Research Article
BibTex RIS Cite

Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites

Year 2023, Volume: 7 Issue: 3, 208 - 226, 05.07.2023
https://doi.org/10.31127/tuje.1100375

Abstract

The radionuclide concentrations of eU (ppm), eTh (ppm), K (%) and dose rate values were measured in Sarıçiçek (Gümüşhane) and Sarıhan (Bayburt) granodiorites for a duration of 5 minutes at each of 532 measurement points. The radioelement ratios (eU/eTh, eU/K, and eTh/K) indicating the origins of the rocks, the geochemical indicators (Ume, F parameter, and eU-(eTh/3,5) rate) showing the uranium mobility and the radioelement concentrations were calculated and mapped within the study areas. The average K, eU, and eTh concentrations were calculated as 2.98%, 3.15 ppm, and 12.45 ppm for Sarıçiçek granodiorite, and 1.83%, 2.73 ppm, and 13.6 ppm for Sarıhan granodiorite, respectively. Higher radioactivity values were observed in basaltic, sedimentary, and ultramafic rock combinations within the granodiorite masses. In the classification according to radioelement ratios, it was concluded that the rocks in the study areas formed as a mixture of upper mantle and crustal materials. In both study areas, there was uranium transport from the granodioritic masses into the surrounding rocks, and accordingly, the rocks in the surrounding formations were enriched in uranium. As a result, radioactivity levels, rock formation origins, and uranium transport of both granodioritic masses and rocks in the surrounding formations were determined by evaluation with radioelement concentration values and ratios and migration parameters. The study areas were characterized by associating them with geology in light of radioactive data.

Supporting Institution

Karadeniz Technical University Scientific Research Project

Project Number

BTAP-9588

Thanks

Grateful thanks are offered to the provider of financial support for the research presented.

References

  • Dizman, S. (2006). Measurement of natural radioactivity level in Rize-centre and towns of Rize. Master thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  • Valkovic, V. (1984). Radioactivity in the Environment. Elsevier Science B. V., Netherlands.
  • Kathren, R.L. (1984). Radioactivity in the Environment: Sources, Distribution and Surveillance. Harwood Academic Publishers, New York.
  • UNSCEAR. (2000). United Nations Sources and Effects of Ionizing Radiation. Volume I: Sources; Volume II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, with scientific annexes. United Nations sales publications E.00.IX.3 and E.00.IX.4. United Nations, New York.
  • Apaydın, G., Köksal, O.K., Cengiz, E., & Tıraşoğlu, E., Baltas, H., Karabulut, K., & Söğüt, Ö. (2019). Assessment of natural radioactivity and radiological risk of sediment samples in Karacaören II dam Lake, Isparta/Turkey. ALKÜ Fen Bilimleri Dergisi, 28-35.
  • Canbaz, B., Çam, N.F., Yaprak, G., & Candan, O. (2010). Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiation Protection Dosimetry, 141,192-198.
  • Tzortzis, M., Tsertos, H., Christofides, S., & Christodoulides, G. (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiation Measurements, 37, 221–229.
  • Naumov, G.B. (1959). Transportation of uranium in hydrothermal solution as a carbonate. Geochemistry, 1, 5-20.
  • Aydın, İ. (2004). Radiometric method and Gamma-ray spectrometer in Geophysics.
  • Abd El-Mageed, I.A., El-Kamel, H.A., & Abbady, A. (2011). Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen. Radiation Physics and Chemistry, 80, 710–715.
  • Heikal, M.Th.S., El-Dosuky, B.T., Ghoneim, M.F., & Sherif, M.I. (2012). Natural radioactivity in basement rocks and stream sediments, Sharm El Sheikh Area, South Sinai, Egypt: Radiometric levels and their significant contributions. Arabian Journal of Geosciences.
  • Youssef, A., Hassan, A., & Mohamed, M. (2009). Integration of remote sensing data with the field and laboratory investigation for lithological mapping of granitic phases: Kadabora pluton, Eastern Desert, Egypt. Arabian Journal of Geosciences, 2, 69-82. https://doi.org/10.1007/s12517-008-0020-2.
  • Azzaz, S., Arnous, M., Elmowafy, A., Salem Kamar, M., Abdel Hafeez, W. (2018). Lithological discrimination and mapping using digital image processing, petrographic and radioactive investigation of Wadi Dahab area, Southeastern Sinai, Egypt. Middle East Journal of Applied Sciences, 8, 444-464.
  • Bayoumi, M.B., & Emad, B.M. (2020). Mapping and Lithological discrimination using digital image processing and radioactive investigations of Wadi Um Gheig area, Central Eastern Desert, Egypt. Middle East Journal of Applied Sciences, 10, 737-754. https://doi.org/10.36632/mejas/2020.10.4.65.
  • Altundas, S. (2016). Investigation of Sarıçiçek and Sarıhan Granodiorites using in-situ Gamma-Ray Spectrometer and Magnetic Susceptibility Methods. PhD thesis (in Turkish with an English abstract), Karadeniz Technical University, Trabzon.
  • Pourimani, R., Zare, M.R., & Ghahri, R. (2014). Natural radioactivity concentrations in Alvand granitic rocks in Hamadan, Iran. Radiation Protection and Environment, 37, 132-140. https://doi.org/10.4103/0972-0464.154866.
  • Papadopoulos, A., Altunkaynak, S., Koroneos, A., Ünal, A., & Kamacı, Ö. (2016). Distribution of natural radioactivity and assessment of radioactive dose of Western Anatolian plutons, Turkey. Turkish Journal of Earth Sciences, 25, 434-455. https://doi.org/ 10.3906/yer-1605-4.
  • Maden, N., Akaryalı, E., & Çelik, N. (2019). The in situ natural radionuclide (238U, 232Th and 40K) concentrations in Gümüşhane granitoids: implications for radiological hazard levels of Gümüşhane city, northeast Turkey. Environmental Earth Sciences, 78, 330. https://doi.org/10.1007/s12665-019-8333-x.
  • Yalcin, F., Ilbeyli, N., Demirbilek, M., Yalcin, M.G., Gunes, A., Kaygusuz, A., & Ozmen, S.F. (2020). Estimation of Natural Radionuclides’ Concentration of the Plutonic Rocks in the Sakarya Zone, Turkey Using Multivariate Statistical Methods. Symmetry, 12, 1048. https://doi.org/10.3390/sym12061048.
  • Saleh, G.M., Kamar, M.S., Rashed, M.A., & El-Sherif, A.M. (2015). Uranium Mineralization and Spectrometric Prospecting along Trenches of Um Safi area, Central Eastern Desert of Egypt. Geoinformatics & Geostatistics: An Overview, 3, 1. https://doi.org/10.4172/2327-4581.1000128.
  • Awad, H.A., Zakaly, H.M.H., Nastavkin, A.V., El-Tohamy, A.M., & El-Taher, A. (2021). Radioactive mineralization on granitic rocks and silica veins on shear zone of El-Missikat area, Central Eastern Desert Egypt. Appl. Radiation Isotopes, 168. https://doi.org/10.1016/j.apradiso.2020.109493.
  • Hassan, S.M., Youssef, M.A.S., Gabr, S.S., & Sadek , M.F. (2022). Radioactive mineralization detection using remote sensing and airborne gamma-ray spectrometry at Wadi Al Miyah area, Central Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25, 37-53. https://doi.org/10.1016/j.ejrs.2021.12.004.
  • Attia, T.E., & Shendi, E.H. (2013). Uranium migration history inthe igneous and metamorphic rocks of Solaf-Umm Takha area, based on multi-variate statistical analysis and favorability indices, central south Sinai, Egypt. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 1, 9-20. https://doi.org/10.13140/2.1.1438.9444.
  • Dessouky, O., & Ali, H. (2018). Using Portable Gamma‐Ray Spectrometry for Testing Uranium Migration: A Case Study from the Wadi El Kareim Alkaline Volcanics, Central Eastern Desert, Egypt. Acta Geologica Sinica, 92, 2214-2232. https://doi.org/10.1111/1755-6724.13724.
  • Sundararajan, N., Pracejus, B., Al Khirbash, S., Al Hosni, T., Ebrahimi, A., Al-lazki, A., & Al-Mushani, M. (2019). Radiometric Surveys for Detection of Uranium in Dhofar Region, Sultanate of Oman. Sultan Qaboos University Journal for Science [SQUJS], 24, 36-46. https://doi.org/10.24200/squjs.vol24iss1pp36-46.
  • Khattab, M.R., Tawfic, A.F., & Omar, A.M. (2021). Uranium-series disequilibrium as a tool for tracing uranium accumulation zone in altered granite rocks, International Journal of Environmental Analytical Chemistry, 101(12), 1750-1760. https://doi.org/10.1080/03067319.2019.1686495.
  • Akingboye, A.S., Ademila, O., Okpoli, C.C., Oyeshomo,7A.V., Ijaleye, R.O., Faruwa, A.R., Adeola, A.O., & Bery, A.A. (2022). Radiogeochemistry, uranium migration, and radiogenic heat of the granite gneisses in parts of the southwestern Basement Complex of Nigeria. Journal of African Earth Sciences, 188. https://doi.org/10.1016/j.jafrearsci.2022.104469.
  • Karslı, O. (2002). Petrographic, mineralogical and chemical findings for magma interactions in granitoid rocks: Dölek and Sarıçiçek plutons (Gümüşhane, NE-Turkey). PhD Thesis, Karadeniz Technical University, Institute of Science, Trabzon.
  • Aydın, A., Ferre, E.C., & Aslan, Z. (2007). The Magnetic Susceptibility of Granitic Rocks as a Proxy for Geochemical Composition: Example from the Saruhan Granitoids, NE Turkey. Tectonophysics, 441, 85-95.
  • Aslan, Z. (2005). Petrography and Petrology of the Calc-Alkaline Sarıhan Granitoid (NE Turkey): An Example of Magma Mingling and Mixing. Turkish Journal of Earth Sciences, 14, 185-207.
  • Ketin, İ. (1966). Tectonic Units of Anatolia. Journal of MTA, 66, 20-43.
  • Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., & Özgür, S. (1995). Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57(1-2), 233-244.
  • Bektaş, O., Şen, C., Atıcı, Y., & Köprübaşı, N. (1999). Migration of the Upper Cretaceous subduction-related volcanism toward the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95-106.
  • Eyüboğlu, Y., Dudas, F.O., Santosh, M., Xiao, Y., Yi, K., Chatterjee, N., Wu, F.Y., & Bektaş, O. (2016b). Where are the remnants of a Jurassic Ocean in the Eastern Mediterranean Region. Gondwana Research, 33, 63-91. doi:10.1016/j.gr.2015.08.017.
  • Eyüboğlu, Y., Chung, S.L., Santosh, M., Dudasi, F.O., & Akaryali, E. (2011). Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Res., 19, 413-429.
  • Karslı, O., Chen, B., Aydın, F., & Şen, C. (2007). Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sarıçiçek Plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98, 67-96.
  • Eyüboğlu, Y., Santosh, M., Dudas, F.O., Akaryali, E., Chung, S.L., Akdag, K., & Bektas, O. (2013). The nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: A synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 353-375.
  • Güven, İ.H. (1993). Geological and metallogenic map of the Eastern Black Sea Region, 1:250000 Map, MTA, Trabzon.
  • Eyüboğlu, Y., Chung, S.L., Dudas, F.O., Santosh, M., Akaryali, E. (2011a). Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research, 19, 413-429.
  • Aslan, Z. (1998). Petrography, Geochemistry and Petrology of Saraycık-Sarıhan Granitoid (Bayburt) and Surrounding Rocks and Geocronology of Sanhan Granitoid. PhD thesis, Karadeniz Technical University, Trabzon.
  • IAEA. (1974). Instrumentation for uranium and thorium exploration, International Atomic Energy Agency Technical reports series No. 158, Vienna.
  • Killeen, P.G., & Cameron, G.W. (1977). Computation of in situ potassium, uranium and thorium concentrations from portable gamma-ray spectrometer data. In: Report of activities, part A, Geological Survey of Canada, 77-1A, 91–92.
  • GF Instruments. (2009). Gamma Surveyor User Manual. GF-Instruments: Brno, Czech Republic.
  • Darnley, A.G. (1973). Airborne Gamma-Ray Techniques-Present and Future; Uranium Exploration Methods. International Atomic Energy Agency, Proceedings of a Panel, Vienna, 67-108.
  • Boyle, R.W. (1982). Geochemical prospecting for thorium and uranium deposits. Development Economic Geology 16, Elsevier, Amsterdam.
  • Clark, S.P., Peterman, Z.E., & Heier, K.S. (1966). Abundance of U, Th and K. In Handbook of Physical constants. Geology Society of America, 97, 521-541.
  • NMA. (1999). A report of work progression during II sub-stage (December, 1998-February, 1999) on uranium evaluation in Abu-Zeneima Area, Sinai, Egypt. Confidential Report, NMA, Cairo, Egypt.
  • Youssef, M.A.S., Sabra, M.A.M., Abdeldayem, A.L., Masoud, A.A., & Mansour, S.A. (2017). Uranium migration and favourable sites of potential radioelement concentrations in Gabal Umm Hammad area, Central Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 6, 368–378.
  • Efimov, A.V. (1978). Multiplikativniyj pokazatel dlja vydelenija endogennych rud aerogamma-spectrometriceskim dannym, in Metody rud-noj geofiziki: Lenigrad, Naucnoproizvods-tvennoje objedinenie. Geofizica Ed., 59–68.
  • Asfahani, J., Aissa, M., & Al-Hent, R. (2010a). Aerial Spectrometric Survey for Localization of Favorable Structures for Uranium Occurrences in Al-Awabed Area and its Surrounding (Area-3), Northern Palmyrides–Syria. Applied Radiation and Isotopes, 68, 219-228.
  • Rudnick, R.L., & Fountain, D.M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267-309.
  • Sun, S.S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (Eds.), Magmatism in the Oceanic Basins. Geological Society of London Special Publication, 42, 313–345.
  • Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
  • Çınar, H., Altundaş, S., Çelik, N., & Maden, N. (2017). In situ gamma ray measurements for deciphering of radioactivity level in Sarıhan pluton area of northeastern Turkey. Arabian Journal of Geosciences, 10(19). https://doi.org/ 10.1007/s12517-017-3225-4.
  • Davies, G.F. (1999). Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle. Earth Planet. Sci. Lett., 166, 149–162.
  • Akaryalı, E., (2010). Geological, mineralogical, geochemical and genetic investigation of the Arzular (Gümüshane Northeast-Turkey) gold deposit, Ph.D. Thesis, Karadeniz Technical University, Institute of Science and Technology, Trabzon.
  • Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., & Stewart, R.H. (1992). The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J. Geol. Soc. (Lond.), 149, 569-579.
  • Kepezhinskas, P., McDermott, F., Defant, M., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C., & Bellon, H. (1997). Trace element and Sr–Nd–Pb isotopic constraints on a three component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta, 60, 1217-1229.
  • Polat, A., & Kerrich, R. (2001). Magnesian andesites, Nb-enriched basalts and adakites from late-Archaean 2.7 Ga Wawa greenstone belts, superior Province, Canada. Implications for late Archaean subduction zone petrogenetic processes. Contrib. Mineral. Petrol., 2141, 36-52.
  • Sigmarsson, O., Martin, H., & Knowles, J. (1998). Melting of subducting oceanic crust from U–Th disequilibria in austral Andean lavas. Nature, 394, 566–569.
  • Galer, S.J.G., & O’Nions, R.K. (1985). Residence time for thorium, uranium and lead in the mantle with implications for mantle convection. Nature, 316, 778–782.
  • IAEA. (1989). Construction and use of calibration facilities for radiometric field equipment. In: Proceedings of IAEA technical reports series 309, International Atomic Energy Agency, Vienna.
  • Dżaluk, A., Malczewski, D., Żaba, J., & Dziurowicz, M. (2018). Natural radioactivity in granites and gneisses of the Opava Mountains (Poland): a comparison between laboratory and in situ measurements. J. Radioanal Nucl. Chem. 316, 101–109.
  • Hassan, N.M., Kim, Y.J., Jang, J., Chang, B.U. & Chae, J.S. (2018). Comparative study of precise measurements of natural radionuclides and radiation dose using in-situ and laboratory γ-ray spectroscopy techniques. Sci. Rep. 8, 14115.
  • Kranrod, C., Chanyotha, S., Pengvanich, P., Kritsananuwat, R., Ploykrathok, T., Sriploy, P., Hosoda, M., & Tokonami, S. Comparative study of natural radionuclides measurements and radiation dose assessment using vehicle-borne and laboratory gamma-ray spectroscopy techniques in Thailand.
  • Al-Masri, M.S., & Doubal, A.W. (2013). Validation of in-situ and laboratory gamma spectrometry measurements for determination of 226Ra, 40K and 137Cs in soil. Applied Radiation and Isotopes, 75, 50-57.
  • Arogunjo, A.M., Farai, I.P., & Jibiri, N.N. (2002). Comparison of in situ and laboratory gamma-ray spectroscopy of terrestrial gamma radiation in Ibadan, South Western Nigeria. Global Journal of Pure and Applied Sciences, 8, 505-509.
Year 2023, Volume: 7 Issue: 3, 208 - 226, 05.07.2023
https://doi.org/10.31127/tuje.1100375

Abstract

Project Number

BTAP-9588

References

  • Dizman, S. (2006). Measurement of natural radioactivity level in Rize-centre and towns of Rize. Master thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  • Valkovic, V. (1984). Radioactivity in the Environment. Elsevier Science B. V., Netherlands.
  • Kathren, R.L. (1984). Radioactivity in the Environment: Sources, Distribution and Surveillance. Harwood Academic Publishers, New York.
  • UNSCEAR. (2000). United Nations Sources and Effects of Ionizing Radiation. Volume I: Sources; Volume II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, with scientific annexes. United Nations sales publications E.00.IX.3 and E.00.IX.4. United Nations, New York.
  • Apaydın, G., Köksal, O.K., Cengiz, E., & Tıraşoğlu, E., Baltas, H., Karabulut, K., & Söğüt, Ö. (2019). Assessment of natural radioactivity and radiological risk of sediment samples in Karacaören II dam Lake, Isparta/Turkey. ALKÜ Fen Bilimleri Dergisi, 28-35.
  • Canbaz, B., Çam, N.F., Yaprak, G., & Candan, O. (2010). Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiation Protection Dosimetry, 141,192-198.
  • Tzortzis, M., Tsertos, H., Christofides, S., & Christodoulides, G. (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiation Measurements, 37, 221–229.
  • Naumov, G.B. (1959). Transportation of uranium in hydrothermal solution as a carbonate. Geochemistry, 1, 5-20.
  • Aydın, İ. (2004). Radiometric method and Gamma-ray spectrometer in Geophysics.
  • Abd El-Mageed, I.A., El-Kamel, H.A., & Abbady, A. (2011). Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen. Radiation Physics and Chemistry, 80, 710–715.
  • Heikal, M.Th.S., El-Dosuky, B.T., Ghoneim, M.F., & Sherif, M.I. (2012). Natural radioactivity in basement rocks and stream sediments, Sharm El Sheikh Area, South Sinai, Egypt: Radiometric levels and their significant contributions. Arabian Journal of Geosciences.
  • Youssef, A., Hassan, A., & Mohamed, M. (2009). Integration of remote sensing data with the field and laboratory investigation for lithological mapping of granitic phases: Kadabora pluton, Eastern Desert, Egypt. Arabian Journal of Geosciences, 2, 69-82. https://doi.org/10.1007/s12517-008-0020-2.
  • Azzaz, S., Arnous, M., Elmowafy, A., Salem Kamar, M., Abdel Hafeez, W. (2018). Lithological discrimination and mapping using digital image processing, petrographic and radioactive investigation of Wadi Dahab area, Southeastern Sinai, Egypt. Middle East Journal of Applied Sciences, 8, 444-464.
  • Bayoumi, M.B., & Emad, B.M. (2020). Mapping and Lithological discrimination using digital image processing and radioactive investigations of Wadi Um Gheig area, Central Eastern Desert, Egypt. Middle East Journal of Applied Sciences, 10, 737-754. https://doi.org/10.36632/mejas/2020.10.4.65.
  • Altundas, S. (2016). Investigation of Sarıçiçek and Sarıhan Granodiorites using in-situ Gamma-Ray Spectrometer and Magnetic Susceptibility Methods. PhD thesis (in Turkish with an English abstract), Karadeniz Technical University, Trabzon.
  • Pourimani, R., Zare, M.R., & Ghahri, R. (2014). Natural radioactivity concentrations in Alvand granitic rocks in Hamadan, Iran. Radiation Protection and Environment, 37, 132-140. https://doi.org/10.4103/0972-0464.154866.
  • Papadopoulos, A., Altunkaynak, S., Koroneos, A., Ünal, A., & Kamacı, Ö. (2016). Distribution of natural radioactivity and assessment of radioactive dose of Western Anatolian plutons, Turkey. Turkish Journal of Earth Sciences, 25, 434-455. https://doi.org/ 10.3906/yer-1605-4.
  • Maden, N., Akaryalı, E., & Çelik, N. (2019). The in situ natural radionuclide (238U, 232Th and 40K) concentrations in Gümüşhane granitoids: implications for radiological hazard levels of Gümüşhane city, northeast Turkey. Environmental Earth Sciences, 78, 330. https://doi.org/10.1007/s12665-019-8333-x.
  • Yalcin, F., Ilbeyli, N., Demirbilek, M., Yalcin, M.G., Gunes, A., Kaygusuz, A., & Ozmen, S.F. (2020). Estimation of Natural Radionuclides’ Concentration of the Plutonic Rocks in the Sakarya Zone, Turkey Using Multivariate Statistical Methods. Symmetry, 12, 1048. https://doi.org/10.3390/sym12061048.
  • Saleh, G.M., Kamar, M.S., Rashed, M.A., & El-Sherif, A.M. (2015). Uranium Mineralization and Spectrometric Prospecting along Trenches of Um Safi area, Central Eastern Desert of Egypt. Geoinformatics & Geostatistics: An Overview, 3, 1. https://doi.org/10.4172/2327-4581.1000128.
  • Awad, H.A., Zakaly, H.M.H., Nastavkin, A.V., El-Tohamy, A.M., & El-Taher, A. (2021). Radioactive mineralization on granitic rocks and silica veins on shear zone of El-Missikat area, Central Eastern Desert Egypt. Appl. Radiation Isotopes, 168. https://doi.org/10.1016/j.apradiso.2020.109493.
  • Hassan, S.M., Youssef, M.A.S., Gabr, S.S., & Sadek , M.F. (2022). Radioactive mineralization detection using remote sensing and airborne gamma-ray spectrometry at Wadi Al Miyah area, Central Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25, 37-53. https://doi.org/10.1016/j.ejrs.2021.12.004.
  • Attia, T.E., & Shendi, E.H. (2013). Uranium migration history inthe igneous and metamorphic rocks of Solaf-Umm Takha area, based on multi-variate statistical analysis and favorability indices, central south Sinai, Egypt. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 1, 9-20. https://doi.org/10.13140/2.1.1438.9444.
  • Dessouky, O., & Ali, H. (2018). Using Portable Gamma‐Ray Spectrometry for Testing Uranium Migration: A Case Study from the Wadi El Kareim Alkaline Volcanics, Central Eastern Desert, Egypt. Acta Geologica Sinica, 92, 2214-2232. https://doi.org/10.1111/1755-6724.13724.
  • Sundararajan, N., Pracejus, B., Al Khirbash, S., Al Hosni, T., Ebrahimi, A., Al-lazki, A., & Al-Mushani, M. (2019). Radiometric Surveys for Detection of Uranium in Dhofar Region, Sultanate of Oman. Sultan Qaboos University Journal for Science [SQUJS], 24, 36-46. https://doi.org/10.24200/squjs.vol24iss1pp36-46.
  • Khattab, M.R., Tawfic, A.F., & Omar, A.M. (2021). Uranium-series disequilibrium as a tool for tracing uranium accumulation zone in altered granite rocks, International Journal of Environmental Analytical Chemistry, 101(12), 1750-1760. https://doi.org/10.1080/03067319.2019.1686495.
  • Akingboye, A.S., Ademila, O., Okpoli, C.C., Oyeshomo,7A.V., Ijaleye, R.O., Faruwa, A.R., Adeola, A.O., & Bery, A.A. (2022). Radiogeochemistry, uranium migration, and radiogenic heat of the granite gneisses in parts of the southwestern Basement Complex of Nigeria. Journal of African Earth Sciences, 188. https://doi.org/10.1016/j.jafrearsci.2022.104469.
  • Karslı, O. (2002). Petrographic, mineralogical and chemical findings for magma interactions in granitoid rocks: Dölek and Sarıçiçek plutons (Gümüşhane, NE-Turkey). PhD Thesis, Karadeniz Technical University, Institute of Science, Trabzon.
  • Aydın, A., Ferre, E.C., & Aslan, Z. (2007). The Magnetic Susceptibility of Granitic Rocks as a Proxy for Geochemical Composition: Example from the Saruhan Granitoids, NE Turkey. Tectonophysics, 441, 85-95.
  • Aslan, Z. (2005). Petrography and Petrology of the Calc-Alkaline Sarıhan Granitoid (NE Turkey): An Example of Magma Mingling and Mixing. Turkish Journal of Earth Sciences, 14, 185-207.
  • Ketin, İ. (1966). Tectonic Units of Anatolia. Journal of MTA, 66, 20-43.
  • Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., & Özgür, S. (1995). Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57(1-2), 233-244.
  • Bektaş, O., Şen, C., Atıcı, Y., & Köprübaşı, N. (1999). Migration of the Upper Cretaceous subduction-related volcanism toward the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95-106.
  • Eyüboğlu, Y., Dudas, F.O., Santosh, M., Xiao, Y., Yi, K., Chatterjee, N., Wu, F.Y., & Bektaş, O. (2016b). Where are the remnants of a Jurassic Ocean in the Eastern Mediterranean Region. Gondwana Research, 33, 63-91. doi:10.1016/j.gr.2015.08.017.
  • Eyüboğlu, Y., Chung, S.L., Santosh, M., Dudasi, F.O., & Akaryali, E. (2011). Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Res., 19, 413-429.
  • Karslı, O., Chen, B., Aydın, F., & Şen, C. (2007). Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sarıçiçek Plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98, 67-96.
  • Eyüboğlu, Y., Santosh, M., Dudas, F.O., Akaryali, E., Chung, S.L., Akdag, K., & Bektas, O. (2013). The nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: A synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 353-375.
  • Güven, İ.H. (1993). Geological and metallogenic map of the Eastern Black Sea Region, 1:250000 Map, MTA, Trabzon.
  • Eyüboğlu, Y., Chung, S.L., Dudas, F.O., Santosh, M., Akaryali, E. (2011a). Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research, 19, 413-429.
  • Aslan, Z. (1998). Petrography, Geochemistry and Petrology of Saraycık-Sarıhan Granitoid (Bayburt) and Surrounding Rocks and Geocronology of Sanhan Granitoid. PhD thesis, Karadeniz Technical University, Trabzon.
  • IAEA. (1974). Instrumentation for uranium and thorium exploration, International Atomic Energy Agency Technical reports series No. 158, Vienna.
  • Killeen, P.G., & Cameron, G.W. (1977). Computation of in situ potassium, uranium and thorium concentrations from portable gamma-ray spectrometer data. In: Report of activities, part A, Geological Survey of Canada, 77-1A, 91–92.
  • GF Instruments. (2009). Gamma Surveyor User Manual. GF-Instruments: Brno, Czech Republic.
  • Darnley, A.G. (1973). Airborne Gamma-Ray Techniques-Present and Future; Uranium Exploration Methods. International Atomic Energy Agency, Proceedings of a Panel, Vienna, 67-108.
  • Boyle, R.W. (1982). Geochemical prospecting for thorium and uranium deposits. Development Economic Geology 16, Elsevier, Amsterdam.
  • Clark, S.P., Peterman, Z.E., & Heier, K.S. (1966). Abundance of U, Th and K. In Handbook of Physical constants. Geology Society of America, 97, 521-541.
  • NMA. (1999). A report of work progression during II sub-stage (December, 1998-February, 1999) on uranium evaluation in Abu-Zeneima Area, Sinai, Egypt. Confidential Report, NMA, Cairo, Egypt.
  • Youssef, M.A.S., Sabra, M.A.M., Abdeldayem, A.L., Masoud, A.A., & Mansour, S.A. (2017). Uranium migration and favourable sites of potential radioelement concentrations in Gabal Umm Hammad area, Central Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 6, 368–378.
  • Efimov, A.V. (1978). Multiplikativniyj pokazatel dlja vydelenija endogennych rud aerogamma-spectrometriceskim dannym, in Metody rud-noj geofiziki: Lenigrad, Naucnoproizvods-tvennoje objedinenie. Geofizica Ed., 59–68.
  • Asfahani, J., Aissa, M., & Al-Hent, R. (2010a). Aerial Spectrometric Survey for Localization of Favorable Structures for Uranium Occurrences in Al-Awabed Area and its Surrounding (Area-3), Northern Palmyrides–Syria. Applied Radiation and Isotopes, 68, 219-228.
  • Rudnick, R.L., & Fountain, D.M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267-309.
  • Sun, S.S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (Eds.), Magmatism in the Oceanic Basins. Geological Society of London Special Publication, 42, 313–345.
  • Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
  • Çınar, H., Altundaş, S., Çelik, N., & Maden, N. (2017). In situ gamma ray measurements for deciphering of radioactivity level in Sarıhan pluton area of northeastern Turkey. Arabian Journal of Geosciences, 10(19). https://doi.org/ 10.1007/s12517-017-3225-4.
  • Davies, G.F. (1999). Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle. Earth Planet. Sci. Lett., 166, 149–162.
  • Akaryalı, E., (2010). Geological, mineralogical, geochemical and genetic investigation of the Arzular (Gümüshane Northeast-Turkey) gold deposit, Ph.D. Thesis, Karadeniz Technical University, Institute of Science and Technology, Trabzon.
  • Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., & Stewart, R.H. (1992). The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J. Geol. Soc. (Lond.), 149, 569-579.
  • Kepezhinskas, P., McDermott, F., Defant, M., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C., & Bellon, H. (1997). Trace element and Sr–Nd–Pb isotopic constraints on a three component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta, 60, 1217-1229.
  • Polat, A., & Kerrich, R. (2001). Magnesian andesites, Nb-enriched basalts and adakites from late-Archaean 2.7 Ga Wawa greenstone belts, superior Province, Canada. Implications for late Archaean subduction zone petrogenetic processes. Contrib. Mineral. Petrol., 2141, 36-52.
  • Sigmarsson, O., Martin, H., & Knowles, J. (1998). Melting of subducting oceanic crust from U–Th disequilibria in austral Andean lavas. Nature, 394, 566–569.
  • Galer, S.J.G., & O’Nions, R.K. (1985). Residence time for thorium, uranium and lead in the mantle with implications for mantle convection. Nature, 316, 778–782.
  • IAEA. (1989). Construction and use of calibration facilities for radiometric field equipment. In: Proceedings of IAEA technical reports series 309, International Atomic Energy Agency, Vienna.
  • Dżaluk, A., Malczewski, D., Żaba, J., & Dziurowicz, M. (2018). Natural radioactivity in granites and gneisses of the Opava Mountains (Poland): a comparison between laboratory and in situ measurements. J. Radioanal Nucl. Chem. 316, 101–109.
  • Hassan, N.M., Kim, Y.J., Jang, J., Chang, B.U. & Chae, J.S. (2018). Comparative study of precise measurements of natural radionuclides and radiation dose using in-situ and laboratory γ-ray spectroscopy techniques. Sci. Rep. 8, 14115.
  • Kranrod, C., Chanyotha, S., Pengvanich, P., Kritsananuwat, R., Ploykrathok, T., Sriploy, P., Hosoda, M., & Tokonami, S. Comparative study of natural radionuclides measurements and radiation dose assessment using vehicle-borne and laboratory gamma-ray spectroscopy techniques in Thailand.
  • Al-Masri, M.S., & Doubal, A.W. (2013). Validation of in-situ and laboratory gamma spectrometry measurements for determination of 226Ra, 40K and 137Cs in soil. Applied Radiation and Isotopes, 75, 50-57.
  • Arogunjo, A.M., Farai, I.P., & Jibiri, N.N. (2002). Comparison of in situ and laboratory gamma-ray spectroscopy of terrestrial gamma radiation in Ibadan, South Western Nigeria. Global Journal of Pure and Applied Sciences, 8, 505-509.
There are 67 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Suna Altundaş 0000-0002-5840-0352

Hakan Çınar 0000-0002-6562-1962

Project Number BTAP-9588
Publication Date July 5, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Altundaş, S., & Çınar, H. (2023). Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites. Turkish Journal of Engineering, 7(3), 208-226. https://doi.org/10.31127/tuje.1100375
AMA Altundaş S, Çınar H. Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites. TUJE. July 2023;7(3):208-226. doi:10.31127/tuje.1100375
Chicago Altundaş, Suna, and Hakan Çınar. “Uranium Migration and Radioactive Characteristics of the Sarıçiçek and Sarıhan Granodiorites”. Turkish Journal of Engineering 7, no. 3 (July 2023): 208-26. https://doi.org/10.31127/tuje.1100375.
EndNote Altundaş S, Çınar H (July 1, 2023) Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites. Turkish Journal of Engineering 7 3 208–226.
IEEE S. Altundaş and H. Çınar, “Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites”, TUJE, vol. 7, no. 3, pp. 208–226, 2023, doi: 10.31127/tuje.1100375.
ISNAD Altundaş, Suna - Çınar, Hakan. “Uranium Migration and Radioactive Characteristics of the Sarıçiçek and Sarıhan Granodiorites”. Turkish Journal of Engineering 7/3 (July 2023), 208-226. https://doi.org/10.31127/tuje.1100375.
JAMA Altundaş S, Çınar H. Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites. TUJE. 2023;7:208–226.
MLA Altundaş, Suna and Hakan Çınar. “Uranium Migration and Radioactive Characteristics of the Sarıçiçek and Sarıhan Granodiorites”. Turkish Journal of Engineering, vol. 7, no. 3, 2023, pp. 208-26, doi:10.31127/tuje.1100375.
Vancouver Altundaş S, Çınar H. Uranium migration and radioactive characteristics of the Sarıçiçek and Sarıhan Granodiorites. TUJE. 2023;7(3):208-26.
Flag Counter