Araştırma Makalesi
BibTex RIS Kaynak Göster

ELEKTROENSEFALOGRAFİ BEYİN-MAKİNE ARAYÜZLERİNİN GELİŞİMİ

Yıl 2019, Cilt: 12 Sayı: 4, 1 - 15, 31.12.2019

Öz

Son
zamanlarda nörobilimdeki nöral aktivite görüntüleme ve analiz tekniklerinin
hızlı gelişimi, beyindeki sinir ağlarındaki bilginin nasıl işlendiğinin
anlamamıza yardımcı olmuştur. Sinir ağlarının düzeni, işleyişi hakkında elde
edilen yeni yaklaşımlar ile bunlara bağlı gelişmeler, önceden tedavisi zor
hatta imkansız gibi görünen tibbi nörolojik durumlar için yeni çözüm yolları göstermiştir.
Beyin-Makine ya da Beyin-Bilgisayar Arayüzleri (Brain-Computer İnterfaces, BBA)
bu alandaki yeni araştırma alanlarından biridir.BBA, nörobilim, istatistik ve
sayısal yöntemler ile birlikte ortaya çıkan bir araştırma alanıdır. BBA,
iletişim ve kontrol için bir bireyin beynindeki nöral aktiviteyi doğrudan
kullanan insan-bilgisayar iletişim sistemleri sağlayacak konular ile ilgilenir.
BBA, son 10-15 yılda hızlı ilerlemeler kaydeden yeni bir araştırma alanıdır.
Sanal ve gerçek durumda bir robotik maniplatörün BBA kontrolü, ilk olarak hayvan
denekler üzerinde nöral aktivite görüntülemek için beyine bir dizi mikroelektrot
yerleştirilerek yapılmıştır. BBA kontrolü, non-invaziv elektroensefalografi (EEG)
görüntüleme tekniği insan denekleri üzerinde de uygulanmıştır. Bununla beraber
fonksiyonel manyetik rezonans görüntüleme, deneklerin görsel hafızaları
üzerinde başarılı sonuçlar verebileceği görülmüştür. Devam eden gelişmeler ile BBA’ler
birçok yeni pratik uygulamalar ile birlikte motor ve iletişim yetersizliği olan
binlerce insan için hayat kalitesini iyileştirebilecek radikal yeni iletişim
sistemlerinin ve tibbi protezlerin yapılabileceğini vaad eder. Türkiye’de BBA
alanında teorik ve uygulama boyutunda yapılan çok az çalışma vardır. Bu
çalışmada özellikle elektroensefalografi beyin-bilgisayar arayüzleri (EEG BBA)
çalışmaları ve tarihçesi ile ilgili yapılan önemli temel çalışmalar hakkında
bilgi verilmiştir. 


Kaynakça

  • [1] E. E. Fetz, Operant conditioning of cortical unit activity, Science 163, 955–8, 1969.
  • [2] E. E. Fetz, D. B. Finocchio, Operant conditioning of specific patterns of neural and muscular activity, Science 174, 431–5 ,1971.
  • [3] E. E. Fetz, D. V Finocchio, Operant conditioning of isolated activity in specific muscles and precentral cells, Brain Research 40, 19–23,1972.
  • [4] E. E. Fetz, M. A. Baker, Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles, Journal of Neurophysiology 36, 179–204,1973.
  • [5] E. M. Schmidt, J. S. McIntosh, L. Durelli, M. J. Bak, Fine control of operantly conditioned firing patterns of cortical neurons, Experimental Neurology 61, 349–69,1978.
  • [6] E. M. Schmidt, Single neuron recording from motor cortex as a possible source of signals for control of external devices, Annals of Biomedical Engineering 8, 339–49,1980.
  • [7] J. R. Wolpaw, D. J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans., Proceedings of the National Academy of Sciences of the United States of America 101, 17849– 54, 2004.
  • [8] G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar, K. V Shenoy, A high-performance brain-computer interface., Nature 442, 195–8, 2006.
  • [9] J. M. Carmena et al., Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates, PLoS Biology 1, e42, 2003.
  • [10] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, R. A. Andersen, Cognitive Control Signals for Neural Prosthetics, Science 305, 258–62, 2004.
  • [11] M. A. Lebedev et al., Cortical Ensemble Adaptation to Represent Velocity of an Artificial Actuator Controlled by a Brain-Machine Interface, Journal of Neuroscience 25, 4681–93, 2005.
  • [12] D. M. Santucci, J. D. Kralik, M. A. Lebedev, M. A. L. Nicolelis, Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates, European Journal of Neuroscience 22, 1529–40, 2005.
  • [13] M. D. Serruya, J. P. Donoghue, in Neuroprosthetics: Theory and Practice, 1158–96, 2003.
  • [14] J. Wessberg et al., Real-time prediction of hand trajectory by ensembles of cortical neurons in primates., Nature 408, 361–5 ,2000.
  • [15] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, A. B. Schwartz, Cortical control of a prosthetic arm for self- feeding., Nature 453, 1098–1101 ,2008.
  • [16] J. L. Collinger et al., High-performance neuroprosthetic control by an individual with tetraplegia, The Lancet 381, 557–564 ,2012.
  • [17] N. Jiang, J. Vest-Nielsen, S. Muceli, D. Farina, in Front. Comput. Neurosci. Conference Abstract: BC11 : Computational Neuroscience & Neurotechnology Bernstein Conference & Neurex Annual Meeting 2011, ,2011, p. doi: 10.3389/conf.fncom.2011.53.00081.
  • [18] J. P. Giuffrida, thesis, Case Western Reserve University ,2004.
  • [19] J. P. Giuffrida, P. E. Crago, Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller, IEEE Transactions on Neural Systems and Rehabilitation Engineering 13, 147–52, 2005.
  • [20] J. P. Giuffrida, P. E. Crago, in Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, , 4118–21, 2004 [21] G. C. Matrone, C. Cipriani, M. C. Carrozza, G. Magenes, Real-time myoelectric control of a multi-fingered hand prosthesis using Principal Components Analysis, Journal of neuroengineering and rehabilitation 9, 40 ,2012.
  • [22] F. V. G. Tenore et al., Decoding of Individuated Finger Movements Using Surface Electromyography, IEEE Transactions on Biomedical Engineering 56, 1427–34 ,2009.
  • [23] Y. Miyawaki et al., Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders, Neuron 60, 915–929 ,2008.
  • [24] S. Nishimoto et al., Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies, Current Biology 21, 1641–6 ,2011.
  • [25] T. Yanagisawa et al., Electrocorticographic control of prosthetic arm in paralyzed patients, Annals of Neurology 71, 353–61 ,2011.
  • [26] X. Pei, D. L. Barbour, E. C. Leuthardt, G. Schalk, Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans., Journal of Neural Engineering 8, 046028 ,2011.
  • [27] G. Schalk et al., Two-dimensional movement control using electrocorticographic signals in humans, Journal of Neural Engineering 5, 75–84 ,2008.
  • [28] R. M. Chapman, H. R. Bragdon, Evoked responses to numerical and non-numerical visual stimuli while problem solving, Nature 203, 1155–7 ,1964.
  • [29] S. Sutton, M. Braren, J. Zubin, E. R. John, Evoked-potential correlates of stimulus uncertainty, Science 150, 1187–8 ,1965.
  • [30] S. Sutton, P. Tueting, J. Zubin, E. R. John, Information delivery and the sensory evoked potential, Science 155, 1436–9 ,1967.
  • [31] S. Sur, V. K. Sinha, Event-related potential: an overview, Industrial Psychiatry Journal 18, 70–73 ,2009.
  • [32] L. A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials., Electroencephalography and clinical neurophysiology 70, 510–23 ,1988.
  • [33] E. Donchin, K. M. Spencer, R. Wijesinghe, The mental prosthesis: assessing the speed of a P300-based brain- computer interface, IEEE TRansactions on Rehabilitation Engineering 8, 174–9 ,2000.
  • [34] F. Piccione et al., P300-based brain computer interface: reliability and performance in healthy and paralysed participants, Clinical Neurophysiology 117, 531–7 ,2006.
  • [35] D. J. McFarland, W. a Sarnacki, J. R. Wolpaw, Electroencephalographic ,EEG control of three-dimensional movement., Journal of neural engineering 7, 036007 ,2010.
  • [36] D. J. McFarland, D. J. Krusienski, W. a Sarnacki, J. R. Wolpaw, Emulation of computer mouse control with a noninvasive brain-computer interface., Journal of neural engineering 5, 101–110 ,2008.
  • [37] D. J. Mcfarland, J. R. Wolpaw, Sensorimotor rhytm-based brain-computer interface ,BBA: model order selection for autoregressive spectral analysis, Journal of Neural Engineering 5, 155–162 ,2008.
  • [38] E. V. C. Friedrich et al., A scanning protocol for sensorimotor rhytm-based brain computer interface, Biological Psychology 80, 169–175 ,2009.
  • [39] D. J. McFarland, J. R. Wolpaw, Brain-Computer Interface Operation of Robotic and Prosthetic Devices, Computer 41, 52–56 ,2008.
  • [40] D. J. McFarland, J. R. Wolpaw, Brain – Computer Interfaces for the Operation of Robotic and Prosthetic Devices, Advances in computers 79, 169–187 ,2010.
  • [41] T. J. Bradberry, R. J. Gentili, J. L. Contreras-Vidal, Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals, The Journal of Neuroscience 30, 3432–3437 ,2010.
  • [42] T. J. Bradberry, R. J. Gentili, J. L. Contreras-Vidal, Fast attainment of computer cursor control with noninvasively acquired brain signals., Journal of neural engineering 8, 036010 ,2011.
  • [43] B. Blankertz, G. Dornhege, M. Krauledat, K. Müller, G. Curio, The non-invasive Berlin Brain – Computer Interface: Fast acquisition of effective performance in untrained subjects, Neuroimage 37, 539–550 ,2007.
  • 44] B. Blankertz et al., The Berlin Brain-Computer Interface : EEG-based communication without subject training, IEEE Trans. on Neural Systems and Rehabilitation Engineering 14, 147–152 ,2006.
  • [45] B. Blankertz et al., The Berlin Brain-Computer Interface: Accurate Performance From First-Session Naive Subjects, IEEE Trans. on Biomedical Engineering 55, 2452–2462 ,2008.
  • [46] M. Krauledat, M. Tangermann, B. Blankertz, K. Muller, Towards Zero Training for Brain-Computer Interfacing, PloS one 3, e2967 ,2008.
  • [47] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, G. Curio, The Berlin Brain-Computer Interface: Machine learning based detection of user specific brain states, NeuroImage 37, 539–550 ,2007.
  • [48] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, B. Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces, Journal of Neural Engineering 4, R1–R13 ,2007.
  • [49] W. Jia et al., in IEMBS ’04. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ, ,2004, pp. 5–8.
  • [50] N. Gupta, S. Gupta, V. Khare, C. K. Jain, S. Akhter, An Efficient Model to Decipher the Electroencephalogram Signals Using Machine Learning Approach, IFMBE Proceedings 21, 782–785 ,2008.
  • [51] A. O. G. Barbosa, D. R. A. Diaz, M. M. B. R. Vellasco, M. A. Meggiolaro, R. Tanscheit, Mental Tasks Classification for a Noninvasive BBA Application, Lecture Notes in Computer Science 5769, 495–504 ,2009.
  • [52] R. Palaniappan, P. Raveendran, Cognitive task prediction using parametric spectral analysis of eeg signals, Malaysian Journal of Computer Science 14, 58–67 ,2001.
  • [53] A. B. Benevides, T. F. B. Filho, M. Sarcinelli-Filho, Pseudo-Online Classification of Mental Tasks Using Kullback- Leibler Symmetric Divergence, Journal of Medical and Biological Engineering 32, 411–416 ,2012.
  • [54] A. B. Benevides, T. F. Bastos, M. Sarcinelli-Filho, in 2011 IEEE International Symposium on Circuits and Systems, ,Ieee, 2011, pp. 81–84.
  • [55] A. B. Benevides, T. F. Bastos, M. Sarcinelli-Filho, in 2011 IEEE International Symposium on Industrial Electronics, ,Ieee, 2011, pp. 2249–2254.
  • [56] H. Hwang, K. Kwon, C. Im, Neurofeedback-based motor imagery training for brain-computer interface ,BBA, Journal of Neuroscience Methods 179, 150–6 ,2009.
  • [57] I. H. Iversen et al., A brain-computer interface tool to assess cognitive function in completely paralyzed patients with amyotrophic lateral sclerosis, Clinical Neurophysiology 119, 2214–23 ,2008.
  • [58] Z. QiBin, Z. LiQing, A. Cichocki, EEG-based asynchronous BBA control of a car in 3D virtual reality environments, Chinese Science Bulletin 54, 78–87 ,2009.
  • [59] L.-W. Wu, H.-C. Liao, J.-S. Hu, P.-C. Lo, Brain-controlled robot agent: an EEG-based eRobot agent, Industrial Robot: An International Journal 35, 507–519 ,2008.
  • [60] Y. Chae, S. Jo, J. Jeong, in Proceedings of the 5th Int. IEEE EMBS Conf. on Neural Engineering, ,2011, pp. 519–524.
  • [61] Y. Chae, J. Jeong, S. Jo, Toward Brain-Actuated Humanoid Robots: Asynchronous Direct Control Using an EEG- Based BBA, IEEE Transactions on Robotics 28, 1131–1144 ,2012.
  • [62] C. J. Bell, P. Shenoy, R. Chalodhorn, R. P. N. Rao, Control of a humanoid robot by a noninvasive brain-computer interface in humans., Journal of neural engineering 5, 214–20 ,2008.
  • [63] X. Perrin, R. Chavarriaga, F. Colas, R. Siegwart, J. D. R. Millán, Brain-coupled interaction for semi-autonomous navigation of an assistive robot, Robotics and Autonomous Systems 58, 1246–1255 ,2010.
  • [64] J. L. Sirvent Blasco, E. Iáñez, A. Úbeda, J. M. Azorín, Visual evoked potential-based brain–machine interface applications to assist disabled people, Expert Systems with Applications 39, 7908–7918 ,2012.
  • [65] F. Cincotti et al., Non-invasive brain-computer interface system: towards its application as assistive technology., Brain research bulletin 75, 796–803 ,2008.
  • [66] L. Mayaud, S. Filipe, L. Pétégnief, O. Rochecouste, M. Congedo, Robust Brain-computer Interface for virtual Keyboard ,RoBIK: Project results, IRBM 34, 131–138 ,2013.
  • [67] F. Galán et al., A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots., Clinical neurophysiology 119, 2159–69 ,2008.
  • [68] A. Ferreira et al., Improvements of a Brain-Computer Interface Applied to a Robotic Wheelchair, Communications in Computer and Information Science 52, 64–73 ,2010.
  • [69] S. M. T. Müller, W. C. Celeste, T. F. Bastos-filho, M. Sarcinelli-Filho, Brain-computer Interface Based on Visual Evoked Potentials to Command Autonomous Robotic Wheelchair, Journal of Medical and Biological Engineering 30, 407–416 ,2010.
  • [70] T. F. Bastos, S. M. T. Muller, A. B. Benevides, M. Sarcinelli-Filho, in Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, ,2011, pp. 4753–4756.
  • [71] M. Kaya, M. Cömert, Y. Mishchenko, Beyin bilgisayar arayüzü için dvm makine öğrenme yöntemi kullanılarak eeg verilerinden sağ ve sol el Hareket düşüncelerinin tespiti, TÜBAV, 2017, 10:3, 1-20.
  • [72] H. Scherberger, Neural control of motor prostheses., Current Opinion in Neurobiology 19, 629–33 ,2009.
  • [73] W. Wu, Z. Chen, S. Gao, E. Brown, A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG, Neuroimage 56, 1929–1945 ,2011.
  • [74] S. Makeig, J. Onton, in Oxford Handbook of Event-Related Potential Components, ,Oxford, New York, NY, 2009.
  • [75] P. Shenoy, R. P. N. Rao, in Advances in Neural Information Processing Systems, ,2004, pp. 1265–1272.
  • [76] V. Jurcak, D. Tsuzuki, I. Dan, 10/20, 10/10, and 10/5 Systems Revisited: Their Validity As Relative Head-Surface- Based Positioning Systems., NeuroImage 34, 1600–11 ,2007.
  • [77] Z. Sakkaff, A. Nanayakkara, in 2010 5th International Conference on Information and Automation for Sustainability, ,2010, pp. 70–74.
  • [78] E. Curran et al., Cognitive tasks for driving a brain-computer interfacing system: a pilot study., IEEE transactions on neural systems and rehabilitation engineering 12, 48–54 ,2004.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Fen Bilimleri
Yazarlar

Zehra Yıldız

Yayımlanma Tarihi 31 Aralık 2019
Kabul Tarihi 10 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 4

Kaynak Göster

APA Yıldız, Z. (2019). ELEKTROENSEFALOGRAFİ BEYİN-MAKİNE ARAYÜZLERİNİN GELİŞİMİ. TÜBAV Bilim Dergisi, 12(4), 1-15.
ISSN: 1308 - 4941