Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine

Yıl 2022, Cilt: 4 Sayı: 1, 1 - 5, 29.06.2022
https://doi.org/10.51435/turkjac.1069294

Öz

The cyclically refreshable liquid silver amalgam film silver based electrode (R-AgLAFE) to study of electrode processes under the “cap-pair” conditions was used. The catalytic effect of cysteine on the Bi(III) ions electroreduction processes has been demonstrated. The magnitude of the catalytic effect is related to the formation of the Bi(III) – Hg(SR)2 active complexes mediating electron transfer equilibrium

Kaynakça

  • [1] C. N. Nunes, L. E. Pauluk, M. L. Felsner, V. Egéa dos Anjos, S. P. Quináia, Rapid screening method for detecting ethinyl estradiol in natural water employing voltammetry, J Anal Methods Chem, 2016, 1-7
  • [2] K. Sykut, G. Dalmata, B. Nowicka, J. Saba, Acceleration of electrode processes by organic compounds—“cap-pair” effect, J Electroanal Chem Interf Electrochem, 90, 1978, 299-302
  • [3] D. Dalmata, Kinetics and Mechanism of Zn(II) Ions Electroreduction Catalyzed by Organic Compounds, Electroanalysis, 17, 2005, 789-793
  • [4] P.A. Ajibade, F.P. Andrew, N.L. Botha, N. Solomane, Synthesis, Crystal Structures and Anticancer Studies of Morpholinyldithiocarbamato Cu(II) and Zn(II) Complexes, Molecules, 25, 2020, 3584 [5] E. V. Vinogradova, X. Zhang, D. Remillard, D.C. Lazar, R.M. Suciu, Y. Wang, B.F. Cravatt, An activity-guided map of electrophile-cysteine interactions in primary human T cells, Cell, 182, 2020, 1009-1026
  • [6] A. Nosal-Wiercińska, Catalytic activity of thiourea and its selected derivatives on electroreduction of In(III) in chlorates(VII) Cent Eur J Chem., 8, 2010, 1-11
  • [7] A. Nosal-Wiercińska, Intermolecular Interactions in Systems Containing Bi(III)–ClO4 –H2O–Selected Amino Acids in the Aspect of Catalysis of Bi(III) Electroreduction Electroanalysis, 26, 2014, 1013-1023
  • [8] S. Komorsky-Lovriˇc, M. Lovriˇc, M. Branica, Effect of IonicStrength on Bi(III) Reduction from Perchlorate Medium, J Electrochem Soc, 140, 1993, 1850
  • [9] O. Ikeda, K. Watanabe, Y. Taniguchi, H. Tamura, Adsorption Effect of Highly Polarizable Organic Compounds on Electrode Kinetics, Bull Chem Soc Jpn, 57, 1984, 3363-3367
  • [10] A. Nosal-Wiercińska, M. Martyna, V. Mirčeski, S. Skrzypek, Electroreduction of Bi (III) Ions at a Cyclically Renewable Liquid Silver Amalgam Film Electrode in the Presence of Methionine, Molecules, 25, 2021, 3972
  • [11] A. Nosal-Wiercińska, M. Martyna, M. Grochowski, B. Baś, First Electrochemical Studies on “CAP—PAIR” Effect for BI (III) Ion Electroreduction in the Presence of 2-Thiocytosine on Novel Cyclically Renewable Liquid Silver Amalgam Film Electrode (R-AgLAFE), J Electrochem Soc, 168, 2021, 066504
  • [12] A. J. L. Cooper, Biochemistry of sulfur containing aminoacids, Annu Rev Biochem, 52, 1983, 187-222
  • [13] R. Hell, Molecular physiology of plant sulfur metabolizm, Planta, 202, 1997, 138-148
  • [14] K. Saito, Regulation of sulfate transport and synthesis of sulfur-containingamino-acid (3) 200, Curr Opin Plant Biol, 3, 2002, 231-243
  • [15] M. Puka Sundvall, P. Eriksson, M. Nilsson, M. Saudberg, A. Lehmann, Neurotoxicity of cysteine: interaction with gluta mate, Brain Res, 705, 1995, 65-70
  • [16] R. Janaky, V. Varga, A. Hermann, P. Saransari, S. S. Oja, Mechanism of L-cysteine neurotoxicity, Neurochem Res, 25, 2000, 1397-1405
  • [17] J.W. Olney, C. Zorumski, M.T. Price, J. Labruyere, L-cysteine. a bicarbonate-sensitive endogenous excitotoxin, Science, 248, 1990, 596-599
  • [18] L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan, S. Yao, Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode, Electrochim Acta, 115, 2014, 471-477
  • [19] A. Nosal-Wiercińska, The Kinetics and Mechanism of the Electroreduction of Bi(III) Ions from Chlorates(VII) with Varied Water Activity, Electrochim Acta, 55, 2010, 5917-5921
  • [20] M. Stankovich, A. J. Bard, The electrochemistry of proteins and related substances I. Cystine and cysteine at mercury electrode, J Electroanal Chem, 75, 1977, 487-505
  • [21] M. Heyrovský, P. Mader, V. Veselá, and M. Fedurco, The reactions of cystine at mercury electrodes, J Electroanal Chem, 369, 1994, 53-70
  • [22] M. Heyrovský, P. Mader, S. Vavřička, V. Veselá, M. Fedurco, The anodic reactions at mercury electrodes due to cysteine, J Electroanal Chem, 430, 1977, 103-117
  • [23] A. Nosal-Wiercińska, The catalytic activity of cysteine and cystine on the electroreduction of Bi (III) ions, J Electroanal Chem, 662, 2011, 298-305
  • [24] R.A. Marcus, Dynamical effects in electron transfer reactions, J Chem Phys, 43, 1965, 4894-4914
  • [25] A. Nosal-Wiercińska, The influence of water activity on double layer parameters on the interface mercury/chlorates (VII) in the presence of cysteine, Croat Chem, 86, 2013, 159-164
  • [26] A. Nosal-Wiercińska, The role of active complexes in the multistep process of Bi (III) ion electroreduction in chlorate (VII) solutions with varied water activity in the presence of cystine, Electrochim Acta, 93, 2013, 397-403
Yıl 2022, Cilt: 4 Sayı: 1, 1 - 5, 29.06.2022
https://doi.org/10.51435/turkjac.1069294

Öz

Kaynakça

  • [1] C. N. Nunes, L. E. Pauluk, M. L. Felsner, V. Egéa dos Anjos, S. P. Quináia, Rapid screening method for detecting ethinyl estradiol in natural water employing voltammetry, J Anal Methods Chem, 2016, 1-7
  • [2] K. Sykut, G. Dalmata, B. Nowicka, J. Saba, Acceleration of electrode processes by organic compounds—“cap-pair” effect, J Electroanal Chem Interf Electrochem, 90, 1978, 299-302
  • [3] D. Dalmata, Kinetics and Mechanism of Zn(II) Ions Electroreduction Catalyzed by Organic Compounds, Electroanalysis, 17, 2005, 789-793
  • [4] P.A. Ajibade, F.P. Andrew, N.L. Botha, N. Solomane, Synthesis, Crystal Structures and Anticancer Studies of Morpholinyldithiocarbamato Cu(II) and Zn(II) Complexes, Molecules, 25, 2020, 3584 [5] E. V. Vinogradova, X. Zhang, D. Remillard, D.C. Lazar, R.M. Suciu, Y. Wang, B.F. Cravatt, An activity-guided map of electrophile-cysteine interactions in primary human T cells, Cell, 182, 2020, 1009-1026
  • [6] A. Nosal-Wiercińska, Catalytic activity of thiourea and its selected derivatives on electroreduction of In(III) in chlorates(VII) Cent Eur J Chem., 8, 2010, 1-11
  • [7] A. Nosal-Wiercińska, Intermolecular Interactions in Systems Containing Bi(III)–ClO4 –H2O–Selected Amino Acids in the Aspect of Catalysis of Bi(III) Electroreduction Electroanalysis, 26, 2014, 1013-1023
  • [8] S. Komorsky-Lovriˇc, M. Lovriˇc, M. Branica, Effect of IonicStrength on Bi(III) Reduction from Perchlorate Medium, J Electrochem Soc, 140, 1993, 1850
  • [9] O. Ikeda, K. Watanabe, Y. Taniguchi, H. Tamura, Adsorption Effect of Highly Polarizable Organic Compounds on Electrode Kinetics, Bull Chem Soc Jpn, 57, 1984, 3363-3367
  • [10] A. Nosal-Wiercińska, M. Martyna, V. Mirčeski, S. Skrzypek, Electroreduction of Bi (III) Ions at a Cyclically Renewable Liquid Silver Amalgam Film Electrode in the Presence of Methionine, Molecules, 25, 2021, 3972
  • [11] A. Nosal-Wiercińska, M. Martyna, M. Grochowski, B. Baś, First Electrochemical Studies on “CAP—PAIR” Effect for BI (III) Ion Electroreduction in the Presence of 2-Thiocytosine on Novel Cyclically Renewable Liquid Silver Amalgam Film Electrode (R-AgLAFE), J Electrochem Soc, 168, 2021, 066504
  • [12] A. J. L. Cooper, Biochemistry of sulfur containing aminoacids, Annu Rev Biochem, 52, 1983, 187-222
  • [13] R. Hell, Molecular physiology of plant sulfur metabolizm, Planta, 202, 1997, 138-148
  • [14] K. Saito, Regulation of sulfate transport and synthesis of sulfur-containingamino-acid (3) 200, Curr Opin Plant Biol, 3, 2002, 231-243
  • [15] M. Puka Sundvall, P. Eriksson, M. Nilsson, M. Saudberg, A. Lehmann, Neurotoxicity of cysteine: interaction with gluta mate, Brain Res, 705, 1995, 65-70
  • [16] R. Janaky, V. Varga, A. Hermann, P. Saransari, S. S. Oja, Mechanism of L-cysteine neurotoxicity, Neurochem Res, 25, 2000, 1397-1405
  • [17] J.W. Olney, C. Zorumski, M.T. Price, J. Labruyere, L-cysteine. a bicarbonate-sensitive endogenous excitotoxin, Science, 248, 1990, 596-599
  • [18] L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan, S. Yao, Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode, Electrochim Acta, 115, 2014, 471-477
  • [19] A. Nosal-Wiercińska, The Kinetics and Mechanism of the Electroreduction of Bi(III) Ions from Chlorates(VII) with Varied Water Activity, Electrochim Acta, 55, 2010, 5917-5921
  • [20] M. Stankovich, A. J. Bard, The electrochemistry of proteins and related substances I. Cystine and cysteine at mercury electrode, J Electroanal Chem, 75, 1977, 487-505
  • [21] M. Heyrovský, P. Mader, V. Veselá, and M. Fedurco, The reactions of cystine at mercury electrodes, J Electroanal Chem, 369, 1994, 53-70
  • [22] M. Heyrovský, P. Mader, S. Vavřička, V. Veselá, M. Fedurco, The anodic reactions at mercury electrodes due to cysteine, J Electroanal Chem, 430, 1977, 103-117
  • [23] A. Nosal-Wiercińska, The catalytic activity of cysteine and cystine on the electroreduction of Bi (III) ions, J Electroanal Chem, 662, 2011, 298-305
  • [24] R.A. Marcus, Dynamical effects in electron transfer reactions, J Chem Phys, 43, 1965, 4894-4914
  • [25] A. Nosal-Wiercińska, The influence of water activity on double layer parameters on the interface mercury/chlorates (VII) in the presence of cysteine, Croat Chem, 86, 2013, 159-164
  • [26] A. Nosal-Wiercińska, The role of active complexes in the multistep process of Bi (III) ion electroreduction in chlorate (VII) solutions with varied water activity in the presence of cystine, Electrochim Acta, 93, 2013, 397-403
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Research Articles
Yazarlar

Agnieszka Nosal-wiercińska 0000-0002-9851-9438

Marlena Martyna Bu kişi benim 0000-0002-0070-1910

Małgorzata Wiśniewska 0000-0003-4003-9877

Selehattin Yılmaz 0000-0003-4607-3523

Nuray Denizhan Bu kişi benim 0000-0003-4607-3523

Yayımlanma Tarihi 29 Haziran 2022
Gönderilme Tarihi 7 Şubat 2022
Kabul Tarihi 6 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 1

Kaynak Göster

APA Nosal-wiercińska, A., Martyna, M., Wiśniewska, M., Yılmaz, S., vd. (2022). Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. Turkish Journal of Analytical Chemistry, 4(1), 1-5. https://doi.org/10.51435/turkjac.1069294
AMA Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N. Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. TurkJAC. Haziran 2022;4(1):1-5. doi:10.51435/turkjac.1069294
Chicago Nosal-wiercińska, Agnieszka, Marlena Martyna, Małgorzata Wiśniewska, Selehattin Yılmaz, ve Nuray Denizhan. “Application of a Cyclic Renewable Silver Amalgam Liquid Film Electrode (R-AgLAFE) to Study the Electroreduction Processes of Bi(III) Ions in the Presence of Cysteine”. Turkish Journal of Analytical Chemistry 4, sy. 1 (Haziran 2022): 1-5. https://doi.org/10.51435/turkjac.1069294.
EndNote Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N (01 Haziran 2022) Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. Turkish Journal of Analytical Chemistry 4 1 1–5.
IEEE A. Nosal-wiercińska, M. Martyna, M. Wiśniewska, S. Yılmaz, ve N. Denizhan, “Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine”, TurkJAC, c. 4, sy. 1, ss. 1–5, 2022, doi: 10.51435/turkjac.1069294.
ISNAD Nosal-wiercińska, Agnieszka vd. “Application of a Cyclic Renewable Silver Amalgam Liquid Film Electrode (R-AgLAFE) to Study the Electroreduction Processes of Bi(III) Ions in the Presence of Cysteine”. Turkish Journal of Analytical Chemistry 4/1 (Haziran 2022), 1-5. https://doi.org/10.51435/turkjac.1069294.
JAMA Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N. Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. TurkJAC. 2022;4:1–5.
MLA Nosal-wiercińska, Agnieszka vd. “Application of a Cyclic Renewable Silver Amalgam Liquid Film Electrode (R-AgLAFE) to Study the Electroreduction Processes of Bi(III) Ions in the Presence of Cysteine”. Turkish Journal of Analytical Chemistry, c. 4, sy. 1, 2022, ss. 1-5, doi:10.51435/turkjac.1069294.
Vancouver Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N. Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. TurkJAC. 2022;4(1):1-5.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/