Araştırma Makalesi
BibTex RIS Kaynak Göster

ATRİYUMDA SERA ETKİSİ PROBLEMİNE HAVALANDIRMA ÇÖZÜMLEMELERİ: TRAKYA ÜNİVERSİTESİ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU BİNASI

Yıl 2023, Cilt: 24 Sayı: 1, 1 - 10, 28.07.2023
https://doi.org/10.59314/tujes.1263115

Öz

Atriyumlar, binaların tasarım aşamasında ele alınan, geniş cam yüzeyleri sayesinde dış ortam aydınlanma koşullarını bina içerisinde hissettirmeyi amaçlayan mimari çözümlerdir. Binalara verdiği estetik görüntünün yanında işlevsel olarak günışığından maksimum derecede faydalanmayı sağlar. Ancak doğru cam tipi kullanılmadığı ve yeterli gölgelendirme elemanı barındırmadığı takdirde yapıda aşırı ısınma, kamaşma vb. problemleri beraberinde getirir. Bu durum bireyin iç ortam konfor koşullarını da etkileyecek hale gelince, özellikle eğitim yapılarında öğrenme ve çalışma performansını önemli ölçüde etkilemeye başlar. Aşırı ısınma başka bir deyişle sera etkisi yaratan cam yapının üretim aşamasında uygun cam kullanılmaması durumunda sonradan alınan önlemlerle binadaki bu etkiye kalıcı ve sürdürülebilir çözüm üretmek zor olmakta hatta bazı durumlarda mümkün olamamaktadır. Bu durumda mekanik çözümlere yönelmek, iç ortam konfor koşullarını idealize etmeye yardımcı bir seçenek olarak ortaya çıkmaktadır. Bu çalışmada Trakya Üniversitesi Teknik Bilimler Meslek Yüksekokulu’nun atriyumunun yarattığı sera etkisinin, yaz konforu açısından bina ve yapı elemanları bünyesinde pasif soğutma stratejileri ile azaltılması hedeflenmiştir. Bilimsel Araştırma Projesi kapsamında renovasyonu ele alınan bu binanın ısıl konfor sorunları az maliyet gerektiren karşılıklı çapraz havalandırma etkisi incelenmiş, çatıda yer alan cam bileşenlere yansıtıcı kaplama uygulaması ile gelen güneş enerjisinin yansıtılması ve bina kabuğunun günışığına bağlı yaz aylarındaki fazla ısı kazancının önlenebilmesi için saçak, panjur vb. ilave eklentilerin uygun açı belirlenerek geliştirilmesi çözüm önerileri denenmiştir. Ancak tüm bu çözümler, binanın en fazla 10 derece soğumasını sağlamış, binanınsoğutulmasında mekanik soğutma çözümü zorunlu görülmüştür. Bu çalışmada Trakya Üniversitesi Teknik Bilimler Meslek Yüksekokulu’nun atriyumunun yarattığı sera etkisinin önlenmesinde mekanik havalandırma çözüm önerileri sunulmuştur. Enerji tüketimi ve ilk yatırım açısından yüksek maliyetli olması dezavantajlı olmakla birlikte sorunun çözümünde mekanik havalandırmanın efektif bir öneri olduğu düşünülmektedir.

Kaynakça

  • Abdullah, A.H, Meng Q, Zhao L, Wang F (2009). Field study on indoor thermal environment in an atrium in tropical climates. Building and Environment, 44(2), 431-436.
  • Abdullah, A.H., Wang F. (2012). Design and low energy ventilation solutions for atria in the tropics. Sustainable Cities and Society. Volume 2, Issue 1, Pages 8-28.
  • Almodóvar-Melendo, J.-M.; Quesada-García, S.; Valero-Flores, P.; Cabeza-Lainez, J. Solar Radiation in Architectural Projects as a Key Design Factor for the Well- Being of Persons with Alzheimer’s Disease. Buildings 2022, 12, 603.
  • Arslantaş & Ayçam (2021). Energy effıcient atrium design for different climate zones. Contemporary Issues in Archıtecture and Urban Planning Development, Memory, Environment. Dakam Yayınları: İstanbul. ISBN: 978-625-7034-11-1.
  • Bednar M. (1986). New Atrium, McGrawhill Building Type Series, USA
  • Göçer, Ö., Tavil, A. (2008), Performance evaluation model for energy consumption and user comfort in atrium type buildings. İtü Journal/a architecture, planning, design. Cilt:7, Sayı:1.
  • Holford, J.M., Hunt, G.R. (2003). Fundamental atrium design for natural ventilation. Building and Environment 38(3):409-426.
  • Koç, S.G., Maçka Kalfa, S. (2019). The effects of atrium on energy performances of office buildings according to Turkish climate regions. Journal of Construction Engineering, Management & Innovation. Volume 2, Issue 3, Pages. 144-156.
  • Le-Thanh, L., Nguyen-Thi-Viet, H., Lee, J. (2022). Nguyen-Xuan, H. Machine learning-based real-time daylight analysis in buildings. J. Build. Eng. 2022, 52, 104374.
  • Mills, F.A., (1994). Energy Efficient Commercial Atrium Buildings, ASHRAE transactions, 100, 1, 665-675.
  • Mohsenin, M.; Hu, J. Assessing daylight performance in atrium buildings by using Climate Based Daylight Modeling. Sol. Energy 2015, 119, 553–560.
  • Moosavi, L., Mahyuddin, N., Ab Ghafar, N., Ismail, M.A. (2014). nThermal performance of atria: An overview of natural ventilation effective designs. Renewable and Sustainable Energy Reviews. Volume 34, June 2014, Pages 654-670.
  • Motamedi, S.; Liedl, P. Integrative algorithm to optimize skylights considering fully impacts of daylight on energy. Energy Build. 2017, 138, 655–665.
  • Rastegari, M.; Pournaseri, S.; Sanaieian, H. Daylight optimization through architectural aspects in an office building atrium in Tehran. J. Build. Eng. 2021, 33, 101718.
  • Saxon R. (1986). Atrium Buildings Development and Design, The Architectural Press, 2nd edition, London.
  • Acred, A., & Hunt, G. R. (2014). Stack ventilation in multi-storey atrium buildings: A dimensionless design approach. Building and Environment, 72, 44–52.
  • Holford, J. M., & Hunt, G. R. (2003). Fundamental atrium design for natural ventilation. Building and Environment, 38(3), 409–426.
  • Liu, P.-C., Lin, H.-T., & Chou, J.-H. (2009). Evaluation of buoyancy-driven ventilation in atrium buildings using computational fluid dynamics and reduced-scale air model. Building and Environment, 44(9), 1970–1979.
  • Shafiei Fini, A., & Moosavi, A. (2016). Effects of “wall angularity of atrium” on “buildings natural ventilation and thermal performance” and CFD model. Energy and Buildings, 121, 265–283.
  • Testo, https://www.testo.com/tr-TR/, Last Access: 29.05.2023.

VENTILATION SOLUTIONS TO THE OVERHEATING PROBLEM IN THE ATRIUM: TRAKYA UNIVERSITY VOCATIONAL SCHOOL OF TECHNICAL SCIENCES BUILDING

Yıl 2023, Cilt: 24 Sayı: 1, 1 - 10, 28.07.2023
https://doi.org/10.59314/tujes.1263115

Öz

Atriums are architectural solutions that are addressed during the design phase of buildings, aiming to make the outdoor lighting conditions feel inside the building, thanks to their large glass surfaces. In addition to the aesthetic appearance it gives to the buildings, it provides maximum use of daylight functionally. However, if the correct glass type is not used and does not contain sufficient shading elements, overheating, glare, etc. brings problems. When this situation becomes to affect the comfort conditions of the individual's indoor environment, it begins to significantly affect the learning and working performance, especially in educational buildings. If appropriate glass is not used during the production phase of the glass building, which creates a greenhouse effect, in other words, it is difficult to produce a permanent and sustainable solution to this effect in the building with the measures taken afterwards, and even in some cases it is not possible. In this case, turning to mechanical solutions emerges as an option that helps to idealize indoor comfort conditions. In this study, it is aimed to reduce the greenhouse effect created by the atrium of Trakya University Technical Sciences Vocational School with passive cooling strategies within the building and construction elements in terms of summer comfort. The thermal comfort problems of this building, which was renovated within the scope of the Scientific Research Project, were examined, the mutual cross-ventilation effect, which requires low cost, and the reflective coating application on the glass components on the roof, reflecting the incoming solar energy and preventing the excessive heat gain in the summer months due to the sunlight of the building envelope, eaves, blinds, etc. Developing additional add-ons by determining the appropriate angle, solution suggestions were tried. However, all these solutions ensured that the building was cooled by a maximum of 10 degrees, and a mechanical cooling solution was deemed necessary for the cooling of the building. In this study, mechanical ventilation solutions are presented to prevent the greenhouse effect created by the atrium of Trakya University Technical Sciences Vocational School. Although its high cost in terms of energy consumption and initial investment is disadvantageous, mechanical ventilation is considered to be an effective suggestion in solving the problem.

Kaynakça

  • Abdullah, A.H, Meng Q, Zhao L, Wang F (2009). Field study on indoor thermal environment in an atrium in tropical climates. Building and Environment, 44(2), 431-436.
  • Abdullah, A.H., Wang F. (2012). Design and low energy ventilation solutions for atria in the tropics. Sustainable Cities and Society. Volume 2, Issue 1, Pages 8-28.
  • Almodóvar-Melendo, J.-M.; Quesada-García, S.; Valero-Flores, P.; Cabeza-Lainez, J. Solar Radiation in Architectural Projects as a Key Design Factor for the Well- Being of Persons with Alzheimer’s Disease. Buildings 2022, 12, 603.
  • Arslantaş & Ayçam (2021). Energy effıcient atrium design for different climate zones. Contemporary Issues in Archıtecture and Urban Planning Development, Memory, Environment. Dakam Yayınları: İstanbul. ISBN: 978-625-7034-11-1.
  • Bednar M. (1986). New Atrium, McGrawhill Building Type Series, USA
  • Göçer, Ö., Tavil, A. (2008), Performance evaluation model for energy consumption and user comfort in atrium type buildings. İtü Journal/a architecture, planning, design. Cilt:7, Sayı:1.
  • Holford, J.M., Hunt, G.R. (2003). Fundamental atrium design for natural ventilation. Building and Environment 38(3):409-426.
  • Koç, S.G., Maçka Kalfa, S. (2019). The effects of atrium on energy performances of office buildings according to Turkish climate regions. Journal of Construction Engineering, Management & Innovation. Volume 2, Issue 3, Pages. 144-156.
  • Le-Thanh, L., Nguyen-Thi-Viet, H., Lee, J. (2022). Nguyen-Xuan, H. Machine learning-based real-time daylight analysis in buildings. J. Build. Eng. 2022, 52, 104374.
  • Mills, F.A., (1994). Energy Efficient Commercial Atrium Buildings, ASHRAE transactions, 100, 1, 665-675.
  • Mohsenin, M.; Hu, J. Assessing daylight performance in atrium buildings by using Climate Based Daylight Modeling. Sol. Energy 2015, 119, 553–560.
  • Moosavi, L., Mahyuddin, N., Ab Ghafar, N., Ismail, M.A. (2014). nThermal performance of atria: An overview of natural ventilation effective designs. Renewable and Sustainable Energy Reviews. Volume 34, June 2014, Pages 654-670.
  • Motamedi, S.; Liedl, P. Integrative algorithm to optimize skylights considering fully impacts of daylight on energy. Energy Build. 2017, 138, 655–665.
  • Rastegari, M.; Pournaseri, S.; Sanaieian, H. Daylight optimization through architectural aspects in an office building atrium in Tehran. J. Build. Eng. 2021, 33, 101718.
  • Saxon R. (1986). Atrium Buildings Development and Design, The Architectural Press, 2nd edition, London.
  • Acred, A., & Hunt, G. R. (2014). Stack ventilation in multi-storey atrium buildings: A dimensionless design approach. Building and Environment, 72, 44–52.
  • Holford, J. M., & Hunt, G. R. (2003). Fundamental atrium design for natural ventilation. Building and Environment, 38(3), 409–426.
  • Liu, P.-C., Lin, H.-T., & Chou, J.-H. (2009). Evaluation of buoyancy-driven ventilation in atrium buildings using computational fluid dynamics and reduced-scale air model. Building and Environment, 44(9), 1970–1979.
  • Shafiei Fini, A., & Moosavi, A. (2016). Effects of “wall angularity of atrium” on “buildings natural ventilation and thermal performance” and CFD model. Energy and Buildings, 121, 265–283.
  • Testo, https://www.testo.com/tr-TR/, Last Access: 29.05.2023.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Şule Yılmaz Erten 0000-0002-5559-1405

Doğan Eryener 0000-0002-9910-1797

Yayımlanma Tarihi 28 Temmuz 2023
Kabul Tarihi 15 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 24 Sayı: 1

Kaynak Göster

IEEE Ş. Yılmaz Erten ve D. Eryener, “VENTILATION SOLUTIONS TO THE OVERHEATING PROBLEM IN THE ATRIUM: TRAKYA UNIVERSITY VOCATIONAL SCHOOL OF TECHNICAL SCIENCES BUILDING”, TUJES, c. 24, sy. 1, ss. 1–10, 2023, doi: 10.59314/tujes.1263115.