Bu çalışmada, mineral katkı olarak taban külü (TK) ve yüksek fırın cürufu (YFC), alkali aktivatör olarak NaOH (SH) ve Na2SiO4 (SS) kullanılmıştır. TK %0, 25, 50, 75, 100 oranında, SS %25, 50 75 oranında kullanılmıştır. Geopolimer harç numunelerine 20, 30 ve 50°C’de farklı sürelerde deney gününe kadar kür uygulanmış, kür işlemi sonrası numunelere eğilme ve basınç testleri uygulanmış, ayrıca harç numuneleri üzerinde DTA-TG/DTG analizleri yapılmıştır. SS ve TK oranındaki artışın, kısa süreli ve düşük kür sıcaklığı şartlarında basınç dayanımını düşürdüğü belirlenmiştir. Geopolimer ve çimento esaslı harçlarda gerçekleştirilen termal analizlerde C-S-H, Ca(OH)2, NaCO3, CaCO3, alümina-silikat esaslı yapılar ve fiziki su varlığı tespit edilmiştir. Laboratuvar ve yüksek sıcaklık ortamında bekletilen geopolimer harçların DTA analizlerinde fiziki su varlığına rastlanmamıştır, bunun hidratasyon ürünlerinin oluşumu sonucu boşluk yapısının azalmasından kaynaklandığı sanılmaktadır. TG analizi sonucu elde edilen ağırlık kaybı değerleri ile mekanik özelliklerin paralellik gösterdiği belirlenmiştir. %50 TK + %50 YFC’nun, %25 SS’la aktive edilmesiyle üretilecek geopolimer harçlar, endüstriyel atıkların ekolojik ve çevresel etkilerinin azaltılmasına, ayrıca sürdürebilirliğe önemli bir katkı sağlayacaktır.
Aïtcin, P.C. Cements of yesterday and today: Concrete of tomorrow. Cem. Concr. Res. 2000, 30, 1349–1359.
Flatt, R.; Roussel, R.; Cheeseman, C.R. Concrete: An eco-material that needs to be improved. J. Eur. Ceram. Soc. 2012, 32, 2787–2798.
Juenger, M.C.G.; Winnerfeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243.
Castaldelli N.V., Akasaki J.L., Melges J.L.P., Tashima M.M., Soriano L., Borrachero M.V., Monzó J., Payá J., Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials, Materials 2013, 6, 3108-3127
Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314.
Hao H., Lin K.L., Wang D.Y, Chao S.J., Shiu H.S., Cheng T.W., Hwang C.L. Elucıdatıng Characterıstıcs of Geopolymer Wıth Solar Panel Waste Glass, Environmental Engineering and Management Journal 14 (2015), 1, 79-87
Davidovits J., (1991), Geopolymers: Inorganic polymerie new materials, Journal of Thermal Analysis and Calorimetry, 37, 1633-1656.
Khale D., Chaudhary R., (2007), Mechanism of geopolymerization and factors influencing its development: a review, Journal of Materials Science, 42, 729– 746.
Geopolymer Institute » Portland Cement Chemistry vs. Geopolymer Chemistry. http://www.geopolymer.org/science/portland-cement-chemistry-vs-geopolymer-chemistry, 09.01.2014.
Heikal M., Nassar M.Y., El-Sayed G., İbrahim S.M., Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag, Construction and Building Materials 69 (2014) 60–72
I. García-Lodeiro, A. Palomo, A. Fernández-Jiménez, D.E. Macphee, Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cement and Concrete Research 41 (2011) 923–931
Yardımcı M.Y., Aydın S., Tuyan., Alkalilerle Aktive Edilmiş Harçların Düşük Hızlı Darbe Yüklemesi Altında Eğilme Performanslarının İncelenmesi, Beton 2015, (283-292).
Aydın S., Yardımcı M.Y. Alkalilerle Aktive Edilmiş Harçların Aşınma Dayanıklılığının İncelenmesi Beton 2015, (293-302).
Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: mechanical strength behavior. Cem Concr Res 1999;29:1313–21.
Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkaliactivated slag. Cem Concr Res 1994;24(6):1033–43.
Criado M, Fernández-Jiménez A, De la Torre AG, Aranda MAG, Palomo A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 2007;37:671–9.
Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 2005;35:1233–46.
Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 2003;33:1607–11.
Fernández-Jiménez A, García-Lodeiro I, Palomo A. Durable characteristics of alkali activated fly ashes. J Mater Sci 2007;42:3055–65.
Kong DLY, Sanjayan JG. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos 2008;30:986–91.
Hai YZ, Venkatesh Kodur, Shu LQ, Liang C, Bo W. Development of metakaolinfly ash based geopolymers for fire resistance applications. Constr Build Mater 2014;55:38–45.
Weil M, Dombrowski K, Buchawald A. Life-cycle analysis of geopolymers. Geopolymers, structure, processing, properties and applications. Abington Hall: Woodhead Publishing Limited; 2009. p. 194–210.
Škvára F, Kopecky´ L, Šmilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater 2009;168(2):711–20.
Lemougna PN, MacKenzie KJD, Melo UFC. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram Int 2011;37(8):3011–8.
Recommendation RD. DE LA RILEM PDR. 129-MHT: test methods for mechanical properties of concrete at high temperatures. Mater Struct 1995;28:410–4.
D. Jozıæ, J. Zelıæ, The effect of fly ash on cement hydration in aqueous suspensions, Ceramics − Silikáty 50 (2) 98-105 (2006) 99
Ramachandran VS, Paroli RM, Beaudoin JJ, Degado AH. Handbook of thermoanalysis of construction materials. Noyes: William Andrew Publishing; 2002.
Tashima MM, Akasaki JL, Castaldelli VN, Soriano L, Monzo J, Paya J. New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater Lett 2012;80:50–2.
A. Morandeau, M. Thiery, P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, hAL aRCHİVES ouvertes, https://hal.archives-ouvertes.fr/hal-00922073 (2014).
Aïtcin, P.C. Cements of yesterday and today: Concrete of tomorrow. Cem. Concr. Res. 2000, 30, 1349–1359.
Flatt, R.; Roussel, R.; Cheeseman, C.R. Concrete: An eco-material that needs to be improved. J. Eur. Ceram. Soc. 2012, 32, 2787–2798.
Juenger, M.C.G.; Winnerfeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243.
Castaldelli N.V., Akasaki J.L., Melges J.L.P., Tashima M.M., Soriano L., Borrachero M.V., Monzó J., Payá J., Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials, Materials 2013, 6, 3108-3127
Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314.
Hao H., Lin K.L., Wang D.Y, Chao S.J., Shiu H.S., Cheng T.W., Hwang C.L. Elucıdatıng Characterıstıcs of Geopolymer Wıth Solar Panel Waste Glass, Environmental Engineering and Management Journal 14 (2015), 1, 79-87
Davidovits J., (1991), Geopolymers: Inorganic polymerie new materials, Journal of Thermal Analysis and Calorimetry, 37, 1633-1656.
Khale D., Chaudhary R., (2007), Mechanism of geopolymerization and factors influencing its development: a review, Journal of Materials Science, 42, 729– 746.
Geopolymer Institute » Portland Cement Chemistry vs. Geopolymer Chemistry. http://www.geopolymer.org/science/portland-cement-chemistry-vs-geopolymer-chemistry, 09.01.2014.
Heikal M., Nassar M.Y., El-Sayed G., İbrahim S.M., Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag, Construction and Building Materials 69 (2014) 60–72
I. García-Lodeiro, A. Palomo, A. Fernández-Jiménez, D.E. Macphee, Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cement and Concrete Research 41 (2011) 923–931
Yardımcı M.Y., Aydın S., Tuyan., Alkalilerle Aktive Edilmiş Harçların Düşük Hızlı Darbe Yüklemesi Altında Eğilme Performanslarının İncelenmesi, Beton 2015, (283-292).
Aydın S., Yardımcı M.Y. Alkalilerle Aktive Edilmiş Harçların Aşınma Dayanıklılığının İncelenmesi Beton 2015, (293-302).
Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: mechanical strength behavior. Cem Concr Res 1999;29:1313–21.
Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkaliactivated slag. Cem Concr Res 1994;24(6):1033–43.
Criado M, Fernández-Jiménez A, De la Torre AG, Aranda MAG, Palomo A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 2007;37:671–9.
Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 2005;35:1233–46.
Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 2003;33:1607–11.
Fernández-Jiménez A, García-Lodeiro I, Palomo A. Durable characteristics of alkali activated fly ashes. J Mater Sci 2007;42:3055–65.
Kong DLY, Sanjayan JG. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos 2008;30:986–91.
Hai YZ, Venkatesh Kodur, Shu LQ, Liang C, Bo W. Development of metakaolinfly ash based geopolymers for fire resistance applications. Constr Build Mater 2014;55:38–45.
Weil M, Dombrowski K, Buchawald A. Life-cycle analysis of geopolymers. Geopolymers, structure, processing, properties and applications. Abington Hall: Woodhead Publishing Limited; 2009. p. 194–210.
Škvára F, Kopecky´ L, Šmilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater 2009;168(2):711–20.
Lemougna PN, MacKenzie KJD, Melo UFC. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram Int 2011;37(8):3011–8.
Recommendation RD. DE LA RILEM PDR. 129-MHT: test methods for mechanical properties of concrete at high temperatures. Mater Struct 1995;28:410–4.
D. Jozıæ, J. Zelıæ, The effect of fly ash on cement hydration in aqueous suspensions, Ceramics − Silikáty 50 (2) 98-105 (2006) 99
Ramachandran VS, Paroli RM, Beaudoin JJ, Degado AH. Handbook of thermoanalysis of construction materials. Noyes: William Andrew Publishing; 2002.
Tashima MM, Akasaki JL, Castaldelli VN, Soriano L, Monzo J, Paya J. New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater Lett 2012;80:50–2.
A. Morandeau, M. Thiery, P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, hAL aRCHİVES ouvertes, https://hal.archives-ouvertes.fr/hal-00922073 (2014).