Salmonellae in the air environment: A review
Yıl 2024,
Cilt: 25 Sayı: 2, 211 - 227, 15.10.2024
Abdel Hameed A. Awad
Öz
Salmonella bacteria, a zoonotic pathogen, are frequently transmitted through food and water, causing foodborne outbreaks and illnesses. Bioaerosols are a growing concern as pathogenic microorganisms could be transmitted to the indoor and ambient air environments. The airborne transmission of pathogenic microorganisms is considered a risk of contamination or a route of infection. Salmonella have been found in rare numbers in the air, but their detection indicate their ability to survive in the air environment. Physical, biological and environmental stressors affect the survival of airborne microorganisms. The infectivity of airborne Salmonella is determined by its pathogenicity, infective dose and individual health conditions. The accurate assessment of Salmonella in aerosols is a problem due to the synergistic influence of many uncontrollable environmental conditions and a lack of standardized analysis and sampling protocols. Knowledge of the airborne transmission of Salmonella and factors influencing their viability is critical to understanding their potential health risk and the related control measures. This review provides evidence for the transmission of Salmonella in different air environments, focusing on the presence of Salmonella in the air as a risk of biocontamination. The sampling, detection and enumeration methodologies of Salmonella in the air are discussed with recommended mitigation and control strategies.
Etik Beyan
Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.
Destekleyen Kurum
The authors declared that this study has received no financial support.
Teşekkür
The author would like to thank Prof. Dr. Helmy El-Zanfaly, Professor of Water and Sewage Microbiology, NRC, Egypt, for his support and valuable comments.
Kaynakça
- 1. Abdel Hameed, A. 1992. Comparison of salmonellae and coliform bacteria in aerosols emitted from wastewater treatment plants and related irrigation systems. MSc. Thesis, Botany Dept., Faculty of Science, Mansoura Univ., Egypt.
- 2. Abdel Hameed, A., Elmorsy, T., Tarwarter, P., Green, C. & Gibbs, S. 2010. Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia, 26(3): 223-232. https://doi.org/10.1007/s10453-010-9158-y
- 3. Adams, A. & Spendlove, J. 1970. Coliform aerosols emitted by sewage treatment plants. Science, 169(3951): 1218-1220. https://doi.org/10.1126/science.169.3951.1218
- 4. Adell, E., Moset V., Zhao, Y, Jiménez Belenguer, A., Cerisuelo, A. & Cambra-López, M. (2014). Comparative performance of three sampling techniques to detect airborne Salmonella species in poultry farms. Annals of Agricultural and Environmental Medicine, 21(1): 15-24.
- 5. Aengst, C. 1984. The composition of dust in a pig fattening house [Zur Zusammensetzung des Staubes in einem Schweinemaststall]. Dissertation, Tierärztliche Hochschule Hannover [In German].
- 6. Akil, L., Ahmad, H. & Reddy, R. 2014. Effects of climate change on Salmonella infections. Foodborne Pathogens and Disease, 11(12): 974-80. https://doi.org/10.1089/fpd.2014.1802
- 7. Akin, E.; Jakubowski, J.; Lucas, B. & Pahren, H. 1978. Health hazards associated with wastewater effluents and sludge: Microbiological considerations, pp. 9-25. In: Sagik, B. & Sorber, C. (eds), Proc. Conf. Risk Assessment and Health Effects of Land Application of Municipal Wastewater and Sludge. Center for Applied Research and Technology, University of Texas at San Antonio, San Antonio.
- 8. Ajonina, C., Buzie, C., Rubiandini, R. & Otterpohl, R. 2015. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg. Journal of Toxicology and Environmental Health, Part A, 78(6): 381-387. https://doi.org/10.1080/15287394.2014.989626
- 9. Albrecht, A. & Kämpfer, P. 2006. Potential overestimation of the actinomycetes concentrations by growth of thermophilic species of Bacillus and Geobacillus on selective media for thermophilic actinomycetes. Gefahrstoffe Reinhaltung der Luft, 66(9): 365-367
- 10. Alvarez, A., Buttner, M. & Stetzenbach, L. 1995. PCR for bioaerosol monitoring: sensitivity and environmental interference. Applied and Environmental Microbiology, 61(10): 3639-3644. https://doi.org/10.1128/aem.61.10.3639-3644.1995
- 11. Alzenki, S., Al-Nasser, A., Al-Safar, A. Alomirah, H., Al-Haddad, A., Hendriksen, R. & Aarestrup, F. 2007. Prevalence and antibiotic resistance of Salmonella isolated from a poultry farm and processing plant environment in the state of Kuwait. Foodborne Pathogens and Disease, 4(3): 363-373. https://doi.org/10.1089/fpd.2007.0017
- 12. Amann, R., Ludwig, W. & Schleifer, K. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59 (1): 143-169. https://doi.org/10.1128/mr.59.1.143-169.1995
- 13. Amass, S. 2005. Biosecurity: stopping the bugs from getting in. The Pig Journal, 55: 104-114.
- 14. Aminul Islam, M., Ikeguchi, A. & Naide, T. 2020. Influence of temperature and humidity on the dynamics of aerosol numbers and airborne bacteria in a dairy calf house. Biosystems Engineering, 194(7): 213-226. https://doi.org/10.1016/j.biosystemseng.2020.04.003
- 15. Andres, V. & Davies, R. 2015. Biosecurity measures to control Salmonella and other infectious agents in Pig farms: a Review. Comprehensive Reviews in Food Science and Food Safety, 14(4): 317-335. https://doi.org/10.1111/1541-4337.12137
- 16. Andino, A. & Hanning, I.2015. Salmonella enterica: survival, colonization, and virulence differences among serovars. Scientific World Journal, 2015: 520179. https://doi.org/10.1155/2015/520179
- 17. Ashurst, J., Truong, J. & Woodbury, B. 2022. Salmonella Typhi. In: StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
- 18. Baskerville, A., Humphrey, T., Fitzgeorge, R., Cook, R., Chart, H., Rowe B. & Whitehead, A. 1992. Airborne infection of laying hens with Salmonella enteritidis phage type 4. Veterinary Record, 130(18): 395-398. https://doi.org/10.1136/vr.130.18.395
- 19. Bauer, H., Fuerhacker, M., Zibuschka, F., Schmid, H. & Puxbaum, H. 2002. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants. Water Research, 36(16): 3965-70. https://doi.org/10.1016/s0043-1354(02)00121-5
- 20. Baylor, E., Peters, V. & Baylor, M. 1977. Water to air transfer of virus. Science, 197(4305): 763-764. https://doi.org/10.1126/science.329413
- 21. Berrang, M., Cox, N. & Bailey, J. 1995. Measuring airborne microbial contamination of broiler hatching cabinets. Journal of Applied Poultry Research, 4(1): 83-87. https://doi.org/10.1093/japr/4.1.83
- 22. Beuchat, L., Komitopoulou, E., Beckers, H., Betts, R., Bourdichon, F. & Joosten, H. 2011. Persistence and survival of pathogens in dry food processing environments. Available at: http://ilsi.org/Europe/documents/Persistence%20and%20survival%20report.pdf (Date accessed: January 10, 2024).
- 23. Blaser, M. and Lee, S. 1982. A review of human salmonellosis: I. Infective dose. Reviews of Infectious Diseases 4(6): 1096-1106.
- 24. Bitton, G. 1980. Introduction to environmental virology, pp. 200-242. JohnWiley & Sons, Inc., NewYork.
- 25. Breza-Boruta, B., Paluszak, Z. 2007. Influence of water treatment on microbiological composition of air bioaerosols. Polish Journal of Environmental Studies, 16(5): 663-670.
- 26. Brooks, J., Tanner, B., Josephson, K., Haas, C., Gebra, C. & Pepper, I. 2005. A national study on the residential impacts of biological aerosols from the land application of biosolids. Journal of Applied Microbiology, 99(2): 310-322. https://doi.org/10.1111/j.1365-2672.2005.02604.x
- 27. Brooks, J., Tanner, B., Josephson, K., Gerba, C. & Pepper, I. 2004. Bioaerosols from land application of biosoilds in the desert south west USA. Water Science and Technology, 50(1): 7-12. PMID: 15318479
- 28. Buttner, M., Willeke, K. & Grinshpun, S. 1997. Sampling and analysis of airborne microorganisms, pp. 629-640. In: Hurst C., Knudsen G., McInerney M., Stetzenbach L. & Walter M. (eds), Manual of environmental microbiology, Washington D.C., American Society for Microbiology Press.
- 29. Cambra-López, M., Aarnink, A., Zhao, Y., Calvet, S. & Torres, A. 2010. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environmental Pollution, 158(1): 1-17. https://doi.org/10.1016/j.envpol.2009.07.011
- 30. Carducci, A., Tozzi, E., Rubulotta, E., Casini, B., Cantiani, L., Rovini, E., Muscillo, M. & Pacinim R. 2000. Assessing airborne biological hazard from urban wastewater treatment. Water Research, 34(4), 1173-1178. https://doi.org/10.1016/S0043-1354(99)00264-X
- 31. Carrique-Mas, J. & Davies, R. 2008. Sampling and bacteriological detection of Salmonella in poultry and poultry premises: a review.Revue scientifique et technique, 27(3): 665-677. https://doi.org/10.20506/rst.27.3.1829
- 32. Cason, J., Cox, N. & Bailey, J., 1994. Transmission of salmonella typhimurium during hatching of broiler chicks. Avian Diseases, 38 (3): 583-58. PMID: 7832712
- 33. Chien, Y., Chen, C., Lin, T., Chen, S. & Chien, Y. 2011. Characteristics of microbial aerosols released from chicken and swine feces. Journal of the Air & Waste Management Association, 61(8): 882-889. https://doi.org/10.3155/1047-3289.61.8.882
- 34. Chinivasagam, H., Tran, T., Maddock, L., Gale, A. & Blackall, P. 2009. Mechanically ventilated broiler sheds: a possible source of aerosolized Salmonella, Camplylobacter and Escherichia coli. Applied and Environmental Microbiology, 75(23): 7417-7415. https://doi.org/10.1128/AEM.01380-09
- 35. Clauß, M. 2020. Emission of bioaerosols from livestock facilities: methods and results from available bioaerosol investigations in and around agricultural livestock farming. Thünen Institute of Agricultural Technology Bundesallee 47, Braunschweig/Germany, January.
- 36. Clauss, M., Huf, A. & Clauß, A. 2016. An unconventional bioaerosol chamber for tenacity studies of airborne microorganisms under almost ambient air conditions, Conference: Bioaerosol Chamber Expert Meeting, 14-15 April, Vienna, Austria.
- 37. Colbeck, I. & Lazaridis, M. 2010. Aerosols and environmental pollution. Naturwissenschaften, 97(2): 117-131. https://doi.org/10.1007/s00114-009-0594-x
- 38. Cole, D., Hill, V., Humenick, F. & Sobsey, M. 1999. Halth, safety and environmental concerns of farm animal waste. Occupational Medicine, 14(2): 423-448. PMID:10329913
- 39. Cooke, V., Miles, R., Price, R. & Richardson, A. 1999. A novel chromogenic ester agar medium for detection of salmonellae. Applied and Environmental Microbiology, 65(2): 807-812. https://doi.org/10.1128/AEM.65.2.807-812.1999
- 40. Cosby, D., Cox, Ne., Harrison, M., Wilson, J., Jeff Buhr, R. & Fedorka-Cray, P. 2015. Salmonella and antimicrobial resistance in broilers: A review. Journal of Applied Poultry Research, 24(I3): 408-426. https://doi.org/10.3382/japr/pfv038
- 41. Cosenza-Sutton, G. 2004. Enumeration of total airborne bacteria, yeast and mold contaminants and identification of Escherichia coli 0157:H7, Listeria spp, Salmonella spp and Staphylococcus spp in beef and pork slaughter facility. A dissertation presented to the graduate school of the University of Florida in partial fulfillment of the requirement for degree of doctor of philosophy, University of Florida.
- 42. Cox, C. 1989. Airborne bacteria and viruses. Science Progress, 73(4): 469-499. https://www.jstor.org/stable/43421049
- 43. Cox, C. 1995. Stability of airborne microbes and allergens, pp. 77-99. In: Cox C. & Wathes C. (eds), Bioaerosols Handbook. Lewis Publisher, NY.
- 44. Cox, C. & Wathes, C. 1995. Bioaerosols Handbook. Lewis Puplishers, Boca Raton, FL., USA.
- 45. Cox, N., Bailey J., Mauldin, J. & Blankenship L. 1990. Presence and impact of Salmonella contamination in commercial broiler hatcheries. Poultry Science, 69(9): 1606-1609. https://doi.org/10.3382/ps.0691606
- 46. Dai, P., Shen, D., Tang, Q., Huang, K. & Li, C. 2020. PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis. Environmental Pollution, 256: 113368. https://doi.org/10.1016/j.envpol.2019.113368
- 47. Darlow, H., Bale, W. & Carter, G. 1961. Infection of mice by the respiratory route with Salmonella typhimurium. Journal of Hygiene (Camb.), 59(3): 303-308. https://doi.org/10.1017/s0022172400038961
- 48. Davies, R. & Breslin, M. 2003. Investigation of Salmonella contamination and disinfection in farm egg-packing plants. Journal of Applied Microbiology., 94(2): 191-196. https://doi.org/10.1046/j.1365-2672.2003.01817.x
- 49. Davies, R. & Wray, C. 1994. An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross- contamination hazards in commercial hatcheries. International Journal of Food Microbiology 24(1-2): 147-160. https://doi.org/10.1016/0168-1605(94)90114-7
- 50. Davies, R.H: & Wray, C. 1996. Persistence of Salmonella in poultry units and poultry food. British Poultry Science, 37(3): 589-596. https://doi.org/10.1080/00071669608417889
- 51. de Jong, J., Trouwborst, T. & Winkler, K. 1973. The mechanism of virus decay in aerosols, pp. 124-130. In: Hers, J. & Winkler, K. (eds), Airborne transmission and airborne infection. John Wiley & Sons, New York, NY.
- 52. de Rezende, C., Mallinson, E., Tablante, N., Morales, R. & Park, A. 2001. Effect of dry litter and airflow in reducing Salmonella and Escherichia coli populations in the broiler production environment. Journal of Applied Poultry Research, 10(3): 245-251. https://doi.org/10.1093/japr/10.3.245
- 53. Devane, M., Weaver, L., Singh, S. & Gilpin, B. 2018. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds – a review. Journal of Environmental Management, 222: 293-303. https://doi.org/10.1016/j.jenvman.2018.05.033
- 54. Duan, H., Chai, T., Müller, W. & Zucker, B. 2006. Concentration of airborne endotoxins and airborne bacteria in Chinese rabbit houses. Berliner und Münchener Tierärztliche Wochenschrift, 119(1-2): 40-44, PMID:16450707
- 55. Dungan, R. 2010. Board-invited review: fate and transport of bioaerosols associated with livestock operations and manures. Journal of Animal Science, 88(11): 3693-3706. https://doi.org/10.2527/jas.2010-3094
- 56. Dutil, S., Veillette, M., Meriaux, A., Lazure, L., Barbeau, J. & Duchaine, C 2007. Aerosolization of Mycobacteria and Legionella during dental treatment: low exposure despite dental unit contamination. Environmental. Microbiology, 9(11): 2836-2843. https://doi.org/10.1111/j.1462-2920.2007.01395.x
- 57. Eigner, U., Reissbrodt, R., Hammann, R. & Fahr, A. 2001. Evaluation of a new chromogenic medium for the isolation and presumptive identification of Salmonella species from stool specimens. European Journal of Clinical Microbiology & Infectious Diseases, 20(8): 558-565. https://doi.org/10.1007/s100960100546
- 58. Elliott, L., McCalla, T. & Deshazer, J. 1976. Bacteria in the air of housed swine units. Applied and Environmental Microbiology, 32(2): 270-273. https://doi.org/10.1128/aem.32.2.270-273.1976
- 59. Epstein, E. 1997. The science of composting. CRC Press LLC, Florida, 504 p.
- 60. Eriksson, E. & Aspan, A. 2007. Comparison of culture, ELISA and PCR techniques for Salmonella detection in faecal samples for cattle, pig and poultry. BMC Veterinary Research, 3: 21. https://doi.org/10.1186/1746-6148-3-21
- 61. Fallschissel, K., Kämpker, P. & Jäckel, M. 2009. Direct detection of Salmonella cells in the air of livestock stables by real time PCR. The Annals of Occupational Hygiene, 53(8): 859-868. https://doi.org/10.1093/annhyg/mep060
- 62. Fannin, K, Vana, S & Jakubowski, W. 1985. Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses. Applied and Environmental Microbiology, 49(5): 1191-1196. https://doi.org/10.1128/aem.49.5.1191-1196.1985
- 63. Foster, D & Engelbrecht, R. 1973. Microbial hazard of disposing of wastewater on soil, pp. 247-270. In: Sopper, W. & Kardos, L. (eds), Recycling treated municipal wastewater and sludge through forest and cropland, Pennsylvania State University Press.
- 64. Forgie, D., Sasser, L. & Neger, M. 2004. Compost facility requirements guideline: How to comply with part 5 of the organic matter recycling regulation, http://www.env.gov.bc.ca/epd/codes/omr/pdf/compost.pdf
- 65. Gast, R., Mitchell B. & Holt, P. 1998. Airborne transmission of Salmonella enteritidis infection between groups of chicks in controlled environment isolation cabinets. Avian Diseases, 42(2): 315-320. PMID: 9645323
- 66. Gibbs, R., Hu, C., Ho, G. & Unkovich, I. 1997. Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Science and Technology, 35(11-12): 269-275. https://doi.org/10.2166/wst.1997.0745
- 67. Gordon, M. 2011. Invasive nontyphoidal Salmonella disease: epidemiology, pathogenesis and diagnosis. Current Opinion in Infectious Diseases, 24(5): 484-489. https://doi.org/10.1097/QCO.0b013e32834a9980
- 68. Gray, J. & Fedorka-Cray, P. 2002. Salmonella, pp. 55-68, In: Cliver, D. & Riemann H. (eds.), Foodborne diseases (2nd ed), Academic Press, ISBN 0121765598
- 69. Gregory, P. 1973. The microbiology of the atmosphere, 2nd edition. Leonard Hill Books, Aylesbury, Bucks, England.
- 70. Griffin, D., Gonzalez, C., Teigell, N., Petrosky, T., Northup, D. & Lyles, M. 2011. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia, 27(1): 25-35. https://doi.org/10.1007/s10453-010-9173-z
- 71. Grisoli, P., Rodolfi, M., Villani, S., Grignan, E., Cottica, D., Beiri, A., Picco, A. & Dacarro, C. 2009. Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and wastewater treatment plant. Environmental Research, 109(2): 135-142. https://doi.org/10.1016/j.envres.2008.11.001
- 72. Grunnet, K. & Tramsen, C. 1974. Emission of airborne bacteria from a sewage treatment plant. Revue Internationale d'Océanographie Médicale, 34: 117-126.
- 73. Gugliandolo, C., Lentini, V., Spanò, A. & Maugeri, T. 2011. Conventional and molecular methods to detect bacterial pathogens in mussels. Letters in Applied Microbiology, 52(1): 15-21. https://doi.org/10.1111/j.1472-765X.2010.02959.x
- 74. Gale C. & Velazquez E., 2020. Salmonella spp in pigs: an update on diagnostics and control. Livestock, 25(1): 38-43. https://doi.org/10.12968/live.2020.25.1.38
- 75. Gržinić, G, Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, R., Ławniczek-Wałczyk, A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G & Wolska, L. 2023. Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, 858, Part 3: 160014. https://doi.org/10.1016/j.scitotenv.2022.160014
- 76. Gosling, R., Martelli, F., Wintrip, A., Sayers, A., Wheeler, K. & Davies, R. 2014. Assessment of producers response to Salmonella biosecurity issues and uptake of advice on laying hen farms in England and Wales. British Poultry Science, 55(5): 559-568. https://doi.org/10.1080/00071668.2014.949620
- 77. Haas, D., Posch, J., Schmidt, S., Wüst, G., Sixl, W., Feierl, G., Marth, E. & Reinthaler, F. 2005. A case study of airborne culturable microorganisms in a poultry slaughter house in Styria, Austria. Aerobiologia, 21: 193 -201. https://doi.org/10.1007/s10453-005-9003-x
- 78. Han, Y., Li, L., Wang, Y., Ma, J., Li, P., Han, C. & Liu, J. 2020. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Frontiers of Environmental Science and Engineering, 15(3): 38. https://doi.org/10.1007/s11783-020-1330-1
- 79. Heaton, J. C. & Jones, K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of Applied Microbiology, 104 (3): 613-626. https://doi.org/10.1111/j.1365-2672.2007.03587.x
- 80. Heber, A., Peugh M., Lutgring K., Zimmerman N. & Linton R. 2006. Poultry slaughtering plants: concentrations of microbial aerosols in poultry slaughtering and processing plants. ASHRAE Transactions, 112: 644-655.
- 81. Heidelberg, J., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C. & Colwell R.R. 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Applied and Environmental Microbiology, 63(9): 3585-3588. https://doi.org/10.1128/aem.63.9.3585-3588.1997
- 82. Heinonen-Tanski, H., Reponen, T. & Koivunen, J. 2009. Airborne enteric coliphages and bacteria in sewage treatment plants. Water Research, 43(9): 2558-2566. https://doi.org/10.1016/j.watres.2009.03.006
- 83. Hendriksen, S., Orsel, K., Wagenaar, J., Miko, A. & Van Duijkeren, E. 2004. Animal-to-human transmission of Salmonella Typhimurium DT104A variant. Emerging Infectious Diseases, 10(12): 2225-27. https://doi.org/10.3201/eid1012.040286
- 84. Hess, E. & Breer, C. 1975. Epidemiology of salmonellae and fertilizing of grassland with sewage sludge. Zentralbl Bakteriol Orig B, 161(1): 54-60. PMID:1189797
- 85. Hickey, J. & Reist, P. 1975. Health significance of airborne microorganisms from wastewater treatment processes. Part II: Health significance and alternatives for action. Journal of the Water Pollution Control Federation, 47(12): 2758-2773. PMID: 1107606
- 86. Hill, R., Knight, I., Anikis, M. & Colwell, R. 1993. Benthic distribution of sewage sludge indicated by Clostridium perfringens at a deep ocean dump site. Applied and Environmental Microbiology, 59(1): 47-51. https://doi.org/10.1128/aem.59.1.47-51.1993
- 87. Hinton, M., Ali, E., Allen, V. & Linton, A. 1983. The excretion of Salmonella typhimurium in the feces of cows fed milk substitute. Journal of Hygiene (Camb), 91(1): 33-45. https://doi.org/10.1017/s0022172400060009
- 88. Holt, P., Mitchell, B., Seo, K-H. & Gast, R. 1999. Use of negative air ionization for reducing airborne levels of Salmonella enterica serovar Enteritidis in a room containing infected caged layer. Journal of Applied Poultry Research, 8: 440-446.
- 89. Hospodsky, D., Yamamoto, N. & Peccia, J. 2010. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Applied and Environmental Microbiology, 76(21): 7004-7012. https://doi.org/10.1128/AEM.01240-10
- 90. Hussong, D., Burge, W. & Enkiri, N. 1985. Ocurrence, growth and suppression of Salmonellae in composted sewage sludge. Applied and Environmental Microbiology, 50(4): 887-893. https://doi.org/10.1128/aem.50.4.887-893.1985
- 91. Hutchison, M.L., Gittins, J., Walker, A., Sparks, N., Humphrey, T.J., Burton, C. & Moore, A. 2004. An assessment of the microbiological risks involved with egg washing under commercial conditions. Journal of food protection, 67(1): 4-11.
- 92. ISO: 6579 2002. International Organization for Standardization, Microbiology of food and animal feeding stuffs — horizontal method for the detection of Salmonella spp., ISO 6579:2002.
- 93. Jiang, C., Shaw, K., Upperman, C., Blythe, D., Mitchell, C., Murtugudde, R., Sapkota A . & Sapkota, A. 2015. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. Environment International, 83: 58-62. https://doi.org/10.1016/j.envint.2015.06.006
- 94. Jones, A. & Harrison, R. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations- a review. Science of The Total Environment, 326(1-3): 151-180. https://doi.org/10.1016/j.scitotenv.2003.11.021
- 95. Kallapura, G., Morgan, M., Pumford, N., Bielke, L., Wolfenden, A., Faulkner, O., Latorre, J. , Menconi, A., Hernandez-Velasco, X., Kuttappan, V., Hargis, B. & Tellez, G. 2014. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium. Poultry Science, 93(2): 340-346. https://doi.org/10.3382/ps.2013-03602
- 96. Kaniga, K., Tucker, S., Trollinger, D. & Galán, J. 1995. Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. Journal of Bacteriology, 177(14): 3965-3971. https://doi.org/10.1128/jb.177.14.3965-3971.1995
- 97. Karra, S. & Katsivella, E. 2007. Microorganisms in bioaerosol emission from wastewater treatment plants during summer at Mediterranean site. Water Research, 41(6): 1355-1365. https://doi.org/10.1016/j.watres.2006.12.014
- 98. Katzenelson, E. & Teltsch, B. 1976. Dispersion of enteric bacteria by spray irrigation. Journal Water Pollution Control Federation, 48(4): 710-716. https://www.jstor.org/stable/25038569
- 99. Kim, K., Kabir, E. & Jahan, S. 2018. Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences, 67: 23-35. https://doi.org/10.1016/j.jes.2017.08.027
100. Kocwa-Haluch, R. 1996. Comparison of the airborne spread of coliform and hemolytic bacteria around a sewage treatment plant. Annals of Agricultural and Environmental Medicine, 3(1): 13-17.
- 101. Kolb, S., Carbrera, A., Kammann, C., Kämpfer, P. & Conrad, R. 2005. Quantitative impact of CO2 enriched atmosphere on abundance of methanotrophic bacteria in a meadow soil. Biology and Fertility of Soils, 41(5): 337-342. https://doi.org/10.1007/s00374-005-0842-y
- 102. Korzeniewska, E., Filipkowska, Z., Gotkowska-Ptachta, A., Janczukowicz,W. & Rutkowski, B. 2008. Bacteriological pollution of the atmospheric air at the municipal and dairy wastewater treatment plant area and its surroundings. Archives of Environmental Protection, 34(4): 13-23.
- 103. .Krishnamoorthy, S., Muthalagu, A., Priyamvada, H., Akkal, S, Valsan, A., Raghunathan, R., Kanawade, P. & Gunthe, S. 2020. On distinguishing the natural and human-induced sources of airborne pathogenic viable bioaerosols: characteristic assessment using advanced molecular analysis. SN Applied Sciences, 2: 1162. https://doi.org/10.1007/s42452-020-2965-z
- 104. Kromoredjo, P. & Fujioka, R. 1991. Evaluating three simple methods to assess the microbial quality of drinking water in Indonesia. Environmental Toxicology & Water Quality, 6(2): 259-270. https://doi.org/10.1002/tox.2530060214
- 105. Lacey, J., Williamson, P. & Crook, B. 1996. Microbial emission from composts and associated risks- trials and tribulations of occupational aerobiologist, Chapter- 1, In: Muilenberg, M. & Burge, H. (eds), Aerobiology, Lewis Publishers, NY.
- 106. Langeland, G. 1982. Salmonella spp. in the working environment of sewage treatment plants in Oslo, Norway. Applied and Environmental Microbiology, 43(5): 1111-1115. https://doi.org/10.1128/aem.43.5.1111-1115.1982
- 107. Lang, N., Bellett-Travers M. & Smith S. 2007. Field investigations on the survival of Escherichia coli and presence of other enteric microorganisms in biosolids amended agricultural soil. Journal of Applied Microbiology, 103(5): 1868-1882. https://doi.org/10.1111/j.1365-2672.2007.03489.x
- 108. Leach, S., Williams, A., Davies, A., Wilson, J., Marsh, P. & Humphery, T. 1999. Aerosol route enhances the contamination of intact eggs and muscle of experimentally infected laying hens by Salmonella typhimurium DT104. FEMS Microbiology Letters, 171(2): 203-207. https://doi.org/10.1111/j.1574-6968.1999.tb13433.x
- 109. Liu, M., Nobu, M., Ren, J., Jin, X., Hong, G. & Yao, H. 2020. Bacterial compositions in inhalable particulate matters from indoor and outdoor wastewater treatment processes. Journal of Hazardous Materials, 385: 121515. https://doi.org/10.1016/j.jhazmat.2019.121515
- 110. López, F., de las Mercedes Pescaretti, M., Morero, R. & Delgado M. 2012. Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Research International, 45(2): 842-851. https://doi.org/10.1016/j.foodres.2011.08.009
- 111. Marchand, G., Lavoi, J. & Lazure, L. 1995. Evaluation of bioaerosols in a municipal solid waste recyciling and compositing plant. Journal of the Air & Waste Management Association, 45(10): 778-781. https://doi.org/10.1080/10473289.1995.10467406
- 112. Matković K., Vucemilo, M., Vinkovic, B., Seol, B., Pavicic, Z., Matkovic, S. 2007. Qualitative structure of airborne bacteria and fungi in dairy barn and nearby environment. Czech Journal of Animal Science, 52(8): 249-254. https://doi.org/10.17221/2280-CJAS
- 113. Mckinney, R. 2004. Environmental Pollution Control Microbiology (Ed), Chapter- 12, Air microbiology, Marcel Dekker Inc, New York, USA.
- 114. Mclamarra, J. & Pruitt, J. 1995. Beneficial reuse in the southest. Industrial. Wastewater, 3(2): 22-24.
- 115. Michalkiewicz, M. 2019. Wastewater treatment plants as a source of bioaerosols. Polish Journal of Environmental Studies, 28(4): 2261-2271. https://doi.org/10.15244/pjoes/90183
- 116. Millner, P., Bassett, D. & Marsh, P. 1980. Dispersal of Aspergillus fumigatus from Sewage Sludge Compost Piles Subjected to Mechanical Agitation in Open Air. Applied and Environmental Microbiology, 39(5): 1000-1009. https://doi.org/10.1128/aem.39.5.1000-1009.1980
- 117. Mills, J., Gage, K. & Khan A. 2010. Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environ Health Perspect, 118 (11): 1507-1514. https://doi.org/10.1289/ehp.0901389
- 118. Morgado, M., Jiang, C., Zambrana, J., Upperman, C., Mitchell, C. Boyle, M., Sapkota, A. & Sapkota, A. 2021. Climate change, extreme events, and increased risk of salmonellosis: foodborne diseases active surveillance network (FoodNet), 2004-2014. Environmental Health, 20: 105. https://doi.org/10.1186/s12940-021-00787-y
- 119. Müller, G. 1980. Airborne dissemination of bacteria from sewage treatment plants. Environmental International, 3(4): 283-291. https://doi.org/10.1016/0160-4120(80)90139-7
- 120. Mulloy, K. 2001. Sewage workers: toxic hazards and health effects. Occupational Medicine, 16(1): 23-38. PMID: 11107222
- 121. Mumy, L. K. 2014. Salmonella, Editor (s), Philip Wexler, Encyclopedia of Toxicology (Third Edition), Academic Press, pp. 211-212. https://doi.org/10.1016/B978-0-12-386454-3.00537-6
- 122. Nolan, S., Thorn, C., Ashekuzzaman, S., Kavanagh, I., Nag, R., Bolton, D., Cummins, E., O'Flaherty, V., Abram, F., Richards, K. & Fenton, O. 2020. Land spreading with co-digested cattle slurry, with or without pasteurization, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry. Science of The Total Environment, 744(140841), 1-15. https://doi.org/10.1016/j.scitotenv.2020.140841
- 123. Ogden, L., Fenlon, D., Vinten, A. & Lewis, D. 2001. The fate of Escherichia coli O157 in soil and its potential to contaminate drinking water. International Journal of Food Microbiology, 66(1-2): 111-7. https://doi.org/10.1016/S0168-1605(00)00508-0
- 124. Oliveira, C., Carvalho, L. & Garcia, T. 2006. Experimental airborne transmission of Salmonella Agona and Salmonella Typhimurium in weaned pigs. Epidemiology and Infection, 134(1): 199-209. https://doi.org/10.1017/S0950268805004668
- 125. O’Neill, W., Cooke, R.P., Plumb, H. & Kennedy, P. 2003. ABC chromogenic agar: a cost-effective alternative to standard enteric media for Salmonella spp. isolation from routine stool samples. British Journal of Biomedical Science, 60(4): 187-190. https://doi.org/10.1080/09674845.2003.11783697
- 126. Oppliger, A., Charriere, N., Droz, P. & Rinsoz, T. 2008. Exposure to bioaerosols in poultry houses at different stages of fattening use of real time PCR for airborne bacterial quantification. The Annals of Occupational Hygiene, 52 (5): 405-412. https://doi.org/10.1093/annhyg/men021
- 127. Ossowska-Cypryk, K. 1991. Application of indicator microorganisms for the assessment of air pollution level in the vicinity of the industrial waste water treatment plant. Gaz, Woda i Technika Sanitarna, 5:105 [in Polish].
- 128. Pal, A., Riggs, M., Urrutia, A., Osborne, R., Jackson, A., Bailey, M., Macklin, K., Price, S., Buhret, R. & Bourassa, D. 2021. Investigation of the potential of aerosolized Salmonella Enteritidis on colonization and persistence in broilers from day 3 to 21. Poultry Science, 100(12): 101504. https://doi.org/10.1016/j.psj.2021.101504
- 129. Paluszak, Z., Ligocka, A. & Breza-Boruta B. 2003. Effectiveness of sewage treatment based on selected fecal bacteria elimination in municipal wastewater treatment plant in Toruń. Polish Journal of Environmental Studies, 12(3): 345-349.
- 130. Pearce, R., Sheridan, J. & Bolton, D. 2006. Distribution of airborne microorganisms in commercial pork slaughter process. International Journal of food Microbiology, 107(2): 186-19. https://doi.org/10.1016/j.ijfoodmicro.2005.08.029
- 131. Pepper, I. & Gebra, C. 2015. Aeromicrobiology, Chapter 5, pp. 89-110, In: Pepper I., Gerba C. & Gentry T. Environmental Microbiology, 3rd edition, Academic Press Publishers, Waltham, MA. https://doi.org/10.1016/B978-0-12-394626-3.00005-3
- 132. Pillai, S. 2007. Bioaerosols from land-applied biosolids: issues and needs. Water Environment Research, 79(3): 270-278. https://doi.org/10.2175/106143007x156763
- 133. Pillai, S., Widmer, K., Dowd, S. & Ricke, S. 1996. Occurrence of airborne bacteria and pathogen indicators during land application of sewage sludge. Applied and Environmental Microbiology, 62(1): 296-299. https://doi.org/10.1128/aem.62.1.296-299.1996
- 134. Podolak, R., Enache, E., Stone, W., Black, D. & Elliott, P. 2010. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73(10): 1919-1936. https://doi.org/10.4315/0362-028X-73.10.1919
- 135. Prazmo, Z. 1980. Salmonella in municipal sewage for agricultural use. Przegląd Epidemiologiczny, 34: 147-153 [in Polish].
- 136. Putaud, J., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R.H,. Hansson, C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A. & Raes, F. 2010. A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44(10): 1308-1320. https://doi.org/10.1016/j.atmosenv.2009.12.011
- 137. Rambach, A. 1990. New plate medium for facilitated differentiation of Salmonella spp. from Proteus spp. and other enteric bacteria. Applied and Environmental Microbiology, 56(1): 301-303. https://doi.org/10.1128/aem.56.1.301-303.1990
- 138. Reina, M., Urrutia, A., Figueroa J., Riggs M, Macklin K., Buhr R., Price S. & Bourassa D. 2024. Application of pressurized steam and forced hot air for cleaning broiler transport container flooring. Poultry Science, 103(2): 103276. https://doi.org/10.1016/j.psj.2023.103276
- 139. Ritz, C., Mitchell, B., Fairchild, B., Czarick, M. & Worley, J. 2006. Improving in-house air quality in broiler production facilities using an electrostatic space charge system. Journal of Applied Poultry Research, 15(2): 333-340. https://doi.org/10.1093/japr/15.2.333
- 140. Ruiz-Gil, T., Acuña, J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F. & Jorquera, M. 2020.Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145: 106156. https://doi.org/10.1016/j.envint.2020.106156
- 141. Russ, C. & Yanko, W. 1981. Factors affecting salmonellae repopulation in composted sludges. Applied and Environmental Microbiology, 41(3): 597-602. https://doi.org/10.1128/aem.41.3.597-602.1981
- 142. Sánchez-Monedero, M., Aguilar, M., Fenoll, R. & Roig, A. 2008. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42(14): 3739-3744. https://doi.org/10.1016/j.watres.2008.06.028
- 143. Santos, P., Figueiredo, H., da Silva, L., da Silva, R, Cardoso, G., Moraes, C. & Rodrigues, A. 2021. Evaluation of a rapid detection method of Salmonella in comparison with the culture method and microbiological quality in fish from the Brazilian Amazon. Food Science & Technology (Campinas), 41(1): 151-157. https://doi.org/10.1590/fst.38719
- 144. Sawyer, B., Elenbogen, G., Rao, K., O’Brien, P., Zenz, D. & Lue-Hing, C. 1993. Bacterial aerosol emission rates from municipal wastewater aeration tanks. Applied and Environmental Microbiology, 59(10): 3183-3186. https://doi.org/10.1128/aem.59.10.3183-3186.1993
- 145. Scarpino, P. 1975. Human enteric viruses and bacteriophages as indicators of sewage pollutions, P. 49-61, In: Gamegon ALH (Ed.), Discharge of sewage from sea outfalls, Pergamon Press, Oxford.
- 146. Seedorf, J., Hartung, J., Schroder, M., Linkert, K., Phillips, V., Holden, M., Sneath, R., Short, J., White, R., Pedersen, S., Takai, H. Johnsen, J.O., Metz, J.H.M., Groot Koerkamp, P.W.G., Uenk, G.H., & Wathes, C.M. 1998. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research, 70(1): 97-109. https://doi.org/10.1006/jaer.1997.0281
- 147. Sekla, L., Gemmill, D., Monfreda, J., lysyk, M., Stackiw, W, Kay, C., Hopper C., van Buckenhoutm, L. & Eibisch, G. 1980. Sewage treatment plant workers and their environment; a health study, pp. 281-294, In: Pahren, H. & Jakubowski, W. (eds), Wastewater Aerosols and Diseases, US-EPA, Ohio, Cincnnati, Sept. 19-21.
- 148. Shaji, S., Selvaraj, R. & Shanmugasundaram, R. 2023. Salmonella infection in poultry: A review on the pathogen and control strategies. Microorganisms, 11(11): 2814. https://doi.org/10.3390/microorganisms11112814
- 149. Shuval, H., Fattal, B. & Yekutiel, P. 1986. State of the art review: An epidemiological approach to the health effects of wastewater reuse. Water Science and Technology, 18(9): 147-162. https://doi.org/10.2166/wst.1986.0087
- 150. Sidhu, J., Gibbs, R., Ho, G. & Unkovich, I. 2001. The role of indigenous microorganisms in suppression of Salmonella regrowth in composted biosolids. Water Research, 35(4): 913-920. https://doi.org/10.1016/S0043-1354(00)00352-3
- 151. Sidhu, J. & Toze S. 2009. Human pathogens and their indicators in biosolids: a literature review. Environment International, 35(1): 187-201. https://doi.org/10.1016/j.envint.2008.07.006
- 152. Skórska, C., Sitkowska, J., Krysińska-Traczyk, E., Cholewa, G. & Dutkiewicz, J. 2005. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms. Annals of Agricultural and Environmental Medicine, 12(2): 281-288. PMID: 16457486
- 153. Smets, W., Moretti, S., Denys, S. & Lebeer, S. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139: 214-221. https://doi.org/10.1016/j.atmosenv.2016.05.038
- 154. Sorber, C. & Guter, K. 1975. Health and hygiene aspects of spray irrigation. American Journal of Public Health, 65(1): 47- 52. https://doi.org/10.2105/ajph.65.1.47
- 155. Sorber, C. & Sagik, B. 1979. Indicators and pathogens in wastewater aerosols and factors affecting survivability, pp 23-35, In: Pahren, H. & Jakubowski, W. (eds), Wastewater Aerosols and Diseases, US-EPA, Ohio, Cincnnati, Sept. 19-21.
- 156. Stackhouse, R., Faith, N., Kaspar, C., Czuprynski, C. & Wong, A. 2012. Survival and virulence of Salmonella enterica serovar Enteritidis filaments induced by reduced water activity. Applied and Environmental Microbiology, 78(7): 2213-2220. https://doi.org/10.1128/AEM.06774-11
- 157. Stärk, K. 1999. The role of infectious aerosols in disease transmission in pigs. The Veterinary Journal, 158(3): 164-181. https://doi.org/10.1053/tvjl.1998.0346
- 158. Stetzenbach, L. 2009. Airborne infectious microorganisms. Encyclopedia of Microbiology, 175-182. https://doi.org/10.1016/B978-012373944-5.00177-2
- 159. Straub, T., Pepper, I. & Gerba, G. 1993. Hazards from pathogenic microorganisms in land deposed sewage sludge. Reviews of Environmental Contamination and Toxicology, 132: 55-91. https://doi.org/10.1007/978-1-4684-7065-9_3
- 160. Tang, J. 2009. The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(Suppl 6): S737-46. https://doi.org/10.1098/rsif.2009.0227.focus
- 161. Tanner, B. 2004. Aerosolization of microorganisms and risk of infection from reuse wastewater residuals. Ph.D Dissertation, graduate school of medicine, University of Arizon, Tucson, AZ.
- 162. Teltsch, B., Kedmi, S., Bonnet, L., Borenzstajn–Rotem Y. & Katzenelson, E. 1980. Isolation and identification of pathogenic microorganisms at wastewater irrigated fields: ratio in air and wastewater. Applied and Environmental Microbiology, 39(6): 1183-1190. https://doi.org/10.1128/aem.39.6.1183-1190.1980
- 163. Thomas, G., Paradell Gil, T., Müller, C., Rogers, H., Berger, C. 2024. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiology, 117: 104389. https://doi.org/10.1016/j.fm.2023.104389
- 164. Venter, P., Lues J. F. R., Theron H. 2004. Quantification of bioaerosols in automated chicken egg production plants. Poultry Science, 83(7): 1226-1231. https://doi.org/10.1093/ps/83.7.1226
- 165. Vilanova, X. & Blanch, A. 2005. Distribution and persistence of fecal bacterial populations in liquid and dewatered sludge from a biological treatment plant. The Journal of General and Applied Microbiology, 51(6): 361-368. https://doi.org/10.2323/jgam.51.361
- 166. Vought, K. & Tatini, S. 1998. Salmonella enteritidis contamination of ice cream associated with a 1994 multistate outbreak. Journal of Food Protection, 61(1): 5-10. https://doi.org/10.4315/0362-028x-61.1.5
- 167. Wang, S., Yeh, D. & Wei, C. 2009. Specific PCR primers for the identification of Salmonella enterica serovar enteritidis in chicken-related samples. Journal of Food and Drug Analysis, 17(3): 183-189. https://doi.org/10.38212/2224-6614.2612
- 168. Wang, B., Butler D., Hamblin M. & Monack D. 2023a. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Current Opinion in Microbiology 72: 102262. https://doi.org/10.1016/j.mib.2022.102262
- 169. Wang, J., Vaddu, S., Bhumanapalli, S., Mishra, A., Applegate, T., Singh, M. & Thippareddi, H. 2023b. A systematic review and meta-analysis of the sources of Salmonella in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat. Poultry Science, 102(5): 102566. https://doi.org/10.1016/j.psj.2023.102566
- 170. Wathes, C. 1995. Bioaerosols in animal houses, pp. 547-577. In: Cox, C. & Wathes, C. (eds). Bioaerosols Handbook, Boca Roton, FL: CRC press.
- 171. Wathes, C., Zidan, W., Pearson, G., Hinton, M & Todd, N. 1988. Aerosol infections of calves and mice with Salmonella typhimurium. Veterinary Research, 123(23): 590-594. PMID: 3062881
- 172. Werber, D., Dreesman, J., Feil, F., Van Treeck, U., Fell, G., Ethelberg, S., Hauri, A.M., Roggentin, P., Prager, R., Fisher, I.S.T., Behnke, S.C., Bartelt, E., Weise, E., Ellis, A., Siitonen, A., Andersson, Y., Tschäpe, H., Kramer, M.H. & Ammon, A. 2005. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infectious Diseases, 5: 7. https://doi.org/10.1186/1471-2334-5-7
- 173. Wéry, N. 2014. Bioaerosols from composting facilities – a review. Frontiers in Cellular and Infection Microbiology, 4: 42. https://doi.org/10.3389/fcimb.2014.00042
- 174. Xie, W., Li, Y., Bai, W., Hou, J., Ma, T., Zeng, X., Zhang, L. & An, T. 2021. The source and transport of bioaerosols in the air: A review. Frontiers of Environmental Science & Engineering, 15(3): 44. https://doi.org/10.1007/s11783-020-1336-8
- 175. Zeng, D., Chen, Z., Jiang, Y., Xue, F. & Li, B. 2016. Advances and challenges in viability detection of foodborne Pathogens. Frontiers in Microbiology, 7: Article 1833. https://doi.org/10.3389/fmicb.2016.01833
- 176. Zhang, B. 2020.The effect of aerosols to climate change and society. Journal of Geoscience and Environment Protection, 8(8): 55-78. https://doi.org/10.4236/gep.2020.88006
- 177. Zhang, J, Li, Y., Xu, E., Jiang, L., Tang, J., Li, M., Zhao, X., Chen, G., Zhu, H., Yu, X, & Zhang, X. 2019. Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring. Polish Journal of Veterinary Sciences, 22(3): 495-504. https://doi.org/10.24425/pjvs.2019.129957
- 178. Zhao, Y. 2011. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses. Transactions of the ASABE, 54(1): 285-293. https://doi.org/10.13031/2013.36256
- 179. Zhao, Y., Aarnink, A., De Jong, M. & Groot Koerkamp, P. 2014. Airborne microorganisms from livestock production systems and their relation to dust. Critical Reviews in Environmental Science and Technology, 44(10): 1071-1128. https://doi.org/10.1080/10643389.2012.746064
- 180. Zucker, B., Trojan, S. & Muller, W. 2000. Airborne gram negative bacterial flora in animal houses. Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health, 47(1): 37-46. https://doi.org/10.1046/j.1439-0450.2000.00308.x
Yıl 2024,
Cilt: 25 Sayı: 2, 211 - 227, 15.10.2024
Abdel Hameed A. Awad
Öz
Zoonotik bir patojen olan Salmonella cinsi bakteriler sıklıkla gıda ve su yoluyla bulaşarak gıda kaynaklı salgınlara ve hastalıklara neden olmaktadırlar. Patojenik bakterilerin hava ortamına bulaşabilmesine aracılık ettikleri için biyo-aerosoller giderek artan bir sorun olarak ele alınmaktadırlar. Patojenik mikroorganizmaların hava yoluyla bulaşması, kontaminasyon veya enfeksiyon riski olarak kabul edilir. Salmonella'nın havada az sayılarda bulunması, hava ortamında hayatta kalma yeteneklerini göstermektedir. Fiziksel, biyolojik ve çevresel stres etkenleri havadaki mikroorganizmaların hayatta kalmasını etkileyen faktörlerdir. Hava ortamında bulunan Salmonella üyelerinin bulaşıcılığı patojeniteleri, enfektif doz ve bireylerin sağlık koşullarınca belirlenir. Aerosollerle taşınan Salmonella üyelerinin doğru bir şekilde değerlendirilmesi, kontrol edilemeyen birçok çevresel koşulun sinerjik etkisine ve standartlaştırılmış analiz ve numune alma protokollerinin eksikliğine bağlı bir sorun olarak görülmektedir. Salmonella üyelerinin hava yoluyla bulaşması ve canlılıklarını etkileyen faktörlerin bilinmesi, potansiyel sağlık risklerinin ve ilgili kontrol önlemlerinin anlaşılması açısından kritik öneme sahiptir. Bu derleme, biyolojik kontaminasyon riski olarak havadaki Salmonella varlığına odaklanarak Salmonella üyelerinin farklı hava ortamlarında bulaştığına dair kanıtlar sunmaktadır. Hava ortamında bulunan Salmonella üyelerinin örnekleme, tespit ve sayımı metodolojileri, önerilen azaltma ve kontrol stratejileriyle birlikte tartışılmıştır.
Kaynakça
- 1. Abdel Hameed, A. 1992. Comparison of salmonellae and coliform bacteria in aerosols emitted from wastewater treatment plants and related irrigation systems. MSc. Thesis, Botany Dept., Faculty of Science, Mansoura Univ., Egypt.
- 2. Abdel Hameed, A., Elmorsy, T., Tarwarter, P., Green, C. & Gibbs, S. 2010. Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia, 26(3): 223-232. https://doi.org/10.1007/s10453-010-9158-y
- 3. Adams, A. & Spendlove, J. 1970. Coliform aerosols emitted by sewage treatment plants. Science, 169(3951): 1218-1220. https://doi.org/10.1126/science.169.3951.1218
- 4. Adell, E., Moset V., Zhao, Y, Jiménez Belenguer, A., Cerisuelo, A. & Cambra-López, M. (2014). Comparative performance of three sampling techniques to detect airborne Salmonella species in poultry farms. Annals of Agricultural and Environmental Medicine, 21(1): 15-24.
- 5. Aengst, C. 1984. The composition of dust in a pig fattening house [Zur Zusammensetzung des Staubes in einem Schweinemaststall]. Dissertation, Tierärztliche Hochschule Hannover [In German].
- 6. Akil, L., Ahmad, H. & Reddy, R. 2014. Effects of climate change on Salmonella infections. Foodborne Pathogens and Disease, 11(12): 974-80. https://doi.org/10.1089/fpd.2014.1802
- 7. Akin, E.; Jakubowski, J.; Lucas, B. & Pahren, H. 1978. Health hazards associated with wastewater effluents and sludge: Microbiological considerations, pp. 9-25. In: Sagik, B. & Sorber, C. (eds), Proc. Conf. Risk Assessment and Health Effects of Land Application of Municipal Wastewater and Sludge. Center for Applied Research and Technology, University of Texas at San Antonio, San Antonio.
- 8. Ajonina, C., Buzie, C., Rubiandini, R. & Otterpohl, R. 2015. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg. Journal of Toxicology and Environmental Health, Part A, 78(6): 381-387. https://doi.org/10.1080/15287394.2014.989626
- 9. Albrecht, A. & Kämpfer, P. 2006. Potential overestimation of the actinomycetes concentrations by growth of thermophilic species of Bacillus and Geobacillus on selective media for thermophilic actinomycetes. Gefahrstoffe Reinhaltung der Luft, 66(9): 365-367
- 10. Alvarez, A., Buttner, M. & Stetzenbach, L. 1995. PCR for bioaerosol monitoring: sensitivity and environmental interference. Applied and Environmental Microbiology, 61(10): 3639-3644. https://doi.org/10.1128/aem.61.10.3639-3644.1995
- 11. Alzenki, S., Al-Nasser, A., Al-Safar, A. Alomirah, H., Al-Haddad, A., Hendriksen, R. & Aarestrup, F. 2007. Prevalence and antibiotic resistance of Salmonella isolated from a poultry farm and processing plant environment in the state of Kuwait. Foodborne Pathogens and Disease, 4(3): 363-373. https://doi.org/10.1089/fpd.2007.0017
- 12. Amann, R., Ludwig, W. & Schleifer, K. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59 (1): 143-169. https://doi.org/10.1128/mr.59.1.143-169.1995
- 13. Amass, S. 2005. Biosecurity: stopping the bugs from getting in. The Pig Journal, 55: 104-114.
- 14. Aminul Islam, M., Ikeguchi, A. & Naide, T. 2020. Influence of temperature and humidity on the dynamics of aerosol numbers and airborne bacteria in a dairy calf house. Biosystems Engineering, 194(7): 213-226. https://doi.org/10.1016/j.biosystemseng.2020.04.003
- 15. Andres, V. & Davies, R. 2015. Biosecurity measures to control Salmonella and other infectious agents in Pig farms: a Review. Comprehensive Reviews in Food Science and Food Safety, 14(4): 317-335. https://doi.org/10.1111/1541-4337.12137
- 16. Andino, A. & Hanning, I.2015. Salmonella enterica: survival, colonization, and virulence differences among serovars. Scientific World Journal, 2015: 520179. https://doi.org/10.1155/2015/520179
- 17. Ashurst, J., Truong, J. & Woodbury, B. 2022. Salmonella Typhi. In: StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
- 18. Baskerville, A., Humphrey, T., Fitzgeorge, R., Cook, R., Chart, H., Rowe B. & Whitehead, A. 1992. Airborne infection of laying hens with Salmonella enteritidis phage type 4. Veterinary Record, 130(18): 395-398. https://doi.org/10.1136/vr.130.18.395
- 19. Bauer, H., Fuerhacker, M., Zibuschka, F., Schmid, H. & Puxbaum, H. 2002. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants. Water Research, 36(16): 3965-70. https://doi.org/10.1016/s0043-1354(02)00121-5
- 20. Baylor, E., Peters, V. & Baylor, M. 1977. Water to air transfer of virus. Science, 197(4305): 763-764. https://doi.org/10.1126/science.329413
- 21. Berrang, M., Cox, N. & Bailey, J. 1995. Measuring airborne microbial contamination of broiler hatching cabinets. Journal of Applied Poultry Research, 4(1): 83-87. https://doi.org/10.1093/japr/4.1.83
- 22. Beuchat, L., Komitopoulou, E., Beckers, H., Betts, R., Bourdichon, F. & Joosten, H. 2011. Persistence and survival of pathogens in dry food processing environments. Available at: http://ilsi.org/Europe/documents/Persistence%20and%20survival%20report.pdf (Date accessed: January 10, 2024).
- 23. Blaser, M. and Lee, S. 1982. A review of human salmonellosis: I. Infective dose. Reviews of Infectious Diseases 4(6): 1096-1106.
- 24. Bitton, G. 1980. Introduction to environmental virology, pp. 200-242. JohnWiley & Sons, Inc., NewYork.
- 25. Breza-Boruta, B., Paluszak, Z. 2007. Influence of water treatment on microbiological composition of air bioaerosols. Polish Journal of Environmental Studies, 16(5): 663-670.
- 26. Brooks, J., Tanner, B., Josephson, K., Haas, C., Gebra, C. & Pepper, I. 2005. A national study on the residential impacts of biological aerosols from the land application of biosolids. Journal of Applied Microbiology, 99(2): 310-322. https://doi.org/10.1111/j.1365-2672.2005.02604.x
- 27. Brooks, J., Tanner, B., Josephson, K., Gerba, C. & Pepper, I. 2004. Bioaerosols from land application of biosoilds in the desert south west USA. Water Science and Technology, 50(1): 7-12. PMID: 15318479
- 28. Buttner, M., Willeke, K. & Grinshpun, S. 1997. Sampling and analysis of airborne microorganisms, pp. 629-640. In: Hurst C., Knudsen G., McInerney M., Stetzenbach L. & Walter M. (eds), Manual of environmental microbiology, Washington D.C., American Society for Microbiology Press.
- 29. Cambra-López, M., Aarnink, A., Zhao, Y., Calvet, S. & Torres, A. 2010. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environmental Pollution, 158(1): 1-17. https://doi.org/10.1016/j.envpol.2009.07.011
- 30. Carducci, A., Tozzi, E., Rubulotta, E., Casini, B., Cantiani, L., Rovini, E., Muscillo, M. & Pacinim R. 2000. Assessing airborne biological hazard from urban wastewater treatment. Water Research, 34(4), 1173-1178. https://doi.org/10.1016/S0043-1354(99)00264-X
- 31. Carrique-Mas, J. & Davies, R. 2008. Sampling and bacteriological detection of Salmonella in poultry and poultry premises: a review.Revue scientifique et technique, 27(3): 665-677. https://doi.org/10.20506/rst.27.3.1829
- 32. Cason, J., Cox, N. & Bailey, J., 1994. Transmission of salmonella typhimurium during hatching of broiler chicks. Avian Diseases, 38 (3): 583-58. PMID: 7832712
- 33. Chien, Y., Chen, C., Lin, T., Chen, S. & Chien, Y. 2011. Characteristics of microbial aerosols released from chicken and swine feces. Journal of the Air & Waste Management Association, 61(8): 882-889. https://doi.org/10.3155/1047-3289.61.8.882
- 34. Chinivasagam, H., Tran, T., Maddock, L., Gale, A. & Blackall, P. 2009. Mechanically ventilated broiler sheds: a possible source of aerosolized Salmonella, Camplylobacter and Escherichia coli. Applied and Environmental Microbiology, 75(23): 7417-7415. https://doi.org/10.1128/AEM.01380-09
- 35. Clauß, M. 2020. Emission of bioaerosols from livestock facilities: methods and results from available bioaerosol investigations in and around agricultural livestock farming. Thünen Institute of Agricultural Technology Bundesallee 47, Braunschweig/Germany, January.
- 36. Clauss, M., Huf, A. & Clauß, A. 2016. An unconventional bioaerosol chamber for tenacity studies of airborne microorganisms under almost ambient air conditions, Conference: Bioaerosol Chamber Expert Meeting, 14-15 April, Vienna, Austria.
- 37. Colbeck, I. & Lazaridis, M. 2010. Aerosols and environmental pollution. Naturwissenschaften, 97(2): 117-131. https://doi.org/10.1007/s00114-009-0594-x
- 38. Cole, D., Hill, V., Humenick, F. & Sobsey, M. 1999. Halth, safety and environmental concerns of farm animal waste. Occupational Medicine, 14(2): 423-448. PMID:10329913
- 39. Cooke, V., Miles, R., Price, R. & Richardson, A. 1999. A novel chromogenic ester agar medium for detection of salmonellae. Applied and Environmental Microbiology, 65(2): 807-812. https://doi.org/10.1128/AEM.65.2.807-812.1999
- 40. Cosby, D., Cox, Ne., Harrison, M., Wilson, J., Jeff Buhr, R. & Fedorka-Cray, P. 2015. Salmonella and antimicrobial resistance in broilers: A review. Journal of Applied Poultry Research, 24(I3): 408-426. https://doi.org/10.3382/japr/pfv038
- 41. Cosenza-Sutton, G. 2004. Enumeration of total airborne bacteria, yeast and mold contaminants and identification of Escherichia coli 0157:H7, Listeria spp, Salmonella spp and Staphylococcus spp in beef and pork slaughter facility. A dissertation presented to the graduate school of the University of Florida in partial fulfillment of the requirement for degree of doctor of philosophy, University of Florida.
- 42. Cox, C. 1989. Airborne bacteria and viruses. Science Progress, 73(4): 469-499. https://www.jstor.org/stable/43421049
- 43. Cox, C. 1995. Stability of airborne microbes and allergens, pp. 77-99. In: Cox C. & Wathes C. (eds), Bioaerosols Handbook. Lewis Publisher, NY.
- 44. Cox, C. & Wathes, C. 1995. Bioaerosols Handbook. Lewis Puplishers, Boca Raton, FL., USA.
- 45. Cox, N., Bailey J., Mauldin, J. & Blankenship L. 1990. Presence and impact of Salmonella contamination in commercial broiler hatcheries. Poultry Science, 69(9): 1606-1609. https://doi.org/10.3382/ps.0691606
- 46. Dai, P., Shen, D., Tang, Q., Huang, K. & Li, C. 2020. PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis. Environmental Pollution, 256: 113368. https://doi.org/10.1016/j.envpol.2019.113368
- 47. Darlow, H., Bale, W. & Carter, G. 1961. Infection of mice by the respiratory route with Salmonella typhimurium. Journal of Hygiene (Camb.), 59(3): 303-308. https://doi.org/10.1017/s0022172400038961
- 48. Davies, R. & Breslin, M. 2003. Investigation of Salmonella contamination and disinfection in farm egg-packing plants. Journal of Applied Microbiology., 94(2): 191-196. https://doi.org/10.1046/j.1365-2672.2003.01817.x
- 49. Davies, R. & Wray, C. 1994. An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross- contamination hazards in commercial hatcheries. International Journal of Food Microbiology 24(1-2): 147-160. https://doi.org/10.1016/0168-1605(94)90114-7
- 50. Davies, R.H: & Wray, C. 1996. Persistence of Salmonella in poultry units and poultry food. British Poultry Science, 37(3): 589-596. https://doi.org/10.1080/00071669608417889
- 51. de Jong, J., Trouwborst, T. & Winkler, K. 1973. The mechanism of virus decay in aerosols, pp. 124-130. In: Hers, J. & Winkler, K. (eds), Airborne transmission and airborne infection. John Wiley & Sons, New York, NY.
- 52. de Rezende, C., Mallinson, E., Tablante, N., Morales, R. & Park, A. 2001. Effect of dry litter and airflow in reducing Salmonella and Escherichia coli populations in the broiler production environment. Journal of Applied Poultry Research, 10(3): 245-251. https://doi.org/10.1093/japr/10.3.245
- 53. Devane, M., Weaver, L., Singh, S. & Gilpin, B. 2018. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds – a review. Journal of Environmental Management, 222: 293-303. https://doi.org/10.1016/j.jenvman.2018.05.033
- 54. Duan, H., Chai, T., Müller, W. & Zucker, B. 2006. Concentration of airborne endotoxins and airborne bacteria in Chinese rabbit houses. Berliner und Münchener Tierärztliche Wochenschrift, 119(1-2): 40-44, PMID:16450707
- 55. Dungan, R. 2010. Board-invited review: fate and transport of bioaerosols associated with livestock operations and manures. Journal of Animal Science, 88(11): 3693-3706. https://doi.org/10.2527/jas.2010-3094
- 56. Dutil, S., Veillette, M., Meriaux, A., Lazure, L., Barbeau, J. & Duchaine, C 2007. Aerosolization of Mycobacteria and Legionella during dental treatment: low exposure despite dental unit contamination. Environmental. Microbiology, 9(11): 2836-2843. https://doi.org/10.1111/j.1462-2920.2007.01395.x
- 57. Eigner, U., Reissbrodt, R., Hammann, R. & Fahr, A. 2001. Evaluation of a new chromogenic medium for the isolation and presumptive identification of Salmonella species from stool specimens. European Journal of Clinical Microbiology & Infectious Diseases, 20(8): 558-565. https://doi.org/10.1007/s100960100546
- 58. Elliott, L., McCalla, T. & Deshazer, J. 1976. Bacteria in the air of housed swine units. Applied and Environmental Microbiology, 32(2): 270-273. https://doi.org/10.1128/aem.32.2.270-273.1976
- 59. Epstein, E. 1997. The science of composting. CRC Press LLC, Florida, 504 p.
- 60. Eriksson, E. & Aspan, A. 2007. Comparison of culture, ELISA and PCR techniques for Salmonella detection in faecal samples for cattle, pig and poultry. BMC Veterinary Research, 3: 21. https://doi.org/10.1186/1746-6148-3-21
- 61. Fallschissel, K., Kämpker, P. & Jäckel, M. 2009. Direct detection of Salmonella cells in the air of livestock stables by real time PCR. The Annals of Occupational Hygiene, 53(8): 859-868. https://doi.org/10.1093/annhyg/mep060
- 62. Fannin, K, Vana, S & Jakubowski, W. 1985. Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses. Applied and Environmental Microbiology, 49(5): 1191-1196. https://doi.org/10.1128/aem.49.5.1191-1196.1985
- 63. Foster, D & Engelbrecht, R. 1973. Microbial hazard of disposing of wastewater on soil, pp. 247-270. In: Sopper, W. & Kardos, L. (eds), Recycling treated municipal wastewater and sludge through forest and cropland, Pennsylvania State University Press.
- 64. Forgie, D., Sasser, L. & Neger, M. 2004. Compost facility requirements guideline: How to comply with part 5 of the organic matter recycling regulation, http://www.env.gov.bc.ca/epd/codes/omr/pdf/compost.pdf
- 65. Gast, R., Mitchell B. & Holt, P. 1998. Airborne transmission of Salmonella enteritidis infection between groups of chicks in controlled environment isolation cabinets. Avian Diseases, 42(2): 315-320. PMID: 9645323
- 66. Gibbs, R., Hu, C., Ho, G. & Unkovich, I. 1997. Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Science and Technology, 35(11-12): 269-275. https://doi.org/10.2166/wst.1997.0745
- 67. Gordon, M. 2011. Invasive nontyphoidal Salmonella disease: epidemiology, pathogenesis and diagnosis. Current Opinion in Infectious Diseases, 24(5): 484-489. https://doi.org/10.1097/QCO.0b013e32834a9980
- 68. Gray, J. & Fedorka-Cray, P. 2002. Salmonella, pp. 55-68, In: Cliver, D. & Riemann H. (eds.), Foodborne diseases (2nd ed), Academic Press, ISBN 0121765598
- 69. Gregory, P. 1973. The microbiology of the atmosphere, 2nd edition. Leonard Hill Books, Aylesbury, Bucks, England.
- 70. Griffin, D., Gonzalez, C., Teigell, N., Petrosky, T., Northup, D. & Lyles, M. 2011. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia, 27(1): 25-35. https://doi.org/10.1007/s10453-010-9173-z
- 71. Grisoli, P., Rodolfi, M., Villani, S., Grignan, E., Cottica, D., Beiri, A., Picco, A. & Dacarro, C. 2009. Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and wastewater treatment plant. Environmental Research, 109(2): 135-142. https://doi.org/10.1016/j.envres.2008.11.001
- 72. Grunnet, K. & Tramsen, C. 1974. Emission of airborne bacteria from a sewage treatment plant. Revue Internationale d'Océanographie Médicale, 34: 117-126.
- 73. Gugliandolo, C., Lentini, V., Spanò, A. & Maugeri, T. 2011. Conventional and molecular methods to detect bacterial pathogens in mussels. Letters in Applied Microbiology, 52(1): 15-21. https://doi.org/10.1111/j.1472-765X.2010.02959.x
- 74. Gale C. & Velazquez E., 2020. Salmonella spp in pigs: an update on diagnostics and control. Livestock, 25(1): 38-43. https://doi.org/10.12968/live.2020.25.1.38
- 75. Gržinić, G, Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, R., Ławniczek-Wałczyk, A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G & Wolska, L. 2023. Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, 858, Part 3: 160014. https://doi.org/10.1016/j.scitotenv.2022.160014
- 76. Gosling, R., Martelli, F., Wintrip, A., Sayers, A., Wheeler, K. & Davies, R. 2014. Assessment of producers response to Salmonella biosecurity issues and uptake of advice on laying hen farms in England and Wales. British Poultry Science, 55(5): 559-568. https://doi.org/10.1080/00071668.2014.949620
- 77. Haas, D., Posch, J., Schmidt, S., Wüst, G., Sixl, W., Feierl, G., Marth, E. & Reinthaler, F. 2005. A case study of airborne culturable microorganisms in a poultry slaughter house in Styria, Austria. Aerobiologia, 21: 193 -201. https://doi.org/10.1007/s10453-005-9003-x
- 78. Han, Y., Li, L., Wang, Y., Ma, J., Li, P., Han, C. & Liu, J. 2020. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Frontiers of Environmental Science and Engineering, 15(3): 38. https://doi.org/10.1007/s11783-020-1330-1
- 79. Heaton, J. C. & Jones, K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of Applied Microbiology, 104 (3): 613-626. https://doi.org/10.1111/j.1365-2672.2007.03587.x
- 80. Heber, A., Peugh M., Lutgring K., Zimmerman N. & Linton R. 2006. Poultry slaughtering plants: concentrations of microbial aerosols in poultry slaughtering and processing plants. ASHRAE Transactions, 112: 644-655.
- 81. Heidelberg, J., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C. & Colwell R.R. 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Applied and Environmental Microbiology, 63(9): 3585-3588. https://doi.org/10.1128/aem.63.9.3585-3588.1997
- 82. Heinonen-Tanski, H., Reponen, T. & Koivunen, J. 2009. Airborne enteric coliphages and bacteria in sewage treatment plants. Water Research, 43(9): 2558-2566. https://doi.org/10.1016/j.watres.2009.03.006
- 83. Hendriksen, S., Orsel, K., Wagenaar, J., Miko, A. & Van Duijkeren, E. 2004. Animal-to-human transmission of Salmonella Typhimurium DT104A variant. Emerging Infectious Diseases, 10(12): 2225-27. https://doi.org/10.3201/eid1012.040286
- 84. Hess, E. & Breer, C. 1975. Epidemiology of salmonellae and fertilizing of grassland with sewage sludge. Zentralbl Bakteriol Orig B, 161(1): 54-60. PMID:1189797
- 85. Hickey, J. & Reist, P. 1975. Health significance of airborne microorganisms from wastewater treatment processes. Part II: Health significance and alternatives for action. Journal of the Water Pollution Control Federation, 47(12): 2758-2773. PMID: 1107606
- 86. Hill, R., Knight, I., Anikis, M. & Colwell, R. 1993. Benthic distribution of sewage sludge indicated by Clostridium perfringens at a deep ocean dump site. Applied and Environmental Microbiology, 59(1): 47-51. https://doi.org/10.1128/aem.59.1.47-51.1993
- 87. Hinton, M., Ali, E., Allen, V. & Linton, A. 1983. The excretion of Salmonella typhimurium in the feces of cows fed milk substitute. Journal of Hygiene (Camb), 91(1): 33-45. https://doi.org/10.1017/s0022172400060009
- 88. Holt, P., Mitchell, B., Seo, K-H. & Gast, R. 1999. Use of negative air ionization for reducing airborne levels of Salmonella enterica serovar Enteritidis in a room containing infected caged layer. Journal of Applied Poultry Research, 8: 440-446.
- 89. Hospodsky, D., Yamamoto, N. & Peccia, J. 2010. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Applied and Environmental Microbiology, 76(21): 7004-7012. https://doi.org/10.1128/AEM.01240-10
- 90. Hussong, D., Burge, W. & Enkiri, N. 1985. Ocurrence, growth and suppression of Salmonellae in composted sewage sludge. Applied and Environmental Microbiology, 50(4): 887-893. https://doi.org/10.1128/aem.50.4.887-893.1985
- 91. Hutchison, M.L., Gittins, J., Walker, A., Sparks, N., Humphrey, T.J., Burton, C. & Moore, A. 2004. An assessment of the microbiological risks involved with egg washing under commercial conditions. Journal of food protection, 67(1): 4-11.
- 92. ISO: 6579 2002. International Organization for Standardization, Microbiology of food and animal feeding stuffs — horizontal method for the detection of Salmonella spp., ISO 6579:2002.
- 93. Jiang, C., Shaw, K., Upperman, C., Blythe, D., Mitchell, C., Murtugudde, R., Sapkota A . & Sapkota, A. 2015. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. Environment International, 83: 58-62. https://doi.org/10.1016/j.envint.2015.06.006
- 94. Jones, A. & Harrison, R. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations- a review. Science of The Total Environment, 326(1-3): 151-180. https://doi.org/10.1016/j.scitotenv.2003.11.021
- 95. Kallapura, G., Morgan, M., Pumford, N., Bielke, L., Wolfenden, A., Faulkner, O., Latorre, J. , Menconi, A., Hernandez-Velasco, X., Kuttappan, V., Hargis, B. & Tellez, G. 2014. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium. Poultry Science, 93(2): 340-346. https://doi.org/10.3382/ps.2013-03602
- 96. Kaniga, K., Tucker, S., Trollinger, D. & Galán, J. 1995. Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. Journal of Bacteriology, 177(14): 3965-3971. https://doi.org/10.1128/jb.177.14.3965-3971.1995
- 97. Karra, S. & Katsivella, E. 2007. Microorganisms in bioaerosol emission from wastewater treatment plants during summer at Mediterranean site. Water Research, 41(6): 1355-1365. https://doi.org/10.1016/j.watres.2006.12.014
- 98. Katzenelson, E. & Teltsch, B. 1976. Dispersion of enteric bacteria by spray irrigation. Journal Water Pollution Control Federation, 48(4): 710-716. https://www.jstor.org/stable/25038569
- 99. Kim, K., Kabir, E. & Jahan, S. 2018. Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences, 67: 23-35. https://doi.org/10.1016/j.jes.2017.08.027
100. Kocwa-Haluch, R. 1996. Comparison of the airborne spread of coliform and hemolytic bacteria around a sewage treatment plant. Annals of Agricultural and Environmental Medicine, 3(1): 13-17.
- 101. Kolb, S., Carbrera, A., Kammann, C., Kämpfer, P. & Conrad, R. 2005. Quantitative impact of CO2 enriched atmosphere on abundance of methanotrophic bacteria in a meadow soil. Biology and Fertility of Soils, 41(5): 337-342. https://doi.org/10.1007/s00374-005-0842-y
- 102. Korzeniewska, E., Filipkowska, Z., Gotkowska-Ptachta, A., Janczukowicz,W. & Rutkowski, B. 2008. Bacteriological pollution of the atmospheric air at the municipal and dairy wastewater treatment plant area and its surroundings. Archives of Environmental Protection, 34(4): 13-23.
- 103. .Krishnamoorthy, S., Muthalagu, A., Priyamvada, H., Akkal, S, Valsan, A., Raghunathan, R., Kanawade, P. & Gunthe, S. 2020. On distinguishing the natural and human-induced sources of airborne pathogenic viable bioaerosols: characteristic assessment using advanced molecular analysis. SN Applied Sciences, 2: 1162. https://doi.org/10.1007/s42452-020-2965-z
- 104. Kromoredjo, P. & Fujioka, R. 1991. Evaluating three simple methods to assess the microbial quality of drinking water in Indonesia. Environmental Toxicology & Water Quality, 6(2): 259-270. https://doi.org/10.1002/tox.2530060214
- 105. Lacey, J., Williamson, P. & Crook, B. 1996. Microbial emission from composts and associated risks- trials and tribulations of occupational aerobiologist, Chapter- 1, In: Muilenberg, M. & Burge, H. (eds), Aerobiology, Lewis Publishers, NY.
- 106. Langeland, G. 1982. Salmonella spp. in the working environment of sewage treatment plants in Oslo, Norway. Applied and Environmental Microbiology, 43(5): 1111-1115. https://doi.org/10.1128/aem.43.5.1111-1115.1982
- 107. Lang, N., Bellett-Travers M. & Smith S. 2007. Field investigations on the survival of Escherichia coli and presence of other enteric microorganisms in biosolids amended agricultural soil. Journal of Applied Microbiology, 103(5): 1868-1882. https://doi.org/10.1111/j.1365-2672.2007.03489.x
- 108. Leach, S., Williams, A., Davies, A., Wilson, J., Marsh, P. & Humphery, T. 1999. Aerosol route enhances the contamination of intact eggs and muscle of experimentally infected laying hens by Salmonella typhimurium DT104. FEMS Microbiology Letters, 171(2): 203-207. https://doi.org/10.1111/j.1574-6968.1999.tb13433.x
- 109. Liu, M., Nobu, M., Ren, J., Jin, X., Hong, G. & Yao, H. 2020. Bacterial compositions in inhalable particulate matters from indoor and outdoor wastewater treatment processes. Journal of Hazardous Materials, 385: 121515. https://doi.org/10.1016/j.jhazmat.2019.121515
- 110. López, F., de las Mercedes Pescaretti, M., Morero, R. & Delgado M. 2012. Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Research International, 45(2): 842-851. https://doi.org/10.1016/j.foodres.2011.08.009
- 111. Marchand, G., Lavoi, J. & Lazure, L. 1995. Evaluation of bioaerosols in a municipal solid waste recyciling and compositing plant. Journal of the Air & Waste Management Association, 45(10): 778-781. https://doi.org/10.1080/10473289.1995.10467406
- 112. Matković K., Vucemilo, M., Vinkovic, B., Seol, B., Pavicic, Z., Matkovic, S. 2007. Qualitative structure of airborne bacteria and fungi in dairy barn and nearby environment. Czech Journal of Animal Science, 52(8): 249-254. https://doi.org/10.17221/2280-CJAS
- 113. Mckinney, R. 2004. Environmental Pollution Control Microbiology (Ed), Chapter- 12, Air microbiology, Marcel Dekker Inc, New York, USA.
- 114. Mclamarra, J. & Pruitt, J. 1995. Beneficial reuse in the southest. Industrial. Wastewater, 3(2): 22-24.
- 115. Michalkiewicz, M. 2019. Wastewater treatment plants as a source of bioaerosols. Polish Journal of Environmental Studies, 28(4): 2261-2271. https://doi.org/10.15244/pjoes/90183
- 116. Millner, P., Bassett, D. & Marsh, P. 1980. Dispersal of Aspergillus fumigatus from Sewage Sludge Compost Piles Subjected to Mechanical Agitation in Open Air. Applied and Environmental Microbiology, 39(5): 1000-1009. https://doi.org/10.1128/aem.39.5.1000-1009.1980
- 117. Mills, J., Gage, K. & Khan A. 2010. Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environ Health Perspect, 118 (11): 1507-1514. https://doi.org/10.1289/ehp.0901389
- 118. Morgado, M., Jiang, C., Zambrana, J., Upperman, C., Mitchell, C. Boyle, M., Sapkota, A. & Sapkota, A. 2021. Climate change, extreme events, and increased risk of salmonellosis: foodborne diseases active surveillance network (FoodNet), 2004-2014. Environmental Health, 20: 105. https://doi.org/10.1186/s12940-021-00787-y
- 119. Müller, G. 1980. Airborne dissemination of bacteria from sewage treatment plants. Environmental International, 3(4): 283-291. https://doi.org/10.1016/0160-4120(80)90139-7
- 120. Mulloy, K. 2001. Sewage workers: toxic hazards and health effects. Occupational Medicine, 16(1): 23-38. PMID: 11107222
- 121. Mumy, L. K. 2014. Salmonella, Editor (s), Philip Wexler, Encyclopedia of Toxicology (Third Edition), Academic Press, pp. 211-212. https://doi.org/10.1016/B978-0-12-386454-3.00537-6
- 122. Nolan, S., Thorn, C., Ashekuzzaman, S., Kavanagh, I., Nag, R., Bolton, D., Cummins, E., O'Flaherty, V., Abram, F., Richards, K. & Fenton, O. 2020. Land spreading with co-digested cattle slurry, with or without pasteurization, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry. Science of The Total Environment, 744(140841), 1-15. https://doi.org/10.1016/j.scitotenv.2020.140841
- 123. Ogden, L., Fenlon, D., Vinten, A. & Lewis, D. 2001. The fate of Escherichia coli O157 in soil and its potential to contaminate drinking water. International Journal of Food Microbiology, 66(1-2): 111-7. https://doi.org/10.1016/S0168-1605(00)00508-0
- 124. Oliveira, C., Carvalho, L. & Garcia, T. 2006. Experimental airborne transmission of Salmonella Agona and Salmonella Typhimurium in weaned pigs. Epidemiology and Infection, 134(1): 199-209. https://doi.org/10.1017/S0950268805004668
- 125. O’Neill, W., Cooke, R.P., Plumb, H. & Kennedy, P. 2003. ABC chromogenic agar: a cost-effective alternative to standard enteric media for Salmonella spp. isolation from routine stool samples. British Journal of Biomedical Science, 60(4): 187-190. https://doi.org/10.1080/09674845.2003.11783697
- 126. Oppliger, A., Charriere, N., Droz, P. & Rinsoz, T. 2008. Exposure to bioaerosols in poultry houses at different stages of fattening use of real time PCR for airborne bacterial quantification. The Annals of Occupational Hygiene, 52 (5): 405-412. https://doi.org/10.1093/annhyg/men021
- 127. Ossowska-Cypryk, K. 1991. Application of indicator microorganisms for the assessment of air pollution level in the vicinity of the industrial waste water treatment plant. Gaz, Woda i Technika Sanitarna, 5:105 [in Polish].
- 128. Pal, A., Riggs, M., Urrutia, A., Osborne, R., Jackson, A., Bailey, M., Macklin, K., Price, S., Buhret, R. & Bourassa, D. 2021. Investigation of the potential of aerosolized Salmonella Enteritidis on colonization and persistence in broilers from day 3 to 21. Poultry Science, 100(12): 101504. https://doi.org/10.1016/j.psj.2021.101504
- 129. Paluszak, Z., Ligocka, A. & Breza-Boruta B. 2003. Effectiveness of sewage treatment based on selected fecal bacteria elimination in municipal wastewater treatment plant in Toruń. Polish Journal of Environmental Studies, 12(3): 345-349.
- 130. Pearce, R., Sheridan, J. & Bolton, D. 2006. Distribution of airborne microorganisms in commercial pork slaughter process. International Journal of food Microbiology, 107(2): 186-19. https://doi.org/10.1016/j.ijfoodmicro.2005.08.029
- 131. Pepper, I. & Gebra, C. 2015. Aeromicrobiology, Chapter 5, pp. 89-110, In: Pepper I., Gerba C. & Gentry T. Environmental Microbiology, 3rd edition, Academic Press Publishers, Waltham, MA. https://doi.org/10.1016/B978-0-12-394626-3.00005-3
- 132. Pillai, S. 2007. Bioaerosols from land-applied biosolids: issues and needs. Water Environment Research, 79(3): 270-278. https://doi.org/10.2175/106143007x156763
- 133. Pillai, S., Widmer, K., Dowd, S. & Ricke, S. 1996. Occurrence of airborne bacteria and pathogen indicators during land application of sewage sludge. Applied and Environmental Microbiology, 62(1): 296-299. https://doi.org/10.1128/aem.62.1.296-299.1996
- 134. Podolak, R., Enache, E., Stone, W., Black, D. & Elliott, P. 2010. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73(10): 1919-1936. https://doi.org/10.4315/0362-028X-73.10.1919
- 135. Prazmo, Z. 1980. Salmonella in municipal sewage for agricultural use. Przegląd Epidemiologiczny, 34: 147-153 [in Polish].
- 136. Putaud, J., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R.H,. Hansson, C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A. & Raes, F. 2010. A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44(10): 1308-1320. https://doi.org/10.1016/j.atmosenv.2009.12.011
- 137. Rambach, A. 1990. New plate medium for facilitated differentiation of Salmonella spp. from Proteus spp. and other enteric bacteria. Applied and Environmental Microbiology, 56(1): 301-303. https://doi.org/10.1128/aem.56.1.301-303.1990
- 138. Reina, M., Urrutia, A., Figueroa J., Riggs M, Macklin K., Buhr R., Price S. & Bourassa D. 2024. Application of pressurized steam and forced hot air for cleaning broiler transport container flooring. Poultry Science, 103(2): 103276. https://doi.org/10.1016/j.psj.2023.103276
- 139. Ritz, C., Mitchell, B., Fairchild, B., Czarick, M. & Worley, J. 2006. Improving in-house air quality in broiler production facilities using an electrostatic space charge system. Journal of Applied Poultry Research, 15(2): 333-340. https://doi.org/10.1093/japr/15.2.333
- 140. Ruiz-Gil, T., Acuña, J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F. & Jorquera, M. 2020.Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145: 106156. https://doi.org/10.1016/j.envint.2020.106156
- 141. Russ, C. & Yanko, W. 1981. Factors affecting salmonellae repopulation in composted sludges. Applied and Environmental Microbiology, 41(3): 597-602. https://doi.org/10.1128/aem.41.3.597-602.1981
- 142. Sánchez-Monedero, M., Aguilar, M., Fenoll, R. & Roig, A. 2008. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42(14): 3739-3744. https://doi.org/10.1016/j.watres.2008.06.028
- 143. Santos, P., Figueiredo, H., da Silva, L., da Silva, R, Cardoso, G., Moraes, C. & Rodrigues, A. 2021. Evaluation of a rapid detection method of Salmonella in comparison with the culture method and microbiological quality in fish from the Brazilian Amazon. Food Science & Technology (Campinas), 41(1): 151-157. https://doi.org/10.1590/fst.38719
- 144. Sawyer, B., Elenbogen, G., Rao, K., O’Brien, P., Zenz, D. & Lue-Hing, C. 1993. Bacterial aerosol emission rates from municipal wastewater aeration tanks. Applied and Environmental Microbiology, 59(10): 3183-3186. https://doi.org/10.1128/aem.59.10.3183-3186.1993
- 145. Scarpino, P. 1975. Human enteric viruses and bacteriophages as indicators of sewage pollutions, P. 49-61, In: Gamegon ALH (Ed.), Discharge of sewage from sea outfalls, Pergamon Press, Oxford.
- 146. Seedorf, J., Hartung, J., Schroder, M., Linkert, K., Phillips, V., Holden, M., Sneath, R., Short, J., White, R., Pedersen, S., Takai, H. Johnsen, J.O., Metz, J.H.M., Groot Koerkamp, P.W.G., Uenk, G.H., & Wathes, C.M. 1998. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research, 70(1): 97-109. https://doi.org/10.1006/jaer.1997.0281
- 147. Sekla, L., Gemmill, D., Monfreda, J., lysyk, M., Stackiw, W, Kay, C., Hopper C., van Buckenhoutm, L. & Eibisch, G. 1980. Sewage treatment plant workers and their environment; a health study, pp. 281-294, In: Pahren, H. & Jakubowski, W. (eds), Wastewater Aerosols and Diseases, US-EPA, Ohio, Cincnnati, Sept. 19-21.
- 148. Shaji, S., Selvaraj, R. & Shanmugasundaram, R. 2023. Salmonella infection in poultry: A review on the pathogen and control strategies. Microorganisms, 11(11): 2814. https://doi.org/10.3390/microorganisms11112814
- 149. Shuval, H., Fattal, B. & Yekutiel, P. 1986. State of the art review: An epidemiological approach to the health effects of wastewater reuse. Water Science and Technology, 18(9): 147-162. https://doi.org/10.2166/wst.1986.0087
- 150. Sidhu, J., Gibbs, R., Ho, G. & Unkovich, I. 2001. The role of indigenous microorganisms in suppression of Salmonella regrowth in composted biosolids. Water Research, 35(4): 913-920. https://doi.org/10.1016/S0043-1354(00)00352-3
- 151. Sidhu, J. & Toze S. 2009. Human pathogens and their indicators in biosolids: a literature review. Environment International, 35(1): 187-201. https://doi.org/10.1016/j.envint.2008.07.006
- 152. Skórska, C., Sitkowska, J., Krysińska-Traczyk, E., Cholewa, G. & Dutkiewicz, J. 2005. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms. Annals of Agricultural and Environmental Medicine, 12(2): 281-288. PMID: 16457486
- 153. Smets, W., Moretti, S., Denys, S. & Lebeer, S. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139: 214-221. https://doi.org/10.1016/j.atmosenv.2016.05.038
- 154. Sorber, C. & Guter, K. 1975. Health and hygiene aspects of spray irrigation. American Journal of Public Health, 65(1): 47- 52. https://doi.org/10.2105/ajph.65.1.47
- 155. Sorber, C. & Sagik, B. 1979. Indicators and pathogens in wastewater aerosols and factors affecting survivability, pp 23-35, In: Pahren, H. & Jakubowski, W. (eds), Wastewater Aerosols and Diseases, US-EPA, Ohio, Cincnnati, Sept. 19-21.
- 156. Stackhouse, R., Faith, N., Kaspar, C., Czuprynski, C. & Wong, A. 2012. Survival and virulence of Salmonella enterica serovar Enteritidis filaments induced by reduced water activity. Applied and Environmental Microbiology, 78(7): 2213-2220. https://doi.org/10.1128/AEM.06774-11
- 157. Stärk, K. 1999. The role of infectious aerosols in disease transmission in pigs. The Veterinary Journal, 158(3): 164-181. https://doi.org/10.1053/tvjl.1998.0346
- 158. Stetzenbach, L. 2009. Airborne infectious microorganisms. Encyclopedia of Microbiology, 175-182. https://doi.org/10.1016/B978-012373944-5.00177-2
- 159. Straub, T., Pepper, I. & Gerba, G. 1993. Hazards from pathogenic microorganisms in land deposed sewage sludge. Reviews of Environmental Contamination and Toxicology, 132: 55-91. https://doi.org/10.1007/978-1-4684-7065-9_3
- 160. Tang, J. 2009. The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(Suppl 6): S737-46. https://doi.org/10.1098/rsif.2009.0227.focus
- 161. Tanner, B. 2004. Aerosolization of microorganisms and risk of infection from reuse wastewater residuals. Ph.D Dissertation, graduate school of medicine, University of Arizon, Tucson, AZ.
- 162. Teltsch, B., Kedmi, S., Bonnet, L., Borenzstajn–Rotem Y. & Katzenelson, E. 1980. Isolation and identification of pathogenic microorganisms at wastewater irrigated fields: ratio in air and wastewater. Applied and Environmental Microbiology, 39(6): 1183-1190. https://doi.org/10.1128/aem.39.6.1183-1190.1980
- 163. Thomas, G., Paradell Gil, T., Müller, C., Rogers, H., Berger, C. 2024. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiology, 117: 104389. https://doi.org/10.1016/j.fm.2023.104389
- 164. Venter, P., Lues J. F. R., Theron H. 2004. Quantification of bioaerosols in automated chicken egg production plants. Poultry Science, 83(7): 1226-1231. https://doi.org/10.1093/ps/83.7.1226
- 165. Vilanova, X. & Blanch, A. 2005. Distribution and persistence of fecal bacterial populations in liquid and dewatered sludge from a biological treatment plant. The Journal of General and Applied Microbiology, 51(6): 361-368. https://doi.org/10.2323/jgam.51.361
- 166. Vought, K. & Tatini, S. 1998. Salmonella enteritidis contamination of ice cream associated with a 1994 multistate outbreak. Journal of Food Protection, 61(1): 5-10. https://doi.org/10.4315/0362-028x-61.1.5
- 167. Wang, S., Yeh, D. & Wei, C. 2009. Specific PCR primers for the identification of Salmonella enterica serovar enteritidis in chicken-related samples. Journal of Food and Drug Analysis, 17(3): 183-189. https://doi.org/10.38212/2224-6614.2612
- 168. Wang, B., Butler D., Hamblin M. & Monack D. 2023a. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Current Opinion in Microbiology 72: 102262. https://doi.org/10.1016/j.mib.2022.102262
- 169. Wang, J., Vaddu, S., Bhumanapalli, S., Mishra, A., Applegate, T., Singh, M. & Thippareddi, H. 2023b. A systematic review and meta-analysis of the sources of Salmonella in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat. Poultry Science, 102(5): 102566. https://doi.org/10.1016/j.psj.2023.102566
- 170. Wathes, C. 1995. Bioaerosols in animal houses, pp. 547-577. In: Cox, C. & Wathes, C. (eds). Bioaerosols Handbook, Boca Roton, FL: CRC press.
- 171. Wathes, C., Zidan, W., Pearson, G., Hinton, M & Todd, N. 1988. Aerosol infections of calves and mice with Salmonella typhimurium. Veterinary Research, 123(23): 590-594. PMID: 3062881
- 172. Werber, D., Dreesman, J., Feil, F., Van Treeck, U., Fell, G., Ethelberg, S., Hauri, A.M., Roggentin, P., Prager, R., Fisher, I.S.T., Behnke, S.C., Bartelt, E., Weise, E., Ellis, A., Siitonen, A., Andersson, Y., Tschäpe, H., Kramer, M.H. & Ammon, A. 2005. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infectious Diseases, 5: 7. https://doi.org/10.1186/1471-2334-5-7
- 173. Wéry, N. 2014. Bioaerosols from composting facilities – a review. Frontiers in Cellular and Infection Microbiology, 4: 42. https://doi.org/10.3389/fcimb.2014.00042
- 174. Xie, W., Li, Y., Bai, W., Hou, J., Ma, T., Zeng, X., Zhang, L. & An, T. 2021. The source and transport of bioaerosols in the air: A review. Frontiers of Environmental Science & Engineering, 15(3): 44. https://doi.org/10.1007/s11783-020-1336-8
- 175. Zeng, D., Chen, Z., Jiang, Y., Xue, F. & Li, B. 2016. Advances and challenges in viability detection of foodborne Pathogens. Frontiers in Microbiology, 7: Article 1833. https://doi.org/10.3389/fmicb.2016.01833
- 176. Zhang, B. 2020.The effect of aerosols to climate change and society. Journal of Geoscience and Environment Protection, 8(8): 55-78. https://doi.org/10.4236/gep.2020.88006
- 177. Zhang, J, Li, Y., Xu, E., Jiang, L., Tang, J., Li, M., Zhao, X., Chen, G., Zhu, H., Yu, X, & Zhang, X. 2019. Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring. Polish Journal of Veterinary Sciences, 22(3): 495-504. https://doi.org/10.24425/pjvs.2019.129957
- 178. Zhao, Y. 2011. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses. Transactions of the ASABE, 54(1): 285-293. https://doi.org/10.13031/2013.36256
- 179. Zhao, Y., Aarnink, A., De Jong, M. & Groot Koerkamp, P. 2014. Airborne microorganisms from livestock production systems and their relation to dust. Critical Reviews in Environmental Science and Technology, 44(10): 1071-1128. https://doi.org/10.1080/10643389.2012.746064
- 180. Zucker, B., Trojan, S. & Muller, W. 2000. Airborne gram negative bacterial flora in animal houses. Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health, 47(1): 37-46. https://doi.org/10.1046/j.1439-0450.2000.00308.x