayna, A. & Akyilmaz, E. 2018. Development of a biosensor based on myrtle (Myrtus communis L.) tissue homogenate for voltammetric determination of epinephrine. Hacettepe Journal of Biology and Chemistry, 46(3): 321-328. https://doi.org/10.15671/HJBC.2018.240
  • 3. Baltierra-Trejo, E., Márquez-Benavides, L. & Sánchez-Yáñez, J.M. 2015. Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119: 126-131. https://doi.org/10.1016/j.mimet.2015.10.007
  • 4. Baranowska, I. & Plonka, J. 2008. Determination of levodopa and biogenic amines in urine samples using high-performance liquid chromatography. Journal of Chromatographic Science, 46(1): 30-34. https://doi.org/10.1093/chromsci/46.1.30
  • 5. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1‐2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • 6. Breton, F., Euzet, P., Piletsky, S.A., Giardi, M.T. & Rouillon, R. 2006. Integration of photosynthetic biosensor with molecularly imprinted polymer-based solid phase extraction cartridge. Analytica Chimica Acta, 569(12): 50-57. https://doi.org/10.1016/j.aca.2006.03.086
  • 7. Brunetti, B., Valdés-Ramírez, G., Litvan, I. & Wang, J. 2014. A disposable electrochemical biosensor for L-DOPA determination in undiluted human serum. Electrochemistry Communications, 48: 28-31. https://doi.org/10.1016/j.elecom.2014.08.007
  • 8. Camargo, J.R., Andreotti, I.A.A., Kalinke, C., Henrique, J.M., Bonacin, J.A. & Janegitz, B.C. 2020. Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta, 208: 120458. https://doi.org/10.1016/j.talanta.2019.120458
  • 9. César, I.C., Byrro, R.M.D., Santana e Silva Cardoso, F.F., Mundim, I.M., Souza Teixeira, L., Gomes, S.A., Bonfim, R.R. & Pianetti, G.A. 2011. Development and validation of a high-performance liquid chromatography-electrospray ionization-MS/MS method for the simultaneous quantitation of levodopa and carbidopa in human plasma. Journal of Mass Spectrometry, 46(9): 943-948. https://doi.org/10.1002/jms.1973
  • 10. Chawla, S., Narang, J. & Pundir, C.S. 2010. An amperometric polyphenol biosensor based on polyvinyl chloride membrane. Analytical Methods, 2(8): 1106-1111. https://doi.org/10.1039/c0ay00165a 11. Chou, Y.C., Shih, C.I., Chiang, C.C., Hsu, C.H. & Yeh, Y.C. 2019. Reagent-free DOPA-dioxygenase colorimetric biosensor for selective detection of L-DOPA. Sensors and Actuators, B: Chemical, 297: 126717. https://doi.org/10.1016/j.snb.2019.126717
  • 12. da Silva, E.T.S.G., Souto, D.E.P., Barragan, J.T.C., de F. Giarola, J., de Moraes, A.C.M. & Kubota, L.T. 2017. Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem, 4(4): 778-794. https://doi.org/10.1002/CELC.201600758
  • 13. Davletshina, R., Ivanov, A., Shamagsumova, R., Evtugyn, V. & Evtugyn, G. 2020. Electrochemical biosensor based on polyelectrolyte complexes with dendrimer for the determination of reversible inhibitors of acetylcholinesterase. Analytical Letters, 1-20. https://doi.org/10.1080/00032719.2020.1821700
  • 14. Faria, H.A.M. & Zucolotto, V. 2019. Label-free electrochemical DNA biosensor for zika virus identification. Biosensors and Bioelectronics, 131: 149-155. https://doi.org/10.1016/j.bios.2019.02.018 15. Felix, F.S., Yamashita, M. & Angnes, L. 2006. Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors. Biosensors and Bioelectronics, 21(12): 2283-2289. https://doi.org/10.1016/j.bios.2005.10.025
  • 16. Fernandes, S.C., de Oliveira, I.R.W.Z. & Vieira, I.C. 2007. A green bean homogenate immobilized on chemically crosslinked chitin for determination of caffeic acid in white wine. Enzyme and Microbial Technology, 40(4): 661-668. https://doi.org/10.1016/j.enzmictec.2006.05.023
  • 17. Gao, G., Fang, D., Yu, Y., Wu, L., Wang, Y. & Zhi, J. 2017. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta, 167: 208-216. https://doi.org/10.1016/j.talanta.2017.01.081
  • 18. Haghighi, B., Gorton, L., Ruzgas, T. & Jönsson, L.J. 2003. Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Analytica Chimica Acta, 487(1): 3-14. https://doi.org/10.1016/S0003-2670(03)00077-1
  • 19. Hormozi-Nezhad, M.R., Moslehipour, A. & Bigdeli, A. 2017. Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles. Sensors and Actuators, B: Chemical, 243: 715-720. https://doi.org/10.1016/j.snb.2016.12.059
  • 20. Jarosz-Wilkołazka, A., Ruzgas, T. & Gorton, L. 2005. Amperometric detection of mono- and diphenols at Cerrena unicolor laccase-modified graphite electrode: Correlation between sensitivity and substrate structure. Talanta, 66(5): 1219-1224. https://doi.org/10.1016/j.talanta.2005.01.026
  • 21. Karpińska, J., Smyk, J. & Wołyniec, E. 2005. A spectroscopic study on applicability of spectral analysis for simultaneous quantification of l-dopa, benserazide and ascorbic acid in batch and flow systems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 62(1-3): 213-220. https://doi.org/10.1016/j.saa.2004.12.029
  • 22. Kosanić, M., Petrović, N. & Stanojković, T. 2020. Bioactive properties of Clitocybe geotropa and Clitocybe nebularis. Journal of Food Measurement and Characterization, 14(2): 1046-1053. https://doi.org/10.1007/s11694-019-00354-7
  • 23. Kozan, J.V.B., Silva, R.P., Serrano, S.H.P., Lima, A.W.O. & Angnes, L. 2007. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers. Analytica Chimica Acta, 591(2): 200-207. https://doi.org/10.1016/j.aca.2007.03.058
  • 24. Kumarathasan, P. & Vincent, R. 2003. New approach to the simultaneous analysis of catecholamines and tyrosines in biological fluids. Journal of Chromatography A, 987(1-2): 349-358. https://doi.org/10.1016/S0021-9673(02)01598-4
  • 25. Leite, O.D., Lupetti, K.O., Fatibello-Filho, O., Vieira, I.C. & Barbosa, A. de M. 2003a. Synergic effect studies of the bi-enzymatic system laccaseperoxidase in a voltammetric biosensor for catecholamines. Talanta, 59(5): 889-896. https://doi.org/10.1016/S0039-9140(02)00650-1
  • 26. Leite, O.D., Fatibello-Filho, O. & Barbosa, A.D.M. 2003b. Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus). Journal of the Brazilian Chemical Society, 14(2): 297-303. https://doi.org/10.1590/S0103-50532003000200018
  • 27. Li, Y., Han, J., Jiang, L., Li, F., Li, K. & Dong, Y. 2015. A glucose biosensor based on ımmobilization of glucose oxidase on platinum nanoparticle doped santa barbara amorphous material-15. Analytical Letters, 48(7): 1139-1149. https://doi.org/10.1080/00032719.2014.974056
  • 28. Liu, Q., Ye, W., Yu, H., Hu, N., Du, L., Wang, P. & Yang, M. 2010. Olfactory mucosa tissue-based biosensor: A bioelectronic nose with receptor cells in intact olfactory epithelium. Sensors and Actuators, B: Chemical, 146(2): 527-533. https://doi.org/10.1016/j.snb.2009.12.032
  • 29. Luis, P., Walther, G., Kellner, H., Martin, F. & Buscot, F. 2004. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology and Biochemistry, 36(7): 1025-1036. https://doi.org/10.1016/j.soilbio.2004.02.017
  • 30. Narang, J., Chauhan, N., Singh, A. & Pundir, C.S. 2011. A nylon membrane based amperometric biosensor for polyphenol determination. Journal of Molecular Catalysis B: Enzymatic, 72(3-4): 276-281. https://doi.org/10.1016/j.molcatb.2011.06.016
  • 31. Nomngongo, P.N., Ngila, J.C., Nyamori, V.O., Songa, E.A. & Iwuoha, E.I. 2011. Determination of Selected Heavy Metals Using Amperometric Horseradish Peroxidase (HRP) Inhibition Biosensor. Analytical Letters, 44(11): 2031-2046. https://doi.org/10.1080/00032719.2010.539738
  • 32. Odaci, D., Tımur, S. & Telefoncu, A. 2004. Immobilized jerusalem artichoke (Helianthus tuberosus) tissue electrode for phenol detection. Artificial Cells, Blood Substitutes, and Biotechnology, 32(2): 315-323. https://doi.org/10.1081/BIO-120037836
  • 33. Ori, Z., Kiss, A., Ciucu, A.A., Mihailciuc, C., Stefanescu, C.D., Nagy, L. & Nagy, G. 2014. Sensitivity enhancement of a “bananatrode” biosensor for dopamine based on SECM studies inside its reaction layer. Sensors and Actuators, B: Chemical, 190: 149-156. https://doi.org/10.1016/j.snb.2013.08.063
  • 34. Ozcan, H.M. & Aydin, T. 2016. A new PANI biosensor based on catalase for cyanide determination. Artificial Cells, Nanomedicine and Biotechnology, 44(2): 664-671. https://doi.org/10.3109/21691401.2014.978979
  • 35. Ozcan, H.M. & Sagiroglu, A. 2010. A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds. Artificial Cells, Blood Substitutes, and Biotechnology, 38(4): 208-214. https://doi.org/10.3109/10731191003776744
  • 36. Ozcan, H.M. & Sagiroglu, A. 2014. Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds. Artificial Cells, Nanomedicine and Biotechnology, 42(4): 256-261. https://doi.org/10.3109/21691401.2013.764313
  • 37. Pandey, N. & Budhathoki, U. 2007. Protein determination through bradford’s method of nepalese mushroom. Scientific World, 5(5): 85-88. https://doi.org/10.3126/sw.v5i5.2662
  • 38. Pontius, K., Semenova, D., Silina, Y.E., Gernaey, K. V. & Junicke, H. 2020. Automated electrochemical glucose biosensor platform as an efficient tool toward on-line fermentation monitoring: novel application approaches and ınsights. Frontiers in Bioengineering and Biotechnology, 8: 436. https://doi.org/10.3389/fbioe.2020.00436
  • 39. Rahimi-Mohseni, M., Raoof, J.B., Ojani, R., Aghajanzadeh, T.A. & Bagheri Hashkavayi, A. 2018. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa cavendish) and functionalized silica nanoparticles for voltammetric determination of L-tyrosine. International Journal of Biological Macromolecules, 113: 648-654. https://doi.org/10.1016/j.ijbiomac.2018.02.060
  • 40. Rasmussen, C.D., Andersen, J.E.T. & Zachau‐Christiansen, B. 2007. Improved performance of the potentiometric biosensor for the determination of creatinine. Analytical Letters, 40(1): 39-52. https://doi.org/10.1080/00032710600952341
  • 41. Sagiroglu, A., Paluzar, H., Ozcan, H.M., Okten, S. & Sen, B. 2011. A novel biosensor based on lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater. Preparative Biochemistry and Biotechnology, 41(4): 321-336. https://doi.org/10.1080/10826068.2010.540607
  • 42. Saini, A.S., Kumar, J. & Melo, J.S. 2014. Microplate based optical biosensor for l-Dopa using tyrosinase from Amorphophallus campanulatus. Analytica Chimica Acta, 849: 50-56. https://doi.org/10.1016/j.aca.2014.08.016
  • 43. Sandeep, S., Santhosh, A.S., Swamy, N.K., Suresh, G.S., Melo, J.S. & Nithin, K.S. 2018. Electrochemical detection of L-dopa using crude polyphenol oxidase enzyme immobilized on electrochemically reduced RGO-Ag nanocomposite modified graphite electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 232‐235: 15-21. https://doi.org/10.1016/j.mseb.2018.10.014
  • 44. Sanders, C.A., Rodriguez, M. & Greenbaum, E. 2001. Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosensors and Bioelectronics, 16(7-8): 439-446. https://doi.org/10.1016/S0956-5663(01)00158-0
  • 45. Sarigul, N., Korkmaz, F. & Kurultak, İ. 2019. A new artificial urine protocol to better imitate human urine. Scientific Reports, 9: 20159. https://doi.org/10.1038/s41598-019-56693-4
  • 46. Sayikli Şimşek, Ç., Nur Sonuç Karaboğa, M. & Sezgintürk, M.K. 2015. A new immobilization procedure for development of an electrochemical immunosensor for parathyroid hormone detection based on gold electrodes modified with 6-mercaptohexanol and silane. Talanta, 144: 210-218. https://doi.org/10.1016/j.talanta.2015.06.010
  • 47. Sezgintürk, M.K. & Dinçkaya, E. 2003. A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination. Talanta, 59(3): 545-551. https://doi.org/10.1016/S0039-9140(02)00539-8
  • 48. Sezgintürk, M.K. & Dinçkaya, E. 2004. An amperometric inhibitor biosensor for the determination of reduced glutathione (GSH) without any derivatization in some plants. Biosensors and Bioelectronics, 19(8): 835-841. https://doi.org/10.1016/j.bios.2003.08.012
  • 49. Sezgintürk, M.K. & Dinçkaya, E. 2005. Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate. Talanta, 65(4): 998-1002. https://doi.org/10.1016/j.talanta.2004.08.037
  • 50. Sezgintürk, M.K. & Dinçkaya, E. 2012. Sulfite determination by an inhibitor biosensor-based mushroom (Agaricus bisporus) tissue homogenate. Artificial Cells, Blood Substitutes, and Biotechnology, 40(1-2): 38-43. https://doi.org/10.3109/10731199.2011.585614
  • 51. Sezgintürk, M.K., Göktug, T. & Dinçkaya, E. 2005. Detection of benzoic acid by an amperometric inhibitor biosensor based on mushroom tissue homogenate. Food Technology and Biotechnology, 43(4): 329-334.
  • 52. Shin, K.S. & Lee, Y.J. 2000. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Archives of Biochemistry and Biophysics, 384(1): 109-115. https://doi.org/10.1006/abbi.2000.2083
  • 53. Silva, L.M.C., De Mello, A.C.C. & Salgado, A.M. 2014. Phenol determination by an amperométrico biosensor based on lyophilized mushroom (Agaricus bisporus) tissue. Environmental Technology (United Kingdom), 35(8): 1012-1017. https://doi.org/10.1080/09593330.2013.858755
  • 54. Sun, A., Wambach, T., Venkatesh, A.G. & Hall, D.A. 2014. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014 - Proceedings, 312-315. https://doi.org/10.1109/BioCAS.2014.6981725
  • 55. Tashkhourian, J., Hormozi-Nezhad, M.R. & Khodaveisi, J. 2011. Application of silver nanoparticles and principal component-artificial neural network models for simultaneous determination of levodopa and benserazide hydrochloride by a kinetic spectrophotometric method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 82(1): 25-30. https://doi.org/10.1016/j.saa.2011.06.014
  • 56. Thoppe Rajendran, S., Huszno, K., Dębowski, G., Sotres, J., Ruzgas, T., Boisen, A. & Zór, K. 2020. Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine. Bioelectrochemistry, 138: 107720. https://doi.org/10.1016/j.bioelechem.2020.107720
  • 57. Timur, S., Pazarloǧlu, N., Pilloton, R. & Telefoncu, A. 2004. Thick film sensors based on laccases from different sources immobilized in polyaniline matrix. Sensors and Actuators, B: Chemical, 97(1): 132-136. https://doi.org/10.1016/j.snb.2003.07.018
  • 58. Topçu, S., Sezgintürk, M.K. & Dinçkaya, E. 2004. Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: Investigation of certain phenolic compounds and some inhibitor effects. Biosensors and Bioelectronics, 20(3): 592-597. https://doi.org/10.1016/j.bios.2004.03.011
  • 59. Tuncay, D. & Yagar, H. 2020. Decolorization of Reactive Blue-19 textile dye by Boletus edulis laccase immobilized onto rice husks. International Journal of Environmental Science and Technology, 17(6): 3177-3188. https://doi.org/10.1007/s13762-020-02641-z
  • 60. Zhang, G.Q., Wang, Y.F., Zhang, X.Q., Ng, T.B. & Wang, H.X. 2010. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochemistry, 45(5): 627-633. https://doi.org/10.1016/j.procbio.2009.12.010
  • 61. Zwirtes de Oliveira, I.R.W., Fernandes, S.C. & Vieira, I.C. 2006. Development of a biosensor based on gilo peroxidase immobilized on chitosan chemically crosslinked with epichlorohydrin for determination of rutin. Journal of Pharmaceutical and Biomedical Analysis, 41(2): 366-372. https://doi.org/10.1016/j.jpba.2005.12.019
Year 2021, Volume: 22 Issue: 2, 255 - 262, 15.10.2021
https://doi.org/10.23902/trkjnat.969982

Abstract

3,4-dihidroksifenilalanin (L-DOPA), beyinde nörotransmitter sentezi için öncül moleküllerden biridir. Biyolojik sıvılarda, ilaç veya biyomolekül olarak L-DOPA düzeylerinin izlenmesi, Parkinson hastalığına sahip kişilerin tedavi süreci için önemlidir. Bu çalışmanın amacı, sentetik plazma ve idrar örneklerinde L-DOPA molekülünün doğru ve duyarlı bir tayinine yönelik, bulutlu huni mantarı (Clitocybe nebularis (Batsch), P. Kumm.) doku homejenatı temelli bir biyosensör sistemi geliştirmektir. Bu bağlamda, biyosensör yapımında, C. nebularis doku homojenatı; grafit, mineral yağ, jelatin ve glutaraldehit kullanılarak karbon pasta elektrot içine immobilize edilmişlerdir. 600. saniyeye karşılık gelen amperometrik sinyaller her L-DOPA konsantrasyonu için yanıt akımı olarak kaydedilmiştir. Tüm amperometrik ölçümler ⁻700 mV (vs Ag|AgCl) potansiyelinde gerçekleştirilmiştir. Geliştirilen biyosensör, L-DOPA molekülünü 2,5-100 µM tayin aralığında ve 0,76 µM tayin limitinin yanı sıra ±0,41 µM standart sapma (n= 16). ve %0,82 varyasyon katsayısı ile saptayabilmiştir. Ayrıca sentetik plazma ve idrar içerisine eklenmiş L-DOPA miktarının da tayini başarı ile gerçekleştirilmiştir. Bu çalışma C. nebularis dokusunun ilk kez bir biyosensör bileşeni olarak kullanıldığı çalışmadır.

References

  • 1. Ali, M., Barman, K., Jasimuddin, S. & Ghosh, S.K. 2014. Fluid interface-mediated nanoparticle membrane as an electrochemical sensor. RSC Advances, 4(106): 61404-61408. https://doi.org/10.1039/c4ra12149j
  • 2. Ayna, A. & Akyilmaz, E. 2018. Development of a biosensor based on myrtle (Myrtus communis L.) tissue homogenate for voltammetric determination of epinephrine. Hacettepe Journal of Biology and Chemistry, 46(3): 321-328. https://doi.org/10.15671/HJBC.2018.240
  • 3. Baltierra-Trejo, E., Márquez-Benavides, L. & Sánchez-Yáñez, J.M. 2015. Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119: 126-131. https://doi.org/10.1016/j.mimet.2015.10.007
  • 4. Baranowska, I. & Plonka, J. 2008. Determination of levodopa and biogenic amines in urine samples using high-performance liquid chromatography. Journal of Chromatographic Science, 46(1): 30-34. https://doi.org/10.1093/chromsci/46.1.30
  • 5. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1‐2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • 6. Breton, F., Euzet, P., Piletsky, S.A., Giardi, M.T. & Rouillon, R. 2006. Integration of photosynthetic biosensor with molecularly imprinted polymer-based solid phase extraction cartridge. Analytica Chimica Acta, 569(12): 50-57. https://doi.org/10.1016/j.aca.2006.03.086
  • 7. Brunetti, B., Valdés-Ramírez, G., Litvan, I. & Wang, J. 2014. A disposable electrochemical biosensor for L-DOPA determination in undiluted human serum. Electrochemistry Communications, 48: 28-31. https://doi.org/10.1016/j.elecom.2014.08.007
  • 8. Camargo, J.R., Andreotti, I.A.A., Kalinke, C., Henrique, J.M., Bonacin, J.A. & Janegitz, B.C. 2020. Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta, 208: 120458. https://doi.org/10.1016/j.talanta.2019.120458
  • 9. César, I.C., Byrro, R.M.D., Santana e Silva Cardoso, F.F., Mundim, I.M., Souza Teixeira, L., Gomes, S.A., Bonfim, R.R. & Pianetti, G.A. 2011. Development and validation of a high-performance liquid chromatography-electrospray ionization-MS/MS method for the simultaneous quantitation of levodopa and carbidopa in human plasma. Journal of Mass Spectrometry, 46(9): 943-948. https://doi.org/10.1002/jms.1973
  • 10. Chawla, S., Narang, J. & Pundir, C.S. 2010. An amperometric polyphenol biosensor based on polyvinyl chloride membrane. Analytical Methods, 2(8): 1106-1111. https://doi.org/10.1039/c0ay00165a 11. Chou, Y.C., Shih, C.I., Chiang, C.C., Hsu, C.H. & Yeh, Y.C. 2019. Reagent-free DOPA-dioxygenase colorimetric biosensor for selective detection of L-DOPA. Sensors and Actuators, B: Chemical, 297: 126717. https://doi.org/10.1016/j.snb.2019.126717
  • 12. da Silva, E.T.S.G., Souto, D.E.P., Barragan, J.T.C., de F. Giarola, J., de Moraes, A.C.M. & Kubota, L.T. 2017. Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem, 4(4): 778-794. https://doi.org/10.1002/CELC.201600758
  • 13. Davletshina, R., Ivanov, A., Shamagsumova, R., Evtugyn, V. & Evtugyn, G. 2020. Electrochemical biosensor based on polyelectrolyte complexes with dendrimer for the determination of reversible inhibitors of acetylcholinesterase. Analytical Letters, 1-20. https://doi.org/10.1080/00032719.2020.1821700
  • 14. Faria, H.A.M. & Zucolotto, V. 2019. Label-free electrochemical DNA biosensor for zika virus identification. Biosensors and Bioelectronics, 131: 149-155. https://doi.org/10.1016/j.bios.2019.02.018 15. Felix, F.S., Yamashita, M. & Angnes, L. 2006. Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors. Biosensors and Bioelectronics, 21(12): 2283-2289. https://doi.org/10.1016/j.bios.2005.10.025
  • 16. Fernandes, S.C., de Oliveira, I.R.W.Z. & Vieira, I.C. 2007. A green bean homogenate immobilized on chemically crosslinked chitin for determination of caffeic acid in white wine. Enzyme and Microbial Technology, 40(4): 661-668. https://doi.org/10.1016/j.enzmictec.2006.05.023
  • 17. Gao, G., Fang, D., Yu, Y., Wu, L., Wang, Y. & Zhi, J. 2017. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta, 167: 208-216. https://doi.org/10.1016/j.talanta.2017.01.081
  • 18. Haghighi, B., Gorton, L., Ruzgas, T. & Jönsson, L.J. 2003. Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Analytica Chimica Acta, 487(1): 3-14. https://doi.org/10.1016/S0003-2670(03)00077-1
  • 19. Hormozi-Nezhad, M.R., Moslehipour, A. & Bigdeli, A. 2017. Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles. Sensors and Actuators, B: Chemical, 243: 715-720. https://doi.org/10.1016/j.snb.2016.12.059
  • 20. Jarosz-Wilkołazka, A., Ruzgas, T. & Gorton, L. 2005. Amperometric detection of mono- and diphenols at Cerrena unicolor laccase-modified graphite electrode: Correlation between sensitivity and substrate structure. Talanta, 66(5): 1219-1224. https://doi.org/10.1016/j.talanta.2005.01.026
  • 21. Karpińska, J., Smyk, J. & Wołyniec, E. 2005. A spectroscopic study on applicability of spectral analysis for simultaneous quantification of l-dopa, benserazide and ascorbic acid in batch and flow systems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 62(1-3): 213-220. https://doi.org/10.1016/j.saa.2004.12.029
  • 22. Kosanić, M., Petrović, N. & Stanojković, T. 2020. Bioactive properties of Clitocybe geotropa and Clitocybe nebularis. Journal of Food Measurement and Characterization, 14(2): 1046-1053. https://doi.org/10.1007/s11694-019-00354-7
  • 23. Kozan, J.V.B., Silva, R.P., Serrano, S.H.P., Lima, A.W.O. & Angnes, L. 2007. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers. Analytica Chimica Acta, 591(2): 200-207. https://doi.org/10.1016/j.aca.2007.03.058
  • 24. Kumarathasan, P. & Vincent, R. 2003. New approach to the simultaneous analysis of catecholamines and tyrosines in biological fluids. Journal of Chromatography A, 987(1-2): 349-358. https://doi.org/10.1016/S0021-9673(02)01598-4
  • 25. Leite, O.D., Lupetti, K.O., Fatibello-Filho, O., Vieira, I.C. & Barbosa, A. de M. 2003a. Synergic effect studies of the bi-enzymatic system laccaseperoxidase in a voltammetric biosensor for catecholamines. Talanta, 59(5): 889-896. https://doi.org/10.1016/S0039-9140(02)00650-1
  • 26. Leite, O.D., Fatibello-Filho, O. & Barbosa, A.D.M. 2003b. Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus). Journal of the Brazilian Chemical Society, 14(2): 297-303. https://doi.org/10.1590/S0103-50532003000200018
  • 27. Li, Y., Han, J., Jiang, L., Li, F., Li, K. & Dong, Y. 2015. A glucose biosensor based on ımmobilization of glucose oxidase on platinum nanoparticle doped santa barbara amorphous material-15. Analytical Letters, 48(7): 1139-1149. https://doi.org/10.1080/00032719.2014.974056
  • 28. Liu, Q., Ye, W., Yu, H., Hu, N., Du, L., Wang, P. & Yang, M. 2010. Olfactory mucosa tissue-based biosensor: A bioelectronic nose with receptor cells in intact olfactory epithelium. Sensors and Actuators, B: Chemical, 146(2): 527-533. https://doi.org/10.1016/j.snb.2009.12.032
  • 29. Luis, P., Walther, G., Kellner, H., Martin, F. & Buscot, F. 2004. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology and Biochemistry, 36(7): 1025-1036. https://doi.org/10.1016/j.soilbio.2004.02.017
  • 30. Narang, J., Chauhan, N., Singh, A. & Pundir, C.S. 2011. A nylon membrane based amperometric biosensor for polyphenol determination. Journal of Molecular Catalysis B: Enzymatic, 72(3-4): 276-281. https://doi.org/10.1016/j.molcatb.2011.06.016
  • 31. Nomngongo, P.N., Ngila, J.C., Nyamori, V.O., Songa, E.A. & Iwuoha, E.I. 2011. Determination of Selected Heavy Metals Using Amperometric Horseradish Peroxidase (HRP) Inhibition Biosensor. Analytical Letters, 44(11): 2031-2046. https://doi.org/10.1080/00032719.2010.539738
  • 32. Odaci, D., Tımur, S. & Telefoncu, A. 2004. Immobilized jerusalem artichoke (Helianthus tuberosus) tissue electrode for phenol detection. Artificial Cells, Blood Substitutes, and Biotechnology, 32(2): 315-323. https://doi.org/10.1081/BIO-120037836
  • 33. Ori, Z., Kiss, A., Ciucu, A.A., Mihailciuc, C., Stefanescu, C.D., Nagy, L. & Nagy, G. 2014. Sensitivity enhancement of a “bananatrode” biosensor for dopamine based on SECM studies inside its reaction layer. Sensors and Actuators, B: Chemical, 190: 149-156. https://doi.org/10.1016/j.snb.2013.08.063
  • 34. Ozcan, H.M. & Aydin, T. 2016. A new PANI biosensor based on catalase for cyanide determination. Artificial Cells, Nanomedicine and Biotechnology, 44(2): 664-671. https://doi.org/10.3109/21691401.2014.978979
  • 35. Ozcan, H.M. & Sagiroglu, A. 2010. A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds. Artificial Cells, Blood Substitutes, and Biotechnology, 38(4): 208-214. https://doi.org/10.3109/10731191003776744
  • 36. Ozcan, H.M. & Sagiroglu, A. 2014. Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds. Artificial Cells, Nanomedicine and Biotechnology, 42(4): 256-261. https://doi.org/10.3109/21691401.2013.764313
  • 37. Pandey, N. & Budhathoki, U. 2007. Protein determination through bradford’s method of nepalese mushroom. Scientific World, 5(5): 85-88. https://doi.org/10.3126/sw.v5i5.2662
  • 38. Pontius, K., Semenova, D., Silina, Y.E., Gernaey, K. V. & Junicke, H. 2020. Automated electrochemical glucose biosensor platform as an efficient tool toward on-line fermentation monitoring: novel application approaches and ınsights. Frontiers in Bioengineering and Biotechnology, 8: 436. https://doi.org/10.3389/fbioe.2020.00436
  • 39. Rahimi-Mohseni, M., Raoof, J.B., Ojani, R., Aghajanzadeh, T.A. & Bagheri Hashkavayi, A. 2018. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa cavendish) and functionalized silica nanoparticles for voltammetric determination of L-tyrosine. International Journal of Biological Macromolecules, 113: 648-654. https://doi.org/10.1016/j.ijbiomac.2018.02.060
  • 40. Rasmussen, C.D., Andersen, J.E.T. & Zachau‐Christiansen, B. 2007. Improved performance of the potentiometric biosensor for the determination of creatinine. Analytical Letters, 40(1): 39-52. https://doi.org/10.1080/00032710600952341
  • 41. Sagiroglu, A., Paluzar, H., Ozcan, H.M., Okten, S. & Sen, B. 2011. A novel biosensor based on lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater. Preparative Biochemistry and Biotechnology, 41(4): 321-336. https://doi.org/10.1080/10826068.2010.540607
  • 42. Saini, A.S., Kumar, J. & Melo, J.S. 2014. Microplate based optical biosensor for l-Dopa using tyrosinase from Amorphophallus campanulatus. Analytica Chimica Acta, 849: 50-56. https://doi.org/10.1016/j.aca.2014.08.016
  • 43. Sandeep, S., Santhosh, A.S., Swamy, N.K., Suresh, G.S., Melo, J.S. & Nithin, K.S. 2018. Electrochemical detection of L-dopa using crude polyphenol oxidase enzyme immobilized on electrochemically reduced RGO-Ag nanocomposite modified graphite electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 232‐235: 15-21. https://doi.org/10.1016/j.mseb.2018.10.014
  • 44. Sanders, C.A., Rodriguez, M. & Greenbaum, E. 2001. Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosensors and Bioelectronics, 16(7-8): 439-446. https://doi.org/10.1016/S0956-5663(01)00158-0
  • 45. Sarigul, N., Korkmaz, F. & Kurultak, İ. 2019. A new artificial urine protocol to better imitate human urine. Scientific Reports, 9: 20159. https://doi.org/10.1038/s41598-019-56693-4
  • 46. Sayikli Şimşek, Ç., Nur Sonuç Karaboğa, M. & Sezgintürk, M.K. 2015. A new immobilization procedure for development of an electrochemical immunosensor for parathyroid hormone detection based on gold electrodes modified with 6-mercaptohexanol and silane. Talanta, 144: 210-218. https://doi.org/10.1016/j.talanta.2015.06.010
  • 47. Sezgintürk, M.K. & Dinçkaya, E. 2003. A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination. Talanta, 59(3): 545-551. https://doi.org/10.1016/S0039-9140(02)00539-8
  • 48. Sezgintürk, M.K. & Dinçkaya, E. 2004. An amperometric inhibitor biosensor for the determination of reduced glutathione (GSH) without any derivatization in some plants. Biosensors and Bioelectronics, 19(8): 835-841. https://doi.org/10.1016/j.bios.2003.08.012
  • 49. Sezgintürk, M.K. & Dinçkaya, E. 2005. Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate. Talanta, 65(4): 998-1002. https://doi.org/10.1016/j.talanta.2004.08.037
  • 50. Sezgintürk, M.K. & Dinçkaya, E. 2012. Sulfite determination by an inhibitor biosensor-based mushroom (Agaricus bisporus) tissue homogenate. Artificial Cells, Blood Substitutes, and Biotechnology, 40(1-2): 38-43. https://doi.org/10.3109/10731199.2011.585614
  • 51. Sezgintürk, M.K., Göktug, T. & Dinçkaya, E. 2005. Detection of benzoic acid by an amperometric inhibitor biosensor based on mushroom tissue homogenate. Food Technology and Biotechnology, 43(4): 329-334.
  • 52. Shin, K.S. & Lee, Y.J. 2000. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Archives of Biochemistry and Biophysics, 384(1): 109-115. https://doi.org/10.1006/abbi.2000.2083
  • 53. Silva, L.M.C., De Mello, A.C.C. & Salgado, A.M. 2014. Phenol determination by an amperométrico biosensor based on lyophilized mushroom (Agaricus bisporus) tissue. Environmental Technology (United Kingdom), 35(8): 1012-1017. https://doi.org/10.1080/09593330.2013.858755
  • 54. Sun, A., Wambach, T., Venkatesh, A.G. & Hall, D.A. 2014. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014 - Proceedings, 312-315. https://doi.org/10.1109/BioCAS.2014.6981725
  • 55. Tashkhourian, J., Hormozi-Nezhad, M.R. & Khodaveisi, J. 2011. Application of silver nanoparticles and principal component-artificial neural network models for simultaneous determination of levodopa and benserazide hydrochloride by a kinetic spectrophotometric method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 82(1): 25-30. https://doi.org/10.1016/j.saa.2011.06.014
  • 56. Thoppe Rajendran, S., Huszno, K., Dębowski, G., Sotres, J., Ruzgas, T., Boisen, A. & Zór, K. 2020. Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine. Bioelectrochemistry, 138: 107720. https://doi.org/10.1016/j.bioelechem.2020.107720
  • 57. Timur, S., Pazarloǧlu, N., Pilloton, R. & Telefoncu, A. 2004. Thick film sensors based on laccases from different sources immobilized in polyaniline matrix. Sensors and Actuators, B: Chemical, 97(1): 132-136. https://doi.org/10.1016/j.snb.2003.07.018
  • 58. Topçu, S., Sezgintürk, M.K. & Dinçkaya, E. 2004. Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: Investigation of certain phenolic compounds and some inhibitor effects. Biosensors and Bioelectronics, 20(3): 592-597. https://doi.org/10.1016/j.bios.2004.03.011
  • 59. Tuncay, D. & Yagar, H. 2020. Decolorization of Reactive Blue-19 textile dye by Boletus edulis laccase immobilized onto rice husks. International Journal of Environmental Science and Technology, 17(6): 3177-3188. https://doi.org/10.1007/s13762-020-02641-z
  • 60. Zhang, G.Q., Wang, Y.F., Zhang, X.Q., Ng, T.B. & Wang, H.X. 2010. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochemistry, 45(5): 627-633. https://doi.org/10.1016/j.procbio.2009.12.010
  • 61. Zwirtes de Oliveira, I.R.W., Fernandes, S.C. & Vieira, I.C. 2006. Development of a biosensor based on gilo peroxidase immobilized on chitosan chemically crosslinked with epichlorohydrin for determination of rutin. Journal of Pharmaceutical and Biomedical Analysis, 41(2): 366-372. https://doi.org/10.1016/j.jpba.2005.12.019
There are 59 citations in total.

Details

Primary Language English
Journal Section Research Article/Araştırma Makalesi
Authors

Engin Asav 0000-0002-6232-3388

Publication Date October 15, 2021
Submission Date July 12, 2021
Acceptance Date October 8, 2021
Published in Issue Year 2021 Volume: 22 Issue: 2

Cite

APA Asav, E. (2021). SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR. Trakya University Journal of Natural Sciences, 22(2), 255-262. https://doi.org/10.23902/trkjnat.969982
AMA Asav E. SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR. Trakya Univ J Nat Sci. October 2021;22(2):255-262. doi:10.23902/trkjnat.969982
Chicago Asav, Engin. “SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe Nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR”. Trakya University Journal of Natural Sciences 22, no. 2 (October 2021): 255-62. https://doi.org/10.23902/trkjnat.969982.
EndNote Asav E (October 1, 2021) SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR. Trakya University Journal of Natural Sciences 22 2 255–262.
IEEE E. Asav, “SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR”, Trakya Univ J Nat Sci, vol. 22, no. 2, pp. 255–262, 2021, doi: 10.23902/trkjnat.969982.
ISNAD Asav, Engin. “SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe Nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR”. Trakya University Journal of Natural Sciences 22/2 (October 2021), 255-262. https://doi.org/10.23902/trkjnat.969982.
JAMA Asav E. SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR. Trakya Univ J Nat Sci. 2021;22:255–262.
MLA Asav, Engin. “SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe Nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR”. Trakya University Journal of Natural Sciences, vol. 22, no. 2, 2021, pp. 255-62, doi:10.23902/trkjnat.969982.
Vancouver Asav E. SENSITIVE DETERMINATION OF 3,4-DIHYDROXY-L-PHENYLALANINE BY A CLOUD FUNNEL MUSHROOM (Clitocybe nebularis (Batsch), P. Kumm.) HOMOGENATE-BASED AMPEROMETRIC BIOSENSOR. Trakya Univ J Nat Sci. 2021;22(2):255-62.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.