Research Article
BibTex RIS Cite
Year 2025, Volume: 7 Issue: 1, 1 - 13
https://doi.org/10.53663/turjfas.1611978

Abstract

References

  • Adedze, Y. M. N., Lu, X., Xia, Y., Sun, Q., Nchongboh, C. G., Alam, M. A., Liu, M., Yang, X., Zhang, W.,Deng, Z., Li, Z., & Si, L. (2021). Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Scientific Reports, 11(1), 3872. https://doi.org/10.1038/s41598-021-83313-x
  • Celep, F., Kahraman, A., Guerin, G. R., Karabacak, E., Akaydın, G., & Doğan, M. (2022). Nutlet micromorphology and its taxonomic and phylogenetic significance in Salvia (Lamiaceae). Plant Biosystems, 156(1), 271-283. https://doi.org/10.1080/11263504.2020.1852331
  • Chen, Z., Yu, X., Yang, Y., Wei, P., Zhang, W., Li, X., Liu, C.; Zhao, S.; Li, X.; & Liu, X. (2022). Comparative analysis of chloroplast genomes within Saxifraga (Saxifragaceae) takes insights into their genomic evolution and adaption to the high-elevation environment. Genes, 13(9), 1673. https://doi.org/10.3390/genes13091673
  • Cui, L., Leebens-Mack, J., Wang, L. S., Tang, J., Rymarquis, L., Stern, D. B., & DePamphilis, C. W. (2006). Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evolutionary Biology, 6, 1-12. https://doi.org/10.1186/1471-2148-6-13
  • Dai, G. Z., Song, W. Y., Xu, H. F., Tu, M., Yu, C., Li, Z. K., Shang,J.L., Jin, C.L., Ding, C.S., Zuo, L.Z., Liu, Y.R., Yan, W.W., Zang, S.S., Liu, K., Zhang, Z., Bock, R., & Qiu, B. S., (2024). Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. The Plant Cell, 36(5), 1844-1867. https://doi.org/10.1093/plcell/koad330
  • Daniell, H., Jin, S., Zhu, X.-G., Gitzendanner, M. A., Soltis, D. E., & Soltis, P. S. (2021) Green giant a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. Plant Biotechnology Journal, 19(3), 430-447. https:// doi.org/ 10.1111 /pbi.13556
  • De Las Rivas, J., Lozano, J. J., & Ortiz, A. R. (2002). Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Research, 12(4), 567-583. https://doi.org/10.1101/gr.209402
  • Dobrogojski, J., Adamiec, M., & Luciński, R. (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum, 42(6), 98. https://doi.org/10.1007/s11738-020-03089-x
  • Du, Q., Yang, H., Zeng, J., Chen, Z., Zhou, J., Sun, S., Wang, B., & Liu, C. (2022). Comparative genomics and phylogenetic analysis of the chloroplast genomes in three medicinal Salvia species for bioexploration. International Journal of Molecular Sciences, 23(20), 12080. https://doi.org/10.3390/ijms232012080
  • Foyer, C. H., Noctor, G., & Hodges, M. (2011). Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. Journal of Experimental Botany, 62(4), 1467-1482. https://doi.org/10.1093/jxb/erq453
  • Gao, L. Z., Liu, Y. L., Zhang, D., Li, W., Gao, J., Liu, Y., Li, K., Shi, C., Zhao, Y., Zhao, Y.J., Jiao, J.Y., Mao, S.Y.,Gao,C.W., & Eichler, E. E. (2019). Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Communications Biology, 2(1), 278. https://doi.org/10.1038/s42003-019-0531-2
  • Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
  • Gong, L., Ding, X., Guan, W., Zhang, D., Zhang, J., Bai, J., Xu, W., Huang, J., Qiu, X., Zheng, X., Zhang, D.,Li, S., Huang, Z., & Su, H. (2022). Comparative chloroplast genome analyses of Amomum: insights into evolutionary history and species identification. BMC Plant Biology, 22(1), 520. https://doi.org/10.1186/s12870-022-03898-x
  • Grabelnych, O. I., Borovik, O. A., Tauson, E. L., Pobezhimova, T. P., Katyshev, A. I., Pavlovskaya, N. S., Koroleva, N. A., Lyubushkina, I. V.,Bashmakov, V. Y., Popov, V. N., Borovskii, G. B.,& Voinikov, V. K. (2014). Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Biochemistry (Moscow), 79, 506-519. https://doi.org/10.1134/S0006297914060030
  • Gu, X., Zhu, M., Su, Y., & Wang, T. (2022). A large intergenic spacer leads to the increase in genome size and sequential gene movement around IR/SC boundaries in the chloroplast genome of Adiantum malesianum (Pteridaceae). International Journal of Molecular Sciences, 23(24), 15616. https://doi.org/10.3390/ijms232415616
  • Guo, Y. Y., Yang, J. X., Bai, M. Z., Zhang, G. Q., & Liu, Z. J. (2021). The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biology, 21(1), 248. https://doi.org/10.1186/s12870-021-03053-y
  • Hao, J., Liang, Y., Ping, J., Wang, T., & Su, Y. (2024). Full-length transcriptome analysis of Ophioglossum vulgatum: effects of experimentally identified chloroplast gene clusters on expression and evolutionary patterns. Plant Molecular Biology, 114(2), 31. https://doi.org/10.1007/s11103-024-01423-2
  • Hetland, M. L., & Nelli, F. (2024). Activity 1: Data Analysis with Pandas, Matplotlib, and Seaborn. In Beginning Python: From Novice to Professional (pp. 487-504). Berkeley, CA: Apress. https://doi.org/10.1007/979-8-8688-0196-9_25
  • Huang, Y. B., Qi, Z. C., Feng, J. Y., Ge, B. J., Huang, C. Z., Feng, Y. Q., Wu, J., Wei, P-R., Ito, T., Kokubugata, G., Li, P., & Wei, Y. K. (2024). Salvia guidongensis sp. nov.: unraveling a critical evolutionary link in East Asian Salvia from Central China integrating morphology, phylogeny, and plastid genomics. Frontiers in Plant Science, 15, 1332443. https://doi.org/ 10.3389/fpls.2024.1332443
  • Jackson, H. O., Taunt, H. N., Mordaka, P. M., Smith, A. G., & Purton, S. (2021). The algal chloroplast as a testbed for synthetic biology designs aimed at radically rewiring plant metabolism. Frontiers in Plant Science, 12, 708370. https://doi.org/10.3389/fpls.2021.708370
  • Jiang, D., Cai, X., Gong, M., Xia, M., Xing, H., Dong, S., Tian, S., Li, J., Lin, J., Liu, Y., & Li, H. L. (2023). Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC genomics, 24(1), 30. https://doi.org/10.1186/s12864-023-09115-9
  • Kim, M., Lee, S., Ok, J., Han, B., & Cho, M. (2022, October). Towards sequence-level training for visual tracking. In European Conference on Computer Vision (pp. 534-551). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-20047-2_31
  • Lang, C., Weber, N., Moeller, M., Schramm, L., Schelm, S., Kohlbacher, O., & Fischer, M. (2021). Genetic authentication: Differentiation of hazelnut cultivars using polymorphic sites of the chloroplast genome. Food Control, 130, 108344. https://doi.org/10.1016/j.foodcont.2021.108344
  • Li, J., Fan, R., Xu, J., Hu, L., Su, F., & Hao, C. (2022). Comparative analysis of the chloroplast genomes of eight Piper species and insights into the utilization of structural variation in phylogenetic analysis. Frontiers in Genetics, 13, 925252. https://doi.org/10.3389/fgene.2022.925252
  • Li, Z., Fan, H., Yang, L., Wang, S., Hong, D., Cui, W., Wang, T., Wei, C., Sun, Y., Wang, K., & Liu, Y. (2024). Multi-omics analysis of the effects of soil amendment on rapeseed (Brassica napus L.) photosynthesis under drip irrigation with brackish water. International Journal of Molecular Sciences, 25(5), 2521. https://doi.org/10.3390/ijms25052521
  • Liang, C., Wang, L., Lei, J., Duan, B., Ma, W., Xiao, S., ... & Chen, S. (2019). A comparative analysis of the chloroplast genomes of four Salvia medicinal plants. Engineering, 5(5), 907-915. https://doi.org/10.1016/j.eng.2019.01.017
  • Lu, A., Zeng, S., Pi, K., Long, B., Mo, Z., & Liu, R. (2024). Transcriptome analysis reveals the key role of overdominant expression of photosynthetic and respiration-related genes in the formation of tobacco (Nicotiana tabacum L.) biomass heterosis. BMC genomics, 25(1), 598. https://doi.org/10.1186/s12864-024-10507-8
  • Ma, C., Feng, Y., Wang, J., Zheng, B., Wang, X., & Jiao, N. (2023). Integrative physiological, transcriptome, and proteome analyses provide ınsights into the photosynthetic changes in maize in a maize–peanut ıntercropping system. Plants, 13(1), 65. https://doi.org/10.3390/plants13010065
  • Mátis, A., Malkócs, T., Kuhn, T., Laczkó, L., Moysiyenko, I., Szabó, A., Bădărău, A.S., & Sramkó, G. (2023). Hiding in plain sight: Integrative analyses uncover a cryptic Salvia species in Europe. Taxon, 72(1), 78-97. https://doi.org/10.1002/tax.12818
  • Pierce, S. K., Curtis, N. E., & Middlebrooks, M. L. (2015). Sacoglossan sea slugs make routine use of photosynthesis by a variety of species‐specific adaptations. Invertebrate Biology, 134(2), 103-115. https://doi.org/10.1111/ivb.12082
  • Qian, J., Song, J., Gao, H., Zhu, Y., Xu, J., Pang, X., ... & Chen, S. (2013). The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PloS one, 8(2), e57607. https://doi.org/10.1371/journal.pone.0057607
  • Rand, K., Grytten, I., Pavlovic, M., Kanduri, C., & Sandve, G. K. (2022). BioNumPy: Fast and easy analysis of biological data with Python. BioRxiv, 2022-12. https://doi.org/10.1101/2022.12.21.521373
  • Redelings, B. D., Holmes, I., Lunter, G., Pupko, T., & Anisimova, M. (2024). Insertions and deletions: Computational methods, evolutionary dynamics, and biological applications. Molecular Biology and Evolution, 41(9), msae177. https://doi.org/10.1093/molbev/msae177
  • Shang, C., Li, E., Yu, Z., Lian, M., Chen, Z., Liu, K., Xu, L., Tong, Z., Wang, M., & Dong, W., (2022). Chloroplast genomic resources and genetic divergence of endangered species Bretschneidera sinensis (Bretschneideraceae). Frontiers in Ecology and Evolution, 10, 873100. https://doi.org/10.3389/fevo.2022.873100
  • Song, Y., Feng, L., Alyafei, M. A. M., Jaleel, A., & Ren, M. (2021). Function of chloroplasts in plant stress responses. International Journal of Molecular Sciences, 22(24), 13464. https://doi.org/10.3390/ijms222413464
  • Teoh, T. T., & Rong, Z. (2022). Python for data analysis. In Artificial Intelligence with Python (pp. 107-122). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-8615-3_7
  • Turudić, A., Liber, Z., Grdiša, M., Jakše, J., Varga, F., & Šatović, Z. (2023). Variation in chloroplast genome size: Biological phenomena and technological artifacts. Plants, 12(2), 254. https://doi.org/10.3390/plants12020254
  • Wang, Y., Zhao, B., Lu, Z., Shi, Y., & Li, J. (2021). The complete chloroplast genome provides insight into the polymorphism and adaptive evolution of Garcinia paucinervis. Biotechnology & Biotechnological Equipment, 35(1), 377-391. https://doi.org/10.1080/13102818.2021.1879676
  • Wen, F., Wu, X., Li, T., Jia, M., Liu, X., & Liao, L. (2021). The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China. BMC genomics, 22, 1-18. https://doi.org/10.1186/s12864-021-07484-7
  • Xu, M., Zhang, X., Cao, J., Liu, J., He, Y., Guan, Q., Tian, X., Tang, J., Li, X., Ren, D., Bu, Q., & Wang, Z. (2024). OsPGL3A encodes a DYW-type pentatricopeptide repeat protein involved in chloroplast RNA processing and regulated chloroplast development. Molecular Breeding, 44(4), 29. https://doi.org/10.1007/s11032-024-01468-7
  • Xu, S., Teng, K., Zhang, H., Gao, K., Wu, J., Duan, L., Yue, Y., & Fan, X., (2023). Chloroplast genomes of four Carex species: Long repetitive sequences trigger dramatic changes in chloroplast genome structure. Frontiers in Plant Science, 14, 1100876. https://doi.org/10.3389/fpls.2023.1100876
  • Yang, L., Abduraimov, O., Tojibaev, K., Shomurodov, K., Zhang, Y. M., & Li, W. J. (2022). Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC genomics, 23(1), 643. https://doi.org/10.1186/s12864-022-08868-z
  • Yang, M., Zhang, S. F., Li, B., Lan, Y. X., Yang, Y. H., & Liu, M. J. (2024). Comparative analysis of 326 chloroplast genomes in Chinese jujube (Ziziphus jujuba): Structural variations, horizontal gene transfer events, and evolutionary patterns impacting its domestication from wild jujube. Journal of Systematics and Evolution, 62(6), 1069-1084. https://doi.org/10.1111/jse.13065
  • Zhou, J., Zhang, S., Wang, J., Shen, H., Ai, B., Gao, W., Zhang, C., Fei, Q., Yuan, D., Wu, Z., Tembrock, L. R., Li. S., Gu. C., & Liao, X. (2021). Chloroplast genomes in Populus (Salicaceae): Comparisons from an intensively sampled genus reveal dynamic patterns of evolution. Scientific Reports, 11(1), 9471. https://doi.org/10.1038/s41598-021-88160-4

Comparative insights into genomic variability and adaptation in the chloroplast genomes of Salvia japonica and Salvia rosmarinus

Year 2025, Volume: 7 Issue: 1, 1 - 13
https://doi.org/10.53663/turjfas.1611978

Abstract

Chloroplast genomes provide important information about phylogenetics, plant evolution, and adaptive processes. This study examines the chloroplast genomes of Salvia japonica and Salvia rosmarinus. We conducted structural and functional annotations to identify significant variations in gene content and organization. We found that S. rosmarinus has fewer photosystem II (psb) genes and a greater abundance of hypothetical genes (ycf). This may help maintain genomic stability while facilitating species evolution. There are big differences in insertion-deletion events (indels) and single nucleotide polymorphisms (SNPs) in important gene families, like NADH dehydrogenase and ribosomal proteins. We determined this organizational difference by applying Principal Component Analysis (PCA) to the genomes of the two species, which belong to different and distinct gene categories. Sequence alignment revealed gaps and inconsistencies in genes related to RNA polymerase and photosynthesis. The fact that S. japonica and S. rosmarinus have a lot of different genes and may have adapted to live in different environments suggests that they have had different evolutionary paths. These results give us important information about how Salvia species have evolved and give us a way to think about how chloroplast genomes change in different ecological settings. This study provides a basis for understanding the evolution of the chloroplast genome in the genus Salvia. This study has been significant in clarifying the role of photosynthetic and hypothetical genes in controlling environmental responses. Future study must use transcriptome and ecological data to enhance our understanding of the impact of genetic variants on functionality.

Ethical Statement

This work was not submitted to any other journal in any form, and the results of this study were not used in any animal experiments or human research.

Supporting Institution

The author has not disclosed any funding.

References

  • Adedze, Y. M. N., Lu, X., Xia, Y., Sun, Q., Nchongboh, C. G., Alam, M. A., Liu, M., Yang, X., Zhang, W.,Deng, Z., Li, Z., & Si, L. (2021). Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Scientific Reports, 11(1), 3872. https://doi.org/10.1038/s41598-021-83313-x
  • Celep, F., Kahraman, A., Guerin, G. R., Karabacak, E., Akaydın, G., & Doğan, M. (2022). Nutlet micromorphology and its taxonomic and phylogenetic significance in Salvia (Lamiaceae). Plant Biosystems, 156(1), 271-283. https://doi.org/10.1080/11263504.2020.1852331
  • Chen, Z., Yu, X., Yang, Y., Wei, P., Zhang, W., Li, X., Liu, C.; Zhao, S.; Li, X.; & Liu, X. (2022). Comparative analysis of chloroplast genomes within Saxifraga (Saxifragaceae) takes insights into their genomic evolution and adaption to the high-elevation environment. Genes, 13(9), 1673. https://doi.org/10.3390/genes13091673
  • Cui, L., Leebens-Mack, J., Wang, L. S., Tang, J., Rymarquis, L., Stern, D. B., & DePamphilis, C. W. (2006). Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evolutionary Biology, 6, 1-12. https://doi.org/10.1186/1471-2148-6-13
  • Dai, G. Z., Song, W. Y., Xu, H. F., Tu, M., Yu, C., Li, Z. K., Shang,J.L., Jin, C.L., Ding, C.S., Zuo, L.Z., Liu, Y.R., Yan, W.W., Zang, S.S., Liu, K., Zhang, Z., Bock, R., & Qiu, B. S., (2024). Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. The Plant Cell, 36(5), 1844-1867. https://doi.org/10.1093/plcell/koad330
  • Daniell, H., Jin, S., Zhu, X.-G., Gitzendanner, M. A., Soltis, D. E., & Soltis, P. S. (2021) Green giant a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. Plant Biotechnology Journal, 19(3), 430-447. https:// doi.org/ 10.1111 /pbi.13556
  • De Las Rivas, J., Lozano, J. J., & Ortiz, A. R. (2002). Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Research, 12(4), 567-583. https://doi.org/10.1101/gr.209402
  • Dobrogojski, J., Adamiec, M., & Luciński, R. (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum, 42(6), 98. https://doi.org/10.1007/s11738-020-03089-x
  • Du, Q., Yang, H., Zeng, J., Chen, Z., Zhou, J., Sun, S., Wang, B., & Liu, C. (2022). Comparative genomics and phylogenetic analysis of the chloroplast genomes in three medicinal Salvia species for bioexploration. International Journal of Molecular Sciences, 23(20), 12080. https://doi.org/10.3390/ijms232012080
  • Foyer, C. H., Noctor, G., & Hodges, M. (2011). Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. Journal of Experimental Botany, 62(4), 1467-1482. https://doi.org/10.1093/jxb/erq453
  • Gao, L. Z., Liu, Y. L., Zhang, D., Li, W., Gao, J., Liu, Y., Li, K., Shi, C., Zhao, Y., Zhao, Y.J., Jiao, J.Y., Mao, S.Y.,Gao,C.W., & Eichler, E. E. (2019). Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Communications Biology, 2(1), 278. https://doi.org/10.1038/s42003-019-0531-2
  • Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
  • Gong, L., Ding, X., Guan, W., Zhang, D., Zhang, J., Bai, J., Xu, W., Huang, J., Qiu, X., Zheng, X., Zhang, D.,Li, S., Huang, Z., & Su, H. (2022). Comparative chloroplast genome analyses of Amomum: insights into evolutionary history and species identification. BMC Plant Biology, 22(1), 520. https://doi.org/10.1186/s12870-022-03898-x
  • Grabelnych, O. I., Borovik, O. A., Tauson, E. L., Pobezhimova, T. P., Katyshev, A. I., Pavlovskaya, N. S., Koroleva, N. A., Lyubushkina, I. V.,Bashmakov, V. Y., Popov, V. N., Borovskii, G. B.,& Voinikov, V. K. (2014). Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Biochemistry (Moscow), 79, 506-519. https://doi.org/10.1134/S0006297914060030
  • Gu, X., Zhu, M., Su, Y., & Wang, T. (2022). A large intergenic spacer leads to the increase in genome size and sequential gene movement around IR/SC boundaries in the chloroplast genome of Adiantum malesianum (Pteridaceae). International Journal of Molecular Sciences, 23(24), 15616. https://doi.org/10.3390/ijms232415616
  • Guo, Y. Y., Yang, J. X., Bai, M. Z., Zhang, G. Q., & Liu, Z. J. (2021). The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biology, 21(1), 248. https://doi.org/10.1186/s12870-021-03053-y
  • Hao, J., Liang, Y., Ping, J., Wang, T., & Su, Y. (2024). Full-length transcriptome analysis of Ophioglossum vulgatum: effects of experimentally identified chloroplast gene clusters on expression and evolutionary patterns. Plant Molecular Biology, 114(2), 31. https://doi.org/10.1007/s11103-024-01423-2
  • Hetland, M. L., & Nelli, F. (2024). Activity 1: Data Analysis with Pandas, Matplotlib, and Seaborn. In Beginning Python: From Novice to Professional (pp. 487-504). Berkeley, CA: Apress. https://doi.org/10.1007/979-8-8688-0196-9_25
  • Huang, Y. B., Qi, Z. C., Feng, J. Y., Ge, B. J., Huang, C. Z., Feng, Y. Q., Wu, J., Wei, P-R., Ito, T., Kokubugata, G., Li, P., & Wei, Y. K. (2024). Salvia guidongensis sp. nov.: unraveling a critical evolutionary link in East Asian Salvia from Central China integrating morphology, phylogeny, and plastid genomics. Frontiers in Plant Science, 15, 1332443. https://doi.org/ 10.3389/fpls.2024.1332443
  • Jackson, H. O., Taunt, H. N., Mordaka, P. M., Smith, A. G., & Purton, S. (2021). The algal chloroplast as a testbed for synthetic biology designs aimed at radically rewiring plant metabolism. Frontiers in Plant Science, 12, 708370. https://doi.org/10.3389/fpls.2021.708370
  • Jiang, D., Cai, X., Gong, M., Xia, M., Xing, H., Dong, S., Tian, S., Li, J., Lin, J., Liu, Y., & Li, H. L. (2023). Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC genomics, 24(1), 30. https://doi.org/10.1186/s12864-023-09115-9
  • Kim, M., Lee, S., Ok, J., Han, B., & Cho, M. (2022, October). Towards sequence-level training for visual tracking. In European Conference on Computer Vision (pp. 534-551). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-20047-2_31
  • Lang, C., Weber, N., Moeller, M., Schramm, L., Schelm, S., Kohlbacher, O., & Fischer, M. (2021). Genetic authentication: Differentiation of hazelnut cultivars using polymorphic sites of the chloroplast genome. Food Control, 130, 108344. https://doi.org/10.1016/j.foodcont.2021.108344
  • Li, J., Fan, R., Xu, J., Hu, L., Su, F., & Hao, C. (2022). Comparative analysis of the chloroplast genomes of eight Piper species and insights into the utilization of structural variation in phylogenetic analysis. Frontiers in Genetics, 13, 925252. https://doi.org/10.3389/fgene.2022.925252
  • Li, Z., Fan, H., Yang, L., Wang, S., Hong, D., Cui, W., Wang, T., Wei, C., Sun, Y., Wang, K., & Liu, Y. (2024). Multi-omics analysis of the effects of soil amendment on rapeseed (Brassica napus L.) photosynthesis under drip irrigation with brackish water. International Journal of Molecular Sciences, 25(5), 2521. https://doi.org/10.3390/ijms25052521
  • Liang, C., Wang, L., Lei, J., Duan, B., Ma, W., Xiao, S., ... & Chen, S. (2019). A comparative analysis of the chloroplast genomes of four Salvia medicinal plants. Engineering, 5(5), 907-915. https://doi.org/10.1016/j.eng.2019.01.017
  • Lu, A., Zeng, S., Pi, K., Long, B., Mo, Z., & Liu, R. (2024). Transcriptome analysis reveals the key role of overdominant expression of photosynthetic and respiration-related genes in the formation of tobacco (Nicotiana tabacum L.) biomass heterosis. BMC genomics, 25(1), 598. https://doi.org/10.1186/s12864-024-10507-8
  • Ma, C., Feng, Y., Wang, J., Zheng, B., Wang, X., & Jiao, N. (2023). Integrative physiological, transcriptome, and proteome analyses provide ınsights into the photosynthetic changes in maize in a maize–peanut ıntercropping system. Plants, 13(1), 65. https://doi.org/10.3390/plants13010065
  • Mátis, A., Malkócs, T., Kuhn, T., Laczkó, L., Moysiyenko, I., Szabó, A., Bădărău, A.S., & Sramkó, G. (2023). Hiding in plain sight: Integrative analyses uncover a cryptic Salvia species in Europe. Taxon, 72(1), 78-97. https://doi.org/10.1002/tax.12818
  • Pierce, S. K., Curtis, N. E., & Middlebrooks, M. L. (2015). Sacoglossan sea slugs make routine use of photosynthesis by a variety of species‐specific adaptations. Invertebrate Biology, 134(2), 103-115. https://doi.org/10.1111/ivb.12082
  • Qian, J., Song, J., Gao, H., Zhu, Y., Xu, J., Pang, X., ... & Chen, S. (2013). The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PloS one, 8(2), e57607. https://doi.org/10.1371/journal.pone.0057607
  • Rand, K., Grytten, I., Pavlovic, M., Kanduri, C., & Sandve, G. K. (2022). BioNumPy: Fast and easy analysis of biological data with Python. BioRxiv, 2022-12. https://doi.org/10.1101/2022.12.21.521373
  • Redelings, B. D., Holmes, I., Lunter, G., Pupko, T., & Anisimova, M. (2024). Insertions and deletions: Computational methods, evolutionary dynamics, and biological applications. Molecular Biology and Evolution, 41(9), msae177. https://doi.org/10.1093/molbev/msae177
  • Shang, C., Li, E., Yu, Z., Lian, M., Chen, Z., Liu, K., Xu, L., Tong, Z., Wang, M., & Dong, W., (2022). Chloroplast genomic resources and genetic divergence of endangered species Bretschneidera sinensis (Bretschneideraceae). Frontiers in Ecology and Evolution, 10, 873100. https://doi.org/10.3389/fevo.2022.873100
  • Song, Y., Feng, L., Alyafei, M. A. M., Jaleel, A., & Ren, M. (2021). Function of chloroplasts in plant stress responses. International Journal of Molecular Sciences, 22(24), 13464. https://doi.org/10.3390/ijms222413464
  • Teoh, T. T., & Rong, Z. (2022). Python for data analysis. In Artificial Intelligence with Python (pp. 107-122). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-8615-3_7
  • Turudić, A., Liber, Z., Grdiša, M., Jakše, J., Varga, F., & Šatović, Z. (2023). Variation in chloroplast genome size: Biological phenomena and technological artifacts. Plants, 12(2), 254. https://doi.org/10.3390/plants12020254
  • Wang, Y., Zhao, B., Lu, Z., Shi, Y., & Li, J. (2021). The complete chloroplast genome provides insight into the polymorphism and adaptive evolution of Garcinia paucinervis. Biotechnology & Biotechnological Equipment, 35(1), 377-391. https://doi.org/10.1080/13102818.2021.1879676
  • Wen, F., Wu, X., Li, T., Jia, M., Liu, X., & Liao, L. (2021). The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China. BMC genomics, 22, 1-18. https://doi.org/10.1186/s12864-021-07484-7
  • Xu, M., Zhang, X., Cao, J., Liu, J., He, Y., Guan, Q., Tian, X., Tang, J., Li, X., Ren, D., Bu, Q., & Wang, Z. (2024). OsPGL3A encodes a DYW-type pentatricopeptide repeat protein involved in chloroplast RNA processing and regulated chloroplast development. Molecular Breeding, 44(4), 29. https://doi.org/10.1007/s11032-024-01468-7
  • Xu, S., Teng, K., Zhang, H., Gao, K., Wu, J., Duan, L., Yue, Y., & Fan, X., (2023). Chloroplast genomes of four Carex species: Long repetitive sequences trigger dramatic changes in chloroplast genome structure. Frontiers in Plant Science, 14, 1100876. https://doi.org/10.3389/fpls.2023.1100876
  • Yang, L., Abduraimov, O., Tojibaev, K., Shomurodov, K., Zhang, Y. M., & Li, W. J. (2022). Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC genomics, 23(1), 643. https://doi.org/10.1186/s12864-022-08868-z
  • Yang, M., Zhang, S. F., Li, B., Lan, Y. X., Yang, Y. H., & Liu, M. J. (2024). Comparative analysis of 326 chloroplast genomes in Chinese jujube (Ziziphus jujuba): Structural variations, horizontal gene transfer events, and evolutionary patterns impacting its domestication from wild jujube. Journal of Systematics and Evolution, 62(6), 1069-1084. https://doi.org/10.1111/jse.13065
  • Zhou, J., Zhang, S., Wang, J., Shen, H., Ai, B., Gao, W., Zhang, C., Fei, Q., Yuan, D., Wu, Z., Tembrock, L. R., Li. S., Gu. C., & Liao, X. (2021). Chloroplast genomes in Populus (Salicaceae): Comparisons from an intensively sampled genus reveal dynamic patterns of evolution. Scientific Reports, 11(1), 9471. https://doi.org/10.1038/s41598-021-88160-4
There are 44 citations in total.

Details

Primary Language English
Subjects Food Biotechnology, Medicinal and Aromatic Plants
Journal Section Research Articles
Authors

Mehmet Alp Furan 0000-0002-0171-0405

Publication Date
Submission Date January 2, 2025
Acceptance Date January 13, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Furan, M. A. (n.d.). Comparative insights into genomic variability and adaptation in the chloroplast genomes of Salvia japonica and Salvia rosmarinus. Turkish Journal of Food and Agriculture Sciences, 7(1), 1-13. https://doi.org/10.53663/turjfas.1611978

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci