Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 1 Sayı: 2, 79 - 85, 31.10.2017

Öz


Kaynakça

  • Araki, H., Kubo, Y., Mikaduki, A., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., 2009. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials & Solar Cells, 93: 996-999.
  • Chory, C., Zutz, F., Witt, F., Borchert, H., Parisi, J., 2010. Synthesis and characterization of Cu2ZnSnS4. Phys. Status Solidi C, 7: 1486-1488.
  • Fernandes, P.A., Salomé, P.M.P., Cunha, A.F.da., 2009. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 517: 2519-2523.
  • Fischereder, A., Rath, T., Haas, W., Amenitsch, H., Albering, J., Meischler, D., Larissegger, S., Edler, M., Saf, R., Hofer, F., Trimme, G., 2010. Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide. Chemical Materials, 22: 3399-3406.
  • Ito, K. and Nakazawa, T., 1988. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, 27: 2094.
  • Jeon, M., Shimizu, T., Shingubara, S., 2011. Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Materials Letters, 65: 2364-2367.
  • Kamoun, N., Bouzouita, H., Rezig, B., 2007. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 515: 5949-5952.
  • Kumar, Y.B.K., Bhaskar, P.U, Babu, G.S., Raja, V.S., 2010. Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. Phys. Status Solidi A, 207: 149-156.
  • Maeda, K., Tanaka, K., Fukui, Y., Uchiki, H., 2011. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Solar Energy Materials & Solar Cells, 95: 2855-2860.
  • Minlin, J., Yong, L., Rabin, D., Prem, T., Michael, M., Joshua, C., Fritz, K., Xingzhong, Y., 2011. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 1: 019501-(1-6).
  • Moholkar, A.V., Shinde, S.S., Babar, A.R., Sim, K.-U., Kwon, Y., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H., 2011. Development of CZTS thin films solar cells by pulsed laserdeposition: Influence of pulse repetition rate. Solar Energy, 85: 1354-1363.
  • Moritake, N., Fukui, Y., Oonuki, M., Tanaka, K., Uchiki, H., 2009. Preparation of Cu2ZnSnS4 thin film solar cells under non-vacuum condition. Phys. Status Solidi C, 6: 1233-1236.
  • Nakayama, N. and Ito, K., 1996. Sprayed films of stannites Cu2ZnSnS4. Applied Surface Science, 92: 171-175.
  • Pawar, S.M., Pawar, B.S., Moholkar, A.V., Choi, D.S., Yun, J.H., Moon, J.H., Kolekar, S.S., Kim, J.H., 2010. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 55: 4057-4061.
  • Riha, S.C., Fredrick, S.J., Sambur, J.B., Liu, Y., Prieto, A.L., Parkinson, B.A., 2011. Photoelectrochemical Characterization of Nanocrystalline Thin-Film Cu2ZnSnS4 Photocathodes. Applied Materials & Interfaces, 3: 58-66.
  • Sarswat, P.K. and Free, M.L., 2011. Demonstration of a sol–gel synthesized bifacial CZTS photoelectrochemical cell,. Phys. Status Solidi A, 208: 2861-2864.
  • Scragg, J.J., Dale, P.J., Peter, L.M., 2009. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films, 517: 2481-2484.
  • Shin, S.W., Han, J.H., Park, C.Y., Moholkar, A.V., Lee, J.Y., Kim, J.H., 2012. Quaternary Cu2ZnSnS4 nanocrystals: Facile and low cost synthesis by microwave-assisted solution method. Journal of Alloys and Compounds, 516: 96-101.
  • Shinde, N.M., Dubal, D.P., Dhawale, D.S., Lokhande, C.D., Kim, J.H., Moon, J.H., 2012. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 47: 302-307.
  • Sunn, L., He, J., Kong, H., Yue, F., Yang, P., Chu, J., 2011. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Solar Energy Materials & Solar Cells, 95: 2907-2913.
  • Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q., Ogawa, H., 2006. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Status Solidi C, 3: 2844-2847.
  • Tanaka, K., Moritake, N., Uchiki, H., 2007. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors. Solar Energy Materials & Solar Cells, 91: 1199-1201.
  • Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H., 2009. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials & Solar Cells, 93: 583-587.
  • Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K., Bent, S.F., 2011. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 519: 2488-2492.
  • Yakuphanoglu, F., 2011. Nanostructure Cu2ZnSnS4 thin film prepared by sol–gel for optoelectronic applications. Solar Energy, 85: 2518-2523.
  • Yeh, M.Y., Lee, C.C., Wuu, D.S., 2009. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. J Sol-Gel Sci Technol, 52: 65-68.

The Influence of Layer Number on Properties of Cu2ZnSnS4 Films

Yıl 2017, Cilt: 1 Sayı: 2, 79 - 85, 31.10.2017

Öz

In present study,
Cu2ZnSnS4 thin films were deposited via single-step sol-gel spin coating
process. 
The effect of layer number on
the structural, morphological and optical properties was investigated. XRD
results showed that 7 layered film had crystal structure but other films had
amorphous structure. 7 layered film grown at (112) preferential orientation and
it had another peak of (200). AFM analysis indicated that any particle on
surface of 3, 4 and 5 layered films was not observed and the particle structure
was observed for 6 and 7 layer films. The crystallite sizes for 6 layer films
were very small, but 7 layer films had both small and big particles on its
surface. This particle structure was not homogenous for the film surfaces. From
UV-VIS studies, optical band gap of 3, 4, 5, 6 and 7 layered films were found
to be
   1.88 eV, 1.82 eV, 1.73 eV, 1.68
eV and 1.48 eV, respectively. This result indicates that 7 layered film is very
suitable for solar cell as an absorber layer.

Kaynakça

  • Araki, H., Kubo, Y., Mikaduki, A., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., 2009. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials & Solar Cells, 93: 996-999.
  • Chory, C., Zutz, F., Witt, F., Borchert, H., Parisi, J., 2010. Synthesis and characterization of Cu2ZnSnS4. Phys. Status Solidi C, 7: 1486-1488.
  • Fernandes, P.A., Salomé, P.M.P., Cunha, A.F.da., 2009. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 517: 2519-2523.
  • Fischereder, A., Rath, T., Haas, W., Amenitsch, H., Albering, J., Meischler, D., Larissegger, S., Edler, M., Saf, R., Hofer, F., Trimme, G., 2010. Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide. Chemical Materials, 22: 3399-3406.
  • Ito, K. and Nakazawa, T., 1988. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, 27: 2094.
  • Jeon, M., Shimizu, T., Shingubara, S., 2011. Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Materials Letters, 65: 2364-2367.
  • Kamoun, N., Bouzouita, H., Rezig, B., 2007. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 515: 5949-5952.
  • Kumar, Y.B.K., Bhaskar, P.U, Babu, G.S., Raja, V.S., 2010. Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. Phys. Status Solidi A, 207: 149-156.
  • Maeda, K., Tanaka, K., Fukui, Y., Uchiki, H., 2011. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Solar Energy Materials & Solar Cells, 95: 2855-2860.
  • Minlin, J., Yong, L., Rabin, D., Prem, T., Michael, M., Joshua, C., Fritz, K., Xingzhong, Y., 2011. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 1: 019501-(1-6).
  • Moholkar, A.V., Shinde, S.S., Babar, A.R., Sim, K.-U., Kwon, Y., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H., 2011. Development of CZTS thin films solar cells by pulsed laserdeposition: Influence of pulse repetition rate. Solar Energy, 85: 1354-1363.
  • Moritake, N., Fukui, Y., Oonuki, M., Tanaka, K., Uchiki, H., 2009. Preparation of Cu2ZnSnS4 thin film solar cells under non-vacuum condition. Phys. Status Solidi C, 6: 1233-1236.
  • Nakayama, N. and Ito, K., 1996. Sprayed films of stannites Cu2ZnSnS4. Applied Surface Science, 92: 171-175.
  • Pawar, S.M., Pawar, B.S., Moholkar, A.V., Choi, D.S., Yun, J.H., Moon, J.H., Kolekar, S.S., Kim, J.H., 2010. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 55: 4057-4061.
  • Riha, S.C., Fredrick, S.J., Sambur, J.B., Liu, Y., Prieto, A.L., Parkinson, B.A., 2011. Photoelectrochemical Characterization of Nanocrystalline Thin-Film Cu2ZnSnS4 Photocathodes. Applied Materials & Interfaces, 3: 58-66.
  • Sarswat, P.K. and Free, M.L., 2011. Demonstration of a sol–gel synthesized bifacial CZTS photoelectrochemical cell,. Phys. Status Solidi A, 208: 2861-2864.
  • Scragg, J.J., Dale, P.J., Peter, L.M., 2009. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films, 517: 2481-2484.
  • Shin, S.W., Han, J.H., Park, C.Y., Moholkar, A.V., Lee, J.Y., Kim, J.H., 2012. Quaternary Cu2ZnSnS4 nanocrystals: Facile and low cost synthesis by microwave-assisted solution method. Journal of Alloys and Compounds, 516: 96-101.
  • Shinde, N.M., Dubal, D.P., Dhawale, D.S., Lokhande, C.D., Kim, J.H., Moon, J.H., 2012. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 47: 302-307.
  • Sunn, L., He, J., Kong, H., Yue, F., Yang, P., Chu, J., 2011. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Solar Energy Materials & Solar Cells, 95: 2907-2913.
  • Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q., Ogawa, H., 2006. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Status Solidi C, 3: 2844-2847.
  • Tanaka, K., Moritake, N., Uchiki, H., 2007. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors. Solar Energy Materials & Solar Cells, 91: 1199-1201.
  • Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H., 2009. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials & Solar Cells, 93: 583-587.
  • Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K., Bent, S.F., 2011. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 519: 2488-2492.
  • Yakuphanoglu, F., 2011. Nanostructure Cu2ZnSnS4 thin film prepared by sol–gel for optoelectronic applications. Solar Energy, 85: 2518-2523.
  • Yeh, M.Y., Lee, C.C., Wuu, D.S., 2009. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. J Sol-Gel Sci Technol, 52: 65-68.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Çevre Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Güven Turgut

Eyüp Fahri Keskenler

Yayımlanma Tarihi 31 Ekim 2017
Gönderilme Tarihi 3 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 1 Sayı: 2

Kaynak Göster

Vancouver Turgut G, Keskenler EF. The Influence of Layer Number on Properties of Cu2ZnSnS4 Films. TUBİD. 2017;1(2):79-85.