Bilim Ve Mühendislik Uygulamalarının Okulöncesi Öğrencilerinin Bilimsel Süreç Becerilerine Etkisinin İncelenmesi
Yıl 2020,
Cilt: 5 Sayı: 2, 285 - 303, 31.12.2020
Canan Vurucu Şahin
,
Fatma Şahin
Öz
Erken çocuklukta bilim ve mühendislik uygulamalarının, sorgulama temelli oyunlarla entegre edilmiş projelerle uygulanması önemlidir. Bu da çocukların eğlenceli, kaygılanmadan öğrenmelerini ve becerilerini geliştirmelerini sağlamaktadır. Bu becerileri gelişen çocuklar yetişkin olduklarında innovatif projeler geliştirebileceklerdir. Bu bağlamda çalışmanın amacı; erken çocuklukta bilim ve mühendislik uygulamalarının çocukların bilimsel süreç becerilerine etkisini incelemektir. Araştırmanın çalışma grubunu; İstanbul’da bir özel okulun okulöncesi eğitimine devam eden 5 yaş grubu 14 (yedi kız yedi erkek) öğrenci oluşturmaktadır. Çalışmada nitel ve nicel araştırma yöntemlerinin bir arada kullanıldığı karma desen türlerinden olan gömülü desen olarak tasarlanmıştır. Veriler, “Bilimsel Süreç Becerileri Testi” ve “öğrenci projeleri değerlendirme rubriği” ile toplanmıştır. Çalışmada öğrenciler köprü, paraşüt, araba ve salıncak projelerini gruplar halinde yapmışlardır. Projeler Stem döngüsünün aşamaları gözönünde bulundurularak yapılmıştır. Elde edilen bilimsel süreç beceri testi nicel ve nitel olarak, proje değerlendirme rubriği nicel olarak analiz edilmiştir. Elde edilen verilere göre bilim ve mühendislik projelerinin, öğrencilerin bilimsel süreç becerilerini geliştirdiğini göstermektedir.
Kaynakça
- Akman, B., Üstün, E., ve Güler, T. (2003). 6 Yaş Çocuklarının Bilim Süreçlerini Kullanma Yetenekleri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24, 11-14.
- Anderson, J. (2016). The Stanford professor who pioneered praising kids for effort says we’ve totally missed
the point. Quartz. Retreived from https://qz.com/587811/stanford-professor-who-pioneered-praising-effort-sees-false-praise-everywhere/
- Bell, R. L., Smetana, L., ve Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7) 30–33.
Bjurulf, V. (2008). Teknika¨mnets gestaltningar: En studie av la¨rares arbete med skola¨mnet teknik. (Karlstad University Studies, No. 2008:29). Dissertation, Karlstad: Karlstad University.
- Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., ve Palincsar, A. (1991). Motivating
project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3&4), 369–398.
- Bowman, B. T. (1999). A context for learning: Policy implications for math, science, and technology in early
childhood education. In American Association for the Advancement of Science (Ed.), Dialogue on Early Childhood Mathematics, Science, and Technology Education. Washington, DC: AAAS.
- Brandwein, P. F. (1995). Science talent in the young expressed within ecologies of achievement (RBDM 9510).
Storrs, CT: The National Research Center on the Gifted and Talented, University of Connecticut.
- Brown, S. L. (2009). Play: How it shapes the brain, opens the imagination, and invigorates the soul. New York,
New York: Penguin.
- Chesloff, J. D. (2013). STEM Education Must Start in Early Childhood. Education Week, 32, 32-27.
https://www.edweek.org/ew/articles/2019/03/06/23chesloff.h32.html
- Chın, C., ve Kayalvızhı, G. 2002. Open-ended investigations in science: a case study of primary 6 pupils.
Journal of Science and Mathematics Education in Southeast Asia, 25(1), 70–94.
- Clements, D. H. ve Sarama, J. (2007). Effects of a preschool mathematics curriculum: Summative research on
the Building Blocks project. Journal for Research in Mathematics Education, 38(2), 136-163.
- Clements, D. H., Sarama, J., Spitler, M. E., Lange, A. A., ve Wolfe, C. B. (2011). Mathematics learned by young
children in an intervention based on learning trajectories: A large‐scale cluster randomized trial. Journal for Research in Mathematics Education, 42(2), 127–166.
- Cook, C., Goodman, N., ve Schulz, L. E. (2011). Where science starts: Spontaneous experiments in preschoolers' exploratory play. Cognition, 120(3), 341-349.
- Darling-Kuria, N. (2010). Brain-Based Early Learning Activities: Connecting Theory and Practice. St. Paul:
Redleaf Press.
- Diamond, K.E., Justice, L.M., Siegler, R.S., ve Snyder, P.A. (2013). Synthesis of IES research on early
intervention and early childhood education. Washington, DC: National Center for Special Education Research, Institute of Education Sciences, U.S. Department of Education.
- Edelson, D. C., Gordin, D. N., ve Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3&4), 391–450.
- Edwards, C., L. Gandini., ve Forman, G. eds. 1998. The Hundred Languages of Children: The Reggio Emilia Approach— Advanced Reflections. 2nd ed. Maryland Heights, MO: Elsevier Science.
- Elliott, A., ve Hall, N. (1997). The impact of self-regulatory teaching strategies on ‘‘at-risk’’preschoolers’
mathematical learning in a computer-mediated environment. Journal of Computing in Childhood Education, 8(2), 187–198.
- Eshach, H., ve Fried, M. (2005). Should Science Be Taught in Early Childhood? Journal of Science Education and Technology, 14, 315-336. https://doi.org/10.1007/s10956-005-7198-9
- Essa, E. (2002). Introduction to early childhood education (4th ed.). Clifton Park, NY: Thomson Delmar Learning.
- Fleer, M., ve Robbins, J. (2003a). “Hit and run research” with “hit and miss” results in early childhood
science education. Research in Science Education, 33(4), 405–431.
- French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138–149. https://doi.org/10.1016/j.ecresq.2004.01.004.
- Frost, J.L., Wortham, S.C., ve Reifel, S. (2012). Play and Child Development. 4th ed. Upper Saddle River, NJ:
Pearson/Merrill Prentice Hall.
- Gerde, H. K., Bingham, G. E., ve Wasik, B. A. (2012). Writing in early childhood classrooms: Guidelines for
best practice. Early Childhood Education Journal, 40, 351–359.
- Gibson, E. J., ve Pick, A. D. (2000). An ecological approach to perceptual learning and development.New York:
Oxford University Press.
- Ginsburg, H. P., ve Golbeck, S. L. (2004). Thoughts on the future of research on mathematics and science learning and education. Early Childhood Research Quarterly, 19(1), 190–200.
- Ginsburg, H. P. (2006). Mathematical play and playful mathematics: A guide for early education. In D. G.
Singer, R. M. Golinkoff, & K. Hirsch‐Pasek, Singer, D. G., Golinkoff, R. M., & Hirsh‐Pasek, K. (Eds.). Play= Learning: How play motivates and enhances children's cognitive and social-emotional growth. (pp.145‐167). New York, NY: Oxford University Press.
- Goldin-Meadow, S., Levine, S., Zinchenko, E., Yip, T.K., Hemani, N., ve Factor, L. (2012). Doing gesture
promotes learning a mental transformation task better than seeing gesture. Developmental Science, 15(6), 876-884.
- Günşen, G., Fazlıoğlu, Y., ve Bayır, E. (2018). Yapılandırıcı Yaklaşıma Dayalı Bilim Öğretiminin 5 Yaş
Çocuklarının Bilimsel Süreç Becerilerine Etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(3), 599-616.
- Hamlin, M., ve Wisneski, D.B, (2012). Supporting the Scientific Thinking and Inquiry of Toddlers and Preschoolers through Play. Young Children. 82-88
- Haris Helm, J., ve Gronlund, G. (2000). Linking standard and engaged learning in the early years. Early Childhood Research and Pratice, 2(1). Retrieved september, 03, 2019, from http://ecrp.uiuc.edu/v2n1/helm.html
- Helm, J.H., ve Katz. L. (2010). Young Investigators: The Project Approach in the Early Years. 2nd ed. New
York: Teachers College Press. NJ: Pearson.
- Jirout, J., ve Zimmerman, C. (2015). Development of science process skills in the early childhood years. In K.
C. Trundle ve M. Sackes (Eds.), Research in early childhood science education, 143–165. Dordrecht: Springer. https://doi. org/10.1007/978-94-017-9505-0.
- Justice, L. M., ve Kaderavek, J. (2004). Embedded-explicit emergent literacy I: Background and description of approach. Language, Speech, and Hearing Services in Schools, 35, 201–211.
- Kallery, M. (2004). Early Years Teachers’ Late Concerns and Perceived Needs in Science: An Exploratory
Study. European Journal of Teacher Education, 27, 147-165. https://doi.org/10.1080/026197604200023024
- Katz, L. G., ve Chard, S. C. (2000). Engaging children’s minds: The project approach (2nd ed.). Stamford, CT: Ablex.
- Katz, L. G. (2010). STEM in the early years. In SEED (STEM in Early Education and Development Conference, Cedar Falls, IOWA. Retrieved from http://ecrp. uiuc. edu/beyond/seed/katz. html.
- Kefi, S. (2017). Okul Öncesi Eğitimde Proje Yaklaşımı Uygulamalarının Temel Bilimsel Süreç Becerilerini
Kapsama Durumunun İncelenmesi. Erken Çocukluk Çalışmaları Dergisi, 1(1), 3-18.
- Li, X., ve Atkins, M. S. (2004). Early childhood computer experience and cognitive and motor development. Pediatrics, 113, 1715–1722.
Lind, K. K. (1998). Science in early childhood: Developing and acquiring fundamental concepts and skills. Mathematics, and Technology Education: Paper presented at the Forum on Early Childhood Science.
- Lind, K. K. (2005). Exploring science in early childhood (4th ed.). Clifton Park, NY: Thomson Delmar Learning.
- Malone, K. L., Schunn, C. D., ve Schuchardt, A. M. (2018). Improving conceptual understanding and
representation skills through Excel-based modeling. Journal of Science Education and Technology, 27(1), 30-44. https://doi.org/10.1007/s10956-017-9706-0
- McCormick, R. (2004). Issues of learning and knowledge in technology education. International Journal of Technology and Design Education, 14(1), 21–44.
- Middleton, H. (2005). Creative thinking, values and design and technology education. International Journal of Technology and Design Education, 15, 61–71.
- Millar, R., ve Driver, R. (1987). Beyond processes. Studies in Science Education, 14(1), 33–62.
- Milne, R. L., ve Edwards, R. (2011). Young children’s views of the technology process: An exploratory study.
International Journal of Technology and Design Education, 1–11.
- NAE (National Academy of Engineering). (2016). Grand Challenges for Engineering: Imperatives, Prospects,
and Priorities: Summary of a Forum. Washington, DC: The National Academies Press.
- NAECY. (2017). What is shadow. National Association for the Education of Young Children.
- NCTM (National Council of Teachers of Mathematics). (2000). Principles and standards for school mathematics. Reston, VA: Author.
- NRC (National Research Council). (1996). The National Science Education Standards. Washington: National Academy Press.
- NRC (National Research Council). (2000). Inquiry and the national science education standards: A guide for
teaching and learning. Washington, DC: National Academies Press. https://doi.org/10.17226 /9596
- NRC (National Research Council). (2007). Taking science to school: Learning and teaching science in grades
K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press
- NRC (National Research Council). (2012). A Framework for K-12 Science Education: Practices, Crosscutting
Concepts, and Core Ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165
- NSTA (National Science Teachers Association). (2014). “Early Childhood Science Education.” Position statement. www.nsta. org/about/positions/earlychildhood.aspx.
- Osborne, M. D., ve Brady, D. J. (2001). Constructing a space for developing a rich understanding of science through play. Journal of Curriculum Studies, 33(5), 511‐524.
- Pange, J. (2003). Teaching probabilities and statistics to preschool children. Information Technology in Childhood Education Annual, 2003(1), 163–172.
- Parette, H. P., Hourcade, J. J., Blum, C., Watts, E. H., Stoner, J. B., Wojcik, B. W., ve Chrismore, S. B. (2013).
Technology user groups and early childhood education: A prelim¬inary study. Early Childhood Education Journal, 41(3), 171-179. doi:10.1007/s10643-012-0548-3.
- Pine, K. J., Lufkin, N., Kirk, E., ve Messer, D. (2007). A microgenetic analysis of the relationship between
speech and gesture in children: Evidence for semantic and temporal asynchrony. Language and Cognitive Processes, 22(2), 234-246.
- Ping, R. M., Goldin-Meadow, S., ve Beilock, S. L. (2014). Understanding gesture: Is the listener’s motor system involved? Journal of Experimental Psychology: General, 143(1), 195-204.
- Pratt, H. (2007). Science education’s “overlooked ingredient”: Why the path to global competitiveness begins
in elementary school. Retrieved on July 30, 2019, from http://science.nsta.org/nstaexpress/nstaexpress_2007_10_29_pratt.htm
- Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304.
- Rideout, V. J., Vandewater, E. A., ve Wartella, E. A. (2003). Zero to six: Electronic media in the lives of
infants, toddlers and preschoolers. Menlo Park, CA: The Henry J. Kaiser Family Foundation.
- Samarapungavan, A., Mantzicopoulos, P., ve Patrick, H. (2008). Learning science through inquiry in kindergarten. Science Education, 92, 868–908.
- Sarama, J., ve Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York, NY: Routledge.
- Savery, J. R., ve Duffy, T. M. (1996). Problem based learning: An instructional model and its constructivist
framework. In B. G.Wilson (Ed.), Constructivist learning environments: Case studies in instructional design (pp. 135–148). Englewood Cliffs, NJ: Educational Technology Publications.
- Schwab, K. (2016). The fourth industrial revolution: What it means, now to respond. World Economic Forum.
Retrieved from https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
- Short, K. G., ve Harste, J. C. (1996). Creating classrooms for authors and inquirers. Portsmouth, NH: Heinemann.
Sibuma, B., Wunnava, S., John, M., Anggoro, F., ve Dubosarsky, M. (2018). The impact of an integrated Pre-
K STEM Curriculum on teachers' engineering content knowledge, self-efficacy, and teaching practices. In Integrated STEM Education Conference (ISEC), 2018 IEEE (pp. 234-237). IEEE. https://doi.org/10.1109/ISECon.2018.8340489
Sullivan, A., ve Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-
week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3-20.
- Şahin, F., Güven, İ., ve Yurdatapan, M. (2011). Proje Tabanlı Eğitim Uygulamalarının Okul Öncesi
Çocuklarında Bilimsel Süreç Becerilerinin Gelişimine Etkisi. M.Ü. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 33, 157-176.
- Şahin, F., Yıldırım, M., Sürmeli, H., ve Güven, İ. (2018). Okul öncesi öğrencilerinin bilimsel süreci
becerilerinin değerlendirilmesi için bir test geliştirme çalışması. Bilim, Eğitim, Sanat ve Teknoloji Dergisi (BEST Dergi), 2(2), 124-138.
- Trundle, K.C., ve Smith, M.M.(2017). A Hearts-on, Hands-on, Minds-on Model for Preschool Science Learning. Young Children. 80-86
- Van Oers, B. (2013). Is it play? Towards a reconceptualisation of role play from an activity theory perspective.
European Early Childhood Education Research Journal, 21(2), 185-198. https://doi.org/10.1080/1350293X.2013.789199
- Yıldırım, B., ve Altun, Y. (2015). STEM Eğitim ve Mühendislik Uygulamalarının Fen Bilgisi Laboratuar
Dersindeki Etkilerinin İncelenmesi. El-Cezerî Fen ve Mühendislik Dergisi, 2(2), 28-40.
- Youngquist, J., ve Pataray-Ching, J. (2004). Revisiting ‘‘play’’: Analyzing and articulating acts of inquiry. Early Childhood Education Journal, 31(3), 171–178.