Araştırma Makalesi
BibTex RIS Kaynak Göster

Matematik Öğretmenlerinin Görüşleri Çerçevesinde Lise Geçiş Sınavının (LGS) Hazırlık Sürecindeki Güçlükler ve Eğitime Yansımaları

Yıl 2021, Cilt: 12 Sayı: 1, 221 - 243, 05.02.2021
https://doi.org/10.16949/turkbilmat.769347

Öz

Birey, doğumundan itibaren keşfetme, araştırma, sorular sorma, nesneler arasındaki ilişkileri fark etme gibi eğilimleri göstererek çevresini öğrenmeye çalışır. Başka bir deyişle çeşitli muhakemelerle yaşadığı dünyayı anlama eğilimdedir. Bundan dolayı muhakeme becerisi, matematiksel düşünme becerisi, ispat yapma becerisi, problem çözme becerisi, üst bilişsel bilgi, beceri veya nitelikleri gelişmiş bireylerin yetiştirilmesi önemlidir. Bu da ancak doğru öğretim modelleri, yöntemler, teknikler ve bunları en verimli şekilde kullanabilen öğretmenlerin varlığı ile mümkün olabileceği söylenebilir. Bu bağlamda çalışmanın amacı; ülkemizde 2018 yılından beri uygulanmaya başlanan LGS’ye hazırlık sürecinde yaşanan güçlükleri ve LGS’nin okullarda uygulanan matematik eğitimine yansımalarını matematik öğretmenlerinin görüşleri çerçevesinde tespit etmek ve bu doğrultuda önerilerde bulunmaktır. Çalışmada belli bir katılımcı grubunun bir konu üzerindeki düşüncelerini resmetmeye çalışıldığı için tarama modeli benimsenmiştir. Çalışmanın örneklemini; 2018-2019 eğitim öğretim yılında 8. Sınıflarda derse girmiş olan 110 matematik öğretmeninden oluşmaktadır. Öğretmen görüşlerinden elde edilen veriler içerik analizi yöntemiyle analiz edilmiştir. Buna göre; öğrencilerin yeni sınav sisteminde anlama, yorumlama, düşünme ve muhakeme etme sorunu yaşadığı bununla birlikte ders kitapları ile sınavın paralel olmadığı bu nedenle öğretmenlerin çeşitli zorluklar yaşadığı görüşü ağırlıktadır. Bu doğrultuda öğrencilerin motivasyonun artırılması ve okuma alışkanlığının kazanılmasını sağlamak için çeşitli etkinlikler yapılabilir. Ayrıca öğretmenlere de sınava yönelik hizmet içi eğitimlerinin verilmesinin yararlı olacağı düşünülmektedir.

Kaynakça

  • Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Eğitim Yayıncılığı
  • Başol, G., Balgalmış, E., Karlı, M. G., & Öz, F. B. (2016) TEOG sınavı matematik sorularının MEB kazanımlarına, TIMSS seviyelerine ve yenilenen Bloom Taksonomisine göre incelenmesi. Journal of Human Sciences, 13(3), 5945-5967.
  • Breakwell, G. M., Wright, D. B., & Smith, J. A. (2012). Research questions and planning research. Londra: SAGE Publications.
  • Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections (doctoral dissertation). Simon Fraser University, Canada.
  • Çepni, S.(2014). Araştırma ve proje çalışmalarına giriş (7.baskı). Trabzon: Celepler Matbaacılık
  • Francisco, J. M., & Maher, C. A. (2005). Conditions for promoting reasoning in problem solving: Insights from a longitudinal study. Journal of Mathematical Behavior, 24, 361–372.
  • Generazzo, S. D. (2011). Proof and reasoning in an inquiry-oriented class: The impact of classroom discourse (doctoral dissertation) University of New Hampshire, New Hampshire.
  • Goswami U. (2004). Neuroscience and education. British Journal of Educational Psychology, 74, 1–14
  • Güven B., Öztürk T. ve Demir E. (2014, Eylül). Ortaöğretim matematik öğretmen adaylarının ispat sürecindeki muhakeme hatalarının incelenmesi. XI. Ulusal Fen ve Matematik Eğitimi Kongresi’nde sunulan bildiri, Çukurova Üniversitesi, Adana, Türkiye.
  • Güven B. ve Demir E. ( 2015, Mayıs). Öğrencilerin İspat Sürecinde Yaptıkları Muhakame Hatalarına Yönelik Öğretmen Bilgisinin İncelenmesi. 2. Türk Bilgisayar ve Matematik Eğitimi Sempozyumu’nda sunulan bildiri, Adıyaman Üniversitesi, Adıyaman, Türkiye.
  • Healy L., & Hoyles C. (1998). Justifying and proving in school mathematics: Technical report on the nationwide survey. Institute of Education, University of London.
  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371-404). Charlotte, NC: Information Age Publishing.
  • Hsu, H. (2010). The study of Taiwanese students’experiences with geometric calculation with number (GCN) and their performance on GCN and geometric proof (doctoral dissertation,)The University of Michigan, Michigan.
  • Howe, K. R.(2001). Qualitative Educational Research: The Philosophical İssues. Wahington,DC: American Educational Research Association
  • İskenderoğlu, T. ve Baki, A. (2011). İlköğretim 8.sınıf matematik ders kitabındaki soruların PISA matematik yeterlik düzeylerine göre sınıflandırılması. Eğitim ve Bilim, 36(161), 287-301
  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn Mathematics. Washington, DC: National Academy Press.
  • Kinach, B. M. (2002). Understanding and learning-to-explain by representing mathematics: Epistemological dilemmas facing teacher educators in the secondary mathematics methods course. Journal of Mathematics Teacher Education, 5(2), 153186
  • Kumandaş, H., ve Kutlu, Ö. (2014). Yükseköğretime öğrenci seçmede ve yerleştirmede kullanılan sınavların oluşturduğu risk faktörlerinin okul başarısı üzerindeki etkileri. Türk Psikoloji Dergisi, 29(74), 15-31
  • McCrone, S. M. S. & Martin, T. S. (2009). Formal Proof in High School Geometry: Student Perceptions of Structure, Validity, and Purpose. Teaching Proving by Coordinating Aspects of Proofs with Students’ Abilities. In Stylianou, D. A.,. Blanton, M. L. & Knuth, E.J. (Eds.), Teaching and Learning Proof Across Grades: A K-16 Perspective, (pp. 204-221). New York/Washington, DC: Routledge/National Council of Teachers of Mathematics.
  • Milli Eğitim Bakanlığı [MEB]. (2013). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author
  • Petrou, M. & Goulding, M. (2011). Conceptualising teachers’ mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical Knowledge in Teaching, Mathematics Education Library 50 (pp. 9-25). London: Springer.
  • Pulley, C. A. (2010). Using instruction to investigate the effects of assessing reasoning tasks on students’ understanding of proof (doctoral dissertation). Illinois State University, Illinois, USA.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 67,4-14
  • Stylianides, A. J. and Stylianides, G. J. (2009). Proof constructions and evaluations. Educational Studies in Mathematics, 72, 237-253. doi: 10.1007/s10649-009-9191-3
  • Tiemann, G. E. (2011). The impact of a school-wide high school advanced placement program and culture on participating students’ high school achievement and engagement outcomes and first year university academic success (doctoral dissertation). University of Nebraska, USA.
  • Vale, C., McAndrew, A., and Krishnan, S. (2011). Connecting with the horizon: Developing teachers’ appreciation of mathematical structure. Journal of Mathematics Teacher Education, 14(3), 193-212.
  • Van de Walle, J. A. (2013). Elementary and middle school mathematics: Teaching developmentally (7th ed.). Boston: Allyn and Bacon.

Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers' Views

Yıl 2021, Cilt: 12 Sayı: 1, 221 - 243, 05.02.2021
https://doi.org/10.16949/turkbilmat.769347

Öz

Man tries to learn his surroundings by showing tendencies such as discovering, researching, asking questions, and noticing the relationships between objects. In other words, he tends to understand the world he lives in with various judgments. Therefore, it is important to raise individuals with advanced reasoning skills, mathematical thinking skills, proofing skills, problem solving skills, metacognitive knowledge, skills or qualifications. It can be said that this can only be possible with the right teaching models, methods, techniques and teachers who can use them in the most efficient way. In this context, the aim of the study is; To determine the difficulties in the preparation process for LGS, which has been implemented in our country since 2018, and the reflections of LGS on mathematics education applied in schools within the framework of the opinions of mathematics teachers and make suggestions accordingly. In the study, the screening model was adopted because it was tried to portray the thoughts of a certain group of participants on a subject. The sample of the study; It consists of 110 mathematics teachers who attended 8th grade classes in the 2018-2019 academic year. The data obtained from teachers' opinions were analyzed by content analysis method. According to this; The predominant opinion is that students have problems in understanding, interpreting, thinking and reasoning in the new examination system, however, because the textbooks and the exam are not parallel, teachers have various difficulties. In this direction, various activities can be organized to increase students' motivation and to gain reading habit. In addition, it is thought that it would be beneficial to provide teachers with in-service training for the exam.

Kaynakça

  • Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Eğitim Yayıncılığı
  • Başol, G., Balgalmış, E., Karlı, M. G., & Öz, F. B. (2016) TEOG sınavı matematik sorularının MEB kazanımlarına, TIMSS seviyelerine ve yenilenen Bloom Taksonomisine göre incelenmesi. Journal of Human Sciences, 13(3), 5945-5967.
  • Breakwell, G. M., Wright, D. B., & Smith, J. A. (2012). Research questions and planning research. Londra: SAGE Publications.
  • Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections (doctoral dissertation). Simon Fraser University, Canada.
  • Çepni, S.(2014). Araştırma ve proje çalışmalarına giriş (7.baskı). Trabzon: Celepler Matbaacılık
  • Francisco, J. M., & Maher, C. A. (2005). Conditions for promoting reasoning in problem solving: Insights from a longitudinal study. Journal of Mathematical Behavior, 24, 361–372.
  • Generazzo, S. D. (2011). Proof and reasoning in an inquiry-oriented class: The impact of classroom discourse (doctoral dissertation) University of New Hampshire, New Hampshire.
  • Goswami U. (2004). Neuroscience and education. British Journal of Educational Psychology, 74, 1–14
  • Güven B., Öztürk T. ve Demir E. (2014, Eylül). Ortaöğretim matematik öğretmen adaylarının ispat sürecindeki muhakeme hatalarının incelenmesi. XI. Ulusal Fen ve Matematik Eğitimi Kongresi’nde sunulan bildiri, Çukurova Üniversitesi, Adana, Türkiye.
  • Güven B. ve Demir E. ( 2015, Mayıs). Öğrencilerin İspat Sürecinde Yaptıkları Muhakame Hatalarına Yönelik Öğretmen Bilgisinin İncelenmesi. 2. Türk Bilgisayar ve Matematik Eğitimi Sempozyumu’nda sunulan bildiri, Adıyaman Üniversitesi, Adıyaman, Türkiye.
  • Healy L., & Hoyles C. (1998). Justifying and proving in school mathematics: Technical report on the nationwide survey. Institute of Education, University of London.
  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371-404). Charlotte, NC: Information Age Publishing.
  • Hsu, H. (2010). The study of Taiwanese students’experiences with geometric calculation with number (GCN) and their performance on GCN and geometric proof (doctoral dissertation,)The University of Michigan, Michigan.
  • Howe, K. R.(2001). Qualitative Educational Research: The Philosophical İssues. Wahington,DC: American Educational Research Association
  • İskenderoğlu, T. ve Baki, A. (2011). İlköğretim 8.sınıf matematik ders kitabındaki soruların PISA matematik yeterlik düzeylerine göre sınıflandırılması. Eğitim ve Bilim, 36(161), 287-301
  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn Mathematics. Washington, DC: National Academy Press.
  • Kinach, B. M. (2002). Understanding and learning-to-explain by representing mathematics: Epistemological dilemmas facing teacher educators in the secondary mathematics methods course. Journal of Mathematics Teacher Education, 5(2), 153186
  • Kumandaş, H., ve Kutlu, Ö. (2014). Yükseköğretime öğrenci seçmede ve yerleştirmede kullanılan sınavların oluşturduğu risk faktörlerinin okul başarısı üzerindeki etkileri. Türk Psikoloji Dergisi, 29(74), 15-31
  • McCrone, S. M. S. & Martin, T. S. (2009). Formal Proof in High School Geometry: Student Perceptions of Structure, Validity, and Purpose. Teaching Proving by Coordinating Aspects of Proofs with Students’ Abilities. In Stylianou, D. A.,. Blanton, M. L. & Knuth, E.J. (Eds.), Teaching and Learning Proof Across Grades: A K-16 Perspective, (pp. 204-221). New York/Washington, DC: Routledge/National Council of Teachers of Mathematics.
  • Milli Eğitim Bakanlığı [MEB]. (2013). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Yayınları.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author
  • Petrou, M. & Goulding, M. (2011). Conceptualising teachers’ mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical Knowledge in Teaching, Mathematics Education Library 50 (pp. 9-25). London: Springer.
  • Pulley, C. A. (2010). Using instruction to investigate the effects of assessing reasoning tasks on students’ understanding of proof (doctoral dissertation). Illinois State University, Illinois, USA.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 67,4-14
  • Stylianides, A. J. and Stylianides, G. J. (2009). Proof constructions and evaluations. Educational Studies in Mathematics, 72, 237-253. doi: 10.1007/s10649-009-9191-3
  • Tiemann, G. E. (2011). The impact of a school-wide high school advanced placement program and culture on participating students’ high school achievement and engagement outcomes and first year university academic success (doctoral dissertation). University of Nebraska, USA.
  • Vale, C., McAndrew, A., and Krishnan, S. (2011). Connecting with the horizon: Developing teachers’ appreciation of mathematical structure. Journal of Mathematics Teacher Education, 14(3), 193-212.
  • Van de Walle, J. A. (2013). Elementary and middle school mathematics: Teaching developmentally (7th ed.). Boston: Allyn and Bacon.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Alan Eğitimleri
Bölüm Araştırma Makaleleri
Yazarlar

Mustafa Obay 0000-0002-2537-9438

Enes Demir

Cahit Pesen 0000-0001-9071-2770

Yayımlanma Tarihi 5 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 1

Kaynak Göster

APA Obay, M., Demir, E., & Pesen, C. (2021). Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(1), 221-243. https://doi.org/10.16949/turkbilmat.769347
AMA Obay M, Demir E, Pesen C. Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views. Turkish Journal of Computer and Mathematics Education (TURCOMAT). Şubat 2021;12(1):221-243. doi:10.16949/turkbilmat.769347
Chicago Obay, Mustafa, Enes Demir, ve Cahit Pesen. “Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, sy. 1 (Şubat 2021): 221-43. https://doi.org/10.16949/turkbilmat.769347.
EndNote Obay M, Demir E, Pesen C (01 Şubat 2021) Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12 1 221–243.
IEEE M. Obay, E. Demir, ve C. Pesen, “Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), c. 12, sy. 1, ss. 221–243, 2021, doi: 10.16949/turkbilmat.769347.
ISNAD Obay, Mustafa vd. “Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12/1 (Şubat 2021), 221-243. https://doi.org/10.16949/turkbilmat.769347.
JAMA Obay M, Demir E, Pesen C. Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021;12:221–243.
MLA Obay, Mustafa vd. “Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), c. 12, sy. 1, 2021, ss. 221-43, doi:10.16949/turkbilmat.769347.
Vancouver Obay M, Demir E, Pesen C. Difficulties in the Preparation Process of High School Pass Entrance (LGS) and Their Reflections on Education in the Framework of Mathematics Teachers’ Views. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021;12(1):221-43.