Araştırma Makalesi
BibTex RIS Kaynak Göster

ASİMETRİK ŞİFRELEMEDE ASAL SAYILAR VE GÜVENLİK

Yıl 2023, Cilt: 24 Sayı: 1, 11 - 18, 28.07.2023
https://doi.org/10.59314/tujes.1303091

Öz

Güvenli olmayan bir ağ ortamında verileri gizlemek ve transferini sağlamak için şifreleme kripto sistemleri kullanılır. Asimetrik şifreleme kriptosistemlerinde verinin güvenle saklanması ve iletişimin güvenli gerçekleşmesi için kullanılan algoritmaların gücü, anahtar gizliliği, cebirsel fonksiyonlar kadar kullanılan asal sayılar da etkilidir. Asal sayılar, insanlar veya bilgisayarlar arasında güvenli veri göndermeye yardımcı olurken şifrelenmiş veriyi de güvende tutar. Kriptosistemin güvenliği aynı zamanda saldırılara dayanabilme kapasitesiyle ilişkilidir. Asimetrik şifreleme algoritmalarından biri olan RSA şifreleme algoritması saldırılara karşı gücünü çarpma işleminden almaktadır ve temeli asal sayılara dayanmaktadır. Çok büyük sayıların çarpanlara ayrılması zorluğu RSA’nın gücüne güç katmaktadır ki bu da şifreleme dünyasında tercih edilirliğini arttırdığı sonucunu beraberinde getirmektedir. Çarpma işlemi ve çarpanlara ayırmada kullanılan sayıların oldukça küçük olması ufacık bir çocuk için eğlenceli bir oyuna dönüşen matematiksel becerilerin; sayılar gitgide büyüdüğünde teknolojik aygıtlar için bile belirli sürelerde neredeyse imkansıza yaklaşmasına neden olmaktadır. Sayılar teorisi ve kriptografi için önemi tartışılmaz, hem matematikçiler hem de bilgisayar bilimciler çarpanlara ayırma problemi üzerinde uzun yıllar çalışmalar gerçekleştirmişlerdir. RSA’da modN’i oluşturan (N=p.q) p ve q asal çarpan değerlerinin çok küçük ve birbirine yakın olması sistemin güvensizliği sorunu doğurmaktadır. Çalışma kapsamında önerilen RSA algoritma uygulamasıyla bu güvensizlik sorunu incelenmiş ve () adet asal sayı kullanılarak RSA şifreleme yapılmış Normal RSA ile karşılaştırma yapılmıştır.

Kaynakça

  • Aksuoğlu, A. (2010). Rsa algoritmasının iyileştirilmesi için yeni bir yaklaşım (Doctoral dissertation, Anadolu University (Turkey)) Anonim,TubitakAçıkAnahtarAltyapısıEğitimKitabı,2010. http://www.kamusm.gov.tr/tr/bilgideposu/belgeler/teknik/aaa/index.html?kriptoanalizyontemleri.html
  • Chaudhury, P., Dhang, S., Roy, M., Deb, S., Saha, J., Mallik, A., ... & Das, R. (2017, August). ACAFP: Asymmetric key based cryptographic algorithm using four prime numbers to secure message communication. A review on RSA algorithm. In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON) (pp. 332-337). IEEE.
  • Compaq 2000 Cryptography using Compaq Mul-tiprime technology in a parallel processing envi-ronment ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf
  • Hinek, M. J. (2008). On the security of multi-prime RSA. Journal of Mathematical Cryptology, 2(2), 117-147.
  • Hinek, M. J., Low, M. K., & Teske, E. (2003). On some attacks on multi-prime RSA. In Selected Areas in Cryptography: 9th An-nual International Workshop, SAC 2002 St. John’s, Newfoundland, Canada, Au-gust 15–16, 2002. Revised Papers 9 (pp. 385-404). Springer Berlin Heidelberg. https://math.berkeley.edu/~kpmann/encryption.pdf
  • Ivanov, A., & Stoianov, N. (2023). Implica-tions of the Arithmetic Ratio of Prime Numbers for RSA Security. International Journal of Applied Mathematics and Computer Science, 33(1), 57-70.
  • Ivy, B. P. U., Mandiwa, P., & Kumar, M. (2012). A modified RSA cryptosystem based on ‘n’prime numbers. International Journal Of Engineering And Computer Science, 1(2), 63-66.
  • Kamardan, M. G., Aminudin, N., Che-Him, N., Sufahani, S., Khalid, K., & Roslan, R. (2018, April). Modified Multi Prime RSA Cryptosystem. In Journal of Physics: Conference Series (Vol. 995, No. 1, p. 012030). IOP Publishing.
  • Liestyowati, D. (2020, March). Public key cryptography. In Journal of Physics: Con-ference Series (Vol. 1477, No. 5, p. 052062). IOP Publishing.
  • Lone, A. H., & Khalique, A. (2016). General-ized RSA using 2k prime numbers with secure key generation. Security and com-munication networks, 9(17), 4443-4450.
  • Mahto, D., Khan, D. A., & Yadav, D. K. (2016, June). Security analysis of elliptic curve cryptography and RSA. In Proceed-ings of the world congress on engineering (Vol. 1, pp. 419-422).
  • Mann, C. C. (2002). A Primer in Public-Key Encryption. The Atlantic.
  • Mathur, H., & Alam, Z. (2015). Analysis in symmetric and asymmetric cryptology al-gorithm. International Journal of Emerg-ing Trends & Technology in Computer Science (IJETTCS), 4(1).
  • Mollin, Richard A. 2002. RSA and PUBLIC-KEY CRYPTOGRAPHY. Florida, Boca Raton:CRC Press LLC.
  • Rivest, R. L., & Silverman, R. D. (1999). AreStrong'Primes Needed for RSA?
  • Stallings, W. (2006). Cryptography and net-work security principles and practices 4th edition.
  • Tuncal, T. (2008). Bilgisayar güvenliği üzerine bir araştırma ve şifreleme-deşifreleme üzerine uygulama (Master's thesis, Maltepe Üniversitesi, Fen Bilim-leri Enstitüsü).
  • Wolf, C., & Preneel, B. (2004). Asymmetric cryptography: Hidden field equations. Cryptology ePrint Archive.

PRIME NUMBERS IN ASYMMETRIC ENCRYPTION AND SECURTY

Yıl 2023, Cilt: 24 Sayı: 1, 11 - 18, 28.07.2023
https://doi.org/10.59314/tujes.1303091

Öz

Encryption cryptosystems are used to hide and transfer data in an insecure network environment. In asymmetric encryption cryptosystems, the power of algorithms, key secrecy and algebraic functions used for safe data storage and communication are as effective as prime numbers used. Prime numbers help send secure data between humans or computers while keeping encrypted data safe. The security of the cryptosystem is also related to its capacity to withstand attacks. RSA encryption algorithm, which is one of the asymmetric encryption algorithms, takes its power against attacks from multiplication and is based on prime numbers. The difficulty of factoring very large numbers adds to the power of RSA, which leads to the conclusion that it increases its preferability in the world of encryption. The fact that the numbers used in multiplication and factorization are quite small, mathematical skills that turn into a fun game for a small child; when the numbers get bigger, it makes it almost impossible even for technological devices at certain times. Its importance for number theory and cryptography is indisputable, and both mathematicians and computer scientists have worked on the factorization problem for many years.The fact that the prime factor values ​​of p and q (N=p.q) that make up modN in RSA are very small and close to each other, causes the insecurity of the system. This insecurity problem was examined with the RSA algorithm application proposed within the scope of the study and a comparison was made with Normal RSA using RSA encryption using () prime numbers.

Kaynakça

  • Aksuoğlu, A. (2010). Rsa algoritmasının iyileştirilmesi için yeni bir yaklaşım (Doctoral dissertation, Anadolu University (Turkey)) Anonim,TubitakAçıkAnahtarAltyapısıEğitimKitabı,2010. http://www.kamusm.gov.tr/tr/bilgideposu/belgeler/teknik/aaa/index.html?kriptoanalizyontemleri.html
  • Chaudhury, P., Dhang, S., Roy, M., Deb, S., Saha, J., Mallik, A., ... & Das, R. (2017, August). ACAFP: Asymmetric key based cryptographic algorithm using four prime numbers to secure message communication. A review on RSA algorithm. In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON) (pp. 332-337). IEEE.
  • Compaq 2000 Cryptography using Compaq Mul-tiprime technology in a parallel processing envi-ronment ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf
  • Hinek, M. J. (2008). On the security of multi-prime RSA. Journal of Mathematical Cryptology, 2(2), 117-147.
  • Hinek, M. J., Low, M. K., & Teske, E. (2003). On some attacks on multi-prime RSA. In Selected Areas in Cryptography: 9th An-nual International Workshop, SAC 2002 St. John’s, Newfoundland, Canada, Au-gust 15–16, 2002. Revised Papers 9 (pp. 385-404). Springer Berlin Heidelberg. https://math.berkeley.edu/~kpmann/encryption.pdf
  • Ivanov, A., & Stoianov, N. (2023). Implica-tions of the Arithmetic Ratio of Prime Numbers for RSA Security. International Journal of Applied Mathematics and Computer Science, 33(1), 57-70.
  • Ivy, B. P. U., Mandiwa, P., & Kumar, M. (2012). A modified RSA cryptosystem based on ‘n’prime numbers. International Journal Of Engineering And Computer Science, 1(2), 63-66.
  • Kamardan, M. G., Aminudin, N., Che-Him, N., Sufahani, S., Khalid, K., & Roslan, R. (2018, April). Modified Multi Prime RSA Cryptosystem. In Journal of Physics: Conference Series (Vol. 995, No. 1, p. 012030). IOP Publishing.
  • Liestyowati, D. (2020, March). Public key cryptography. In Journal of Physics: Con-ference Series (Vol. 1477, No. 5, p. 052062). IOP Publishing.
  • Lone, A. H., & Khalique, A. (2016). General-ized RSA using 2k prime numbers with secure key generation. Security and com-munication networks, 9(17), 4443-4450.
  • Mahto, D., Khan, D. A., & Yadav, D. K. (2016, June). Security analysis of elliptic curve cryptography and RSA. In Proceed-ings of the world congress on engineering (Vol. 1, pp. 419-422).
  • Mann, C. C. (2002). A Primer in Public-Key Encryption. The Atlantic.
  • Mathur, H., & Alam, Z. (2015). Analysis in symmetric and asymmetric cryptology al-gorithm. International Journal of Emerg-ing Trends & Technology in Computer Science (IJETTCS), 4(1).
  • Mollin, Richard A. 2002. RSA and PUBLIC-KEY CRYPTOGRAPHY. Florida, Boca Raton:CRC Press LLC.
  • Rivest, R. L., & Silverman, R. D. (1999). AreStrong'Primes Needed for RSA?
  • Stallings, W. (2006). Cryptography and net-work security principles and practices 4th edition.
  • Tuncal, T. (2008). Bilgisayar güvenliği üzerine bir araştırma ve şifreleme-deşifreleme üzerine uygulama (Master's thesis, Maltepe Üniversitesi, Fen Bilim-leri Enstitüsü).
  • Wolf, C., & Preneel, B. (2004). Asymmetric cryptography: Hidden field equations. Cryptology ePrint Archive.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Tarık Yerlikaya 0000-0002-9888-0151

Nursel İşçimen 0000-0002-4454-7388

Yayımlanma Tarihi 28 Temmuz 2023
Kabul Tarihi 12 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 24 Sayı: 1

Kaynak Göster

IEEE T. Yerlikaya ve N. İşçimen, “ASİMETRİK ŞİFRELEMEDE ASAL SAYILAR VE GÜVENLİK”, TUJES, c. 24, sy. 1, ss. 11–18, 2023, doi: 10.59314/tujes.1303091.