Biosynthesis and characterization of α-FeOOH nanoparticles using Isabella grape (Vitis Labrusca L.) extract
Yıl 2023,
Cilt: 5 Sayı: 1, 43 - 49, 30.06.2023
Hüseyin Özcan
,
Aslıhan Dalmaz
,
Mesut Özdinçer
,
Kübra Zenkin
,
Sefa Durmuş
Öz
The advancement of environmentally sustainable and eco-friendly approaches to nanoparticle synthesis has gained significant importance in analytical chemistry. This research examined the green synthesis of iron oxyhydroxide nanoparticles, utilizing Vitis labrusca L. extract as both a reducing and stabilizing agent. The application of this natural extract offers an environmentally friendly alternative to conventional chemical synthesis techniques and is expected to meet the growing demand for sustainable applications. The synthesized iron oxyhydroxide nanoparticles were characterized using advanced techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR), to verify their composition and structure. The findings reveal the successful synthesis of iron oxyhydroxide nanoparticles with a uniform size distribution and excellent stability.
Destekleyen Kurum
Düzce Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası
2022.05.03.1365
Teşekkür
This work is supported by Duzce University Scientific Project
Kaynakça
- [1] S. Nimesh, Nanotechnology: an introduction, Gene Therapy,2013, USA, Elsevier.
- [2] A. Afkhami, T. Madrakian, M. Ahmadi, Chapter 3 -Nanotechnology and analytical chemistry, Analytical
Nanochemistry, 2023, İndia, Elsevier.
- [3] A. Thakur, P. Thakur, S.M.P. Khurana, Synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [4] P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J Drug Deliv Sci
- [5] D. Gnanasangeetha, M. Suresh, A review on green synthesis of metal and metal oxide nanoparticles, Nat Environ Pollut Technol, 19, 2020, 1789-1800.
- [6] M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology, SN Appl Sci, 1(6), 2019.
- [7] S. Durmus, A. Dalmaz, M. Ozdincer, S. Sivrikaya, Preparation of cerium oxide nanoparticles: an efficient catalyst to the synthesis of dimeric disulphide Schiff bases, CBU J of Sci, 13 (1), 2017, 25-30.
- [8] A. Dalmaz, S. Durmuş, G. Dülger, M. Alpay, Thio-Schiff bases derived from 2,2’-disulfanedianiline via nanocerium oxide: antimicrobial effect and antiproliferative effects in melanoma cells, Turk J Chem, 46, 2022, 1055–1068.
- [9] A. Dalmaz, S. Durmuş, G. Dulger, B. Dülger, Synthesis and characterization of dimeric thio-Schiff bases by nano cerium oxide and examination of their antimicrobial activities, SAUJS, 25, 2021, 364–378.
- [10] S. Durmus, A. Dalmaz, E. Calıskan, G. Dulger, Synthesis and characterization of disulfide-Schiff base derivatives and in vitroinvestigation of their antibacterial activity against multidrugresistant acinetobacter baumannii isolates: a new study, Russ JGen Chem, 88, 2018, 305–311.
- [11] L. Dong, G. Chen, G. Liu, X. Huang, X.M. Xu, L. Li, Y. Zhang, J. Wang, M. Jin, D. Xu, A.M. Abd El-Aty, A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry, Crit Rev Food Sci Nutr, 2022, 1-29.
- [12] M. Özdinçer, S. Durmuş, A. Dalmaz, Magnetic spinel-type CoFe2O4 nanoparticles: synthesis and investigation of structural, morphological properties, SDU Fen Bilimleri Enstitüsü Dergisi,
21, 2017, 311.
- [13] I. Dumitru, O.F. Caltun, Ferrites use in magnetic recording, in:Ferrite Nanostructured Magnetic Materials, Elsevier, 2023, 733–745.
- [14] M. Imran, A.A. Chaudhary, S. Ahmed, Md.M. Alam, A. Khan, N. Zouli, J. Hakami, H.A. Rudayni, S.-U.-D. Khan, Iron oxide nanoparticle-based ferro-nanofluids for advanced technological applications, Molecules, 27, 2022, 7931.
- [15] Y. Li, L. Wang, A. Orza, H. Mao, Iron oxide nanoparticles for magnetic resonance imaging, Encyclopedia of Nanomaterials, 3,2023, 356–373.
- [16] L. Chen, J. Xie, H. Wu, F. Zang, M. Ma, Z. Hua, N. Gu, Y. Zhang, Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe, Colloids Surf B Biointerfaces, 161, 2018, 339–346.
- [17] S.R. Safi, K. Senmoto, T. Gotoh, T. Iizawa, S. Nakai, The effect of γ-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH gel composite, Sci Rep, 9, 2019, 11909.
- [18] N. Guo, X. Lv, Q. Li, T. Ren, H. Song, Q. Yang, Removal of hexavalent chromium from aqueous solution by mesoporous αFeOOH nanoparticles: Performance and mechanism, Microporous Mesoporous Mater, 299, 2020, 110101.
- [19] L. Krishnia, P. Thakur, A. Thakur, Synthesis of nanoparticles by physical route, in: synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [20] S. Taneja, P. Punia, P. Thakur, A. Thakur, Synthesis of nanomaterials by chemical route, in: synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [21] A. Thakur, D. Chahar, P. Thakur, Synthesis of nanomaterials by biological route, in: synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [22] X. Liu, G. Qiu, A. Yan, Z. Wang, X. Li, Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines, J Alloys Compd, 433, 2007, 216–220.
- [23] M.A. Dar, S.K. Kulkarni, Z.A. Ansari, S.G. Ansari, H.-S. Shin, Preparation and characterization of α-FeOOH and α-Fe2O3 by sol– gel method, J Mater Sci, 40, 2005, 3031–3034.
- [24] A. Gour, N.K. Jain, Advances in green synthesis of nanoparticles, Artif Cells Nanomed Biotechnol, 47, 2019, 844–851.
- [25] N.A.I. M. Ishak, S.K. Kamarudin, S.N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Mater Res Express, 6, 2019, 112004.
- [26] M. Kaur, A. Gautam, P. Guleria, K. Singh, V. Kumar, Green synthesis of metal nanoparticles and their environmental applications, Curr Opin Environ Sci Health, 29, 2022, 100390.
- [27] R. Bekem, S. Durmuş, A. Dalmaz, G. Dulger, Agaricus bisporus ekstraktı kullanılarak Zno nanopartiküllerinin yeşil sentezi: yapısal karakterizasyonu ve biyolojik aktivitelerinin incelenmesi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11, 2023, 551–562.
- [28] S. Marouzi, Z. Sabouri, M. Darroudi, Greener synthesis and medical applications of metal oxide nanoparticles, Ceram Int, 47, 2021, 19632–19650.
- [29] L. Soltys, O. Olkhovyy, T. Tatarchuk, M. Naushad, Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials, Magnetochemistry. 7, 2021, 145.
- [30] M. Jamzad, B. Mokhtari, P.S. Mirkhani, Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract, Chemical Papers, 2022.
- [31] H. Tahmaz, D.Y. Kusku, G. Soylemezoglu, H. Celik, Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes, J Tekirdag Agricultural Faculty, 19, 2022, 318–331.
- [32] S. Aydın, C. Demir Gökışık, Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar, Int J Chem Technol, 3, 2019, 11–16.
- [33] A. Shamaa Anjum, A. Rajasekar, S. Rajeshkumar, Synthesis and characterization of grape seed mediated titanium dioxide nanoparticles: An in vitro study, Plant Cell Biotechnol Mol Biol,
21, 2020, 17–23.
- [34] C.S. Raota, A.F. Cerbaro, M. Salvador, A.P.L. Delamare, S. Echeverrigaray, J. Da Silva Crespo, T.B. Da Silva, M. Giovanela, Green synthesis of silver nanoparticles using an extract of Ives cultivar (Vitis labrusca) pomace: Characterization and application in wastewater disinfection, J Environ Chem Eng, 7, 2019.
- [35] N.H. Arbain, J. Salimon, Synthesis and characterization of ester trimethylolpropane based jatropha curcas oil as biolubricant base stocks, J Sci Technol, 2(2), 2010.
- [36] M.R. Kamli, E.A. Alzahrani, S.M. Albukhari, A. Ahmad, J.S.M. Sabir, M.A. Malik, Combination effect of novel bimetallic Ag-Ni nanoparticles with fluconazole against candida albicans, J Fungi, 8, 2022, 733.
- [37] H.D. Ruan, R.L. Frost, J.T. Kloprogge, L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochim Acta A Mol Biomol Spectrosc, 58, 2002,967–981.
- [38] J.Z. Marinho, R.H.O. Montes, A.P. de Moura, E. Longo, J.A. Varela, R.A.A. Munoz, R.C. Lima, Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors, Mater Res Bull, 49, 2014, 572–576.
- [39] D. Alonso-Domínguez, M. Pico, I. Álvarez-Serrano, M. López, New Fe2O3-Clay@C nanocomposite anodes for li-ion batteries obtained by facile hydrothermal processes, Nanomaterials, 8, 2018, 808.
- [40] H. Gupta, R. Kumar, H.-S. Park, B.-H. Jeon, Photocatalytic efficiency of iron oxide nanoparticles for the degradation of priority pollutant anthracene, Geosystem Engineering, 20, 2017, 21–27
Yıl 2023,
Cilt: 5 Sayı: 1, 43 - 49, 30.06.2023
Hüseyin Özcan
,
Aslıhan Dalmaz
,
Mesut Özdinçer
,
Kübra Zenkin
,
Sefa Durmuş
Proje Numarası
2022.05.03.1365
Kaynakça
- [1] S. Nimesh, Nanotechnology: an introduction, Gene Therapy,2013, USA, Elsevier.
- [2] A. Afkhami, T. Madrakian, M. Ahmadi, Chapter 3 -Nanotechnology and analytical chemistry, Analytical
Nanochemistry, 2023, İndia, Elsevier.
- [3] A. Thakur, P. Thakur, S.M.P. Khurana, Synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [4] P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J Drug Deliv Sci
- [5] D. Gnanasangeetha, M. Suresh, A review on green synthesis of metal and metal oxide nanoparticles, Nat Environ Pollut Technol, 19, 2020, 1789-1800.
- [6] M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology, SN Appl Sci, 1(6), 2019.
- [7] S. Durmus, A. Dalmaz, M. Ozdincer, S. Sivrikaya, Preparation of cerium oxide nanoparticles: an efficient catalyst to the synthesis of dimeric disulphide Schiff bases, CBU J of Sci, 13 (1), 2017, 25-30.
- [8] A. Dalmaz, S. Durmuş, G. Dülger, M. Alpay, Thio-Schiff bases derived from 2,2’-disulfanedianiline via nanocerium oxide: antimicrobial effect and antiproliferative effects in melanoma cells, Turk J Chem, 46, 2022, 1055–1068.
- [9] A. Dalmaz, S. Durmuş, G. Dulger, B. Dülger, Synthesis and characterization of dimeric thio-Schiff bases by nano cerium oxide and examination of their antimicrobial activities, SAUJS, 25, 2021, 364–378.
- [10] S. Durmus, A. Dalmaz, E. Calıskan, G. Dulger, Synthesis and characterization of disulfide-Schiff base derivatives and in vitroinvestigation of their antibacterial activity against multidrugresistant acinetobacter baumannii isolates: a new study, Russ JGen Chem, 88, 2018, 305–311.
- [11] L. Dong, G. Chen, G. Liu, X. Huang, X.M. Xu, L. Li, Y. Zhang, J. Wang, M. Jin, D. Xu, A.M. Abd El-Aty, A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry, Crit Rev Food Sci Nutr, 2022, 1-29.
- [12] M. Özdinçer, S. Durmuş, A. Dalmaz, Magnetic spinel-type CoFe2O4 nanoparticles: synthesis and investigation of structural, morphological properties, SDU Fen Bilimleri Enstitüsü Dergisi,
21, 2017, 311.
- [13] I. Dumitru, O.F. Caltun, Ferrites use in magnetic recording, in:Ferrite Nanostructured Magnetic Materials, Elsevier, 2023, 733–745.
- [14] M. Imran, A.A. Chaudhary, S. Ahmed, Md.M. Alam, A. Khan, N. Zouli, J. Hakami, H.A. Rudayni, S.-U.-D. Khan, Iron oxide nanoparticle-based ferro-nanofluids for advanced technological applications, Molecules, 27, 2022, 7931.
- [15] Y. Li, L. Wang, A. Orza, H. Mao, Iron oxide nanoparticles for magnetic resonance imaging, Encyclopedia of Nanomaterials, 3,2023, 356–373.
- [16] L. Chen, J. Xie, H. Wu, F. Zang, M. Ma, Z. Hua, N. Gu, Y. Zhang, Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe, Colloids Surf B Biointerfaces, 161, 2018, 339–346.
- [17] S.R. Safi, K. Senmoto, T. Gotoh, T. Iizawa, S. Nakai, The effect of γ-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH gel composite, Sci Rep, 9, 2019, 11909.
- [18] N. Guo, X. Lv, Q. Li, T. Ren, H. Song, Q. Yang, Removal of hexavalent chromium from aqueous solution by mesoporous αFeOOH nanoparticles: Performance and mechanism, Microporous Mesoporous Mater, 299, 2020, 110101.
- [19] L. Krishnia, P. Thakur, A. Thakur, Synthesis of nanoparticles by physical route, in: synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [20] S. Taneja, P. Punia, P. Thakur, A. Thakur, Synthesis of nanomaterials by chemical route, in: synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [21] A. Thakur, D. Chahar, P. Thakur, Synthesis of nanomaterials by biological route, in: synthesis and applications of nanoparticles, 2022, Singapore, Springer Nature Singapore.
- [22] X. Liu, G. Qiu, A. Yan, Z. Wang, X. Li, Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines, J Alloys Compd, 433, 2007, 216–220.
- [23] M.A. Dar, S.K. Kulkarni, Z.A. Ansari, S.G. Ansari, H.-S. Shin, Preparation and characterization of α-FeOOH and α-Fe2O3 by sol– gel method, J Mater Sci, 40, 2005, 3031–3034.
- [24] A. Gour, N.K. Jain, Advances in green synthesis of nanoparticles, Artif Cells Nanomed Biotechnol, 47, 2019, 844–851.
- [25] N.A.I. M. Ishak, S.K. Kamarudin, S.N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Mater Res Express, 6, 2019, 112004.
- [26] M. Kaur, A. Gautam, P. Guleria, K. Singh, V. Kumar, Green synthesis of metal nanoparticles and their environmental applications, Curr Opin Environ Sci Health, 29, 2022, 100390.
- [27] R. Bekem, S. Durmuş, A. Dalmaz, G. Dulger, Agaricus bisporus ekstraktı kullanılarak Zno nanopartiküllerinin yeşil sentezi: yapısal karakterizasyonu ve biyolojik aktivitelerinin incelenmesi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11, 2023, 551–562.
- [28] S. Marouzi, Z. Sabouri, M. Darroudi, Greener synthesis and medical applications of metal oxide nanoparticles, Ceram Int, 47, 2021, 19632–19650.
- [29] L. Soltys, O. Olkhovyy, T. Tatarchuk, M. Naushad, Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials, Magnetochemistry. 7, 2021, 145.
- [30] M. Jamzad, B. Mokhtari, P.S. Mirkhani, Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract, Chemical Papers, 2022.
- [31] H. Tahmaz, D.Y. Kusku, G. Soylemezoglu, H. Celik, Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes, J Tekirdag Agricultural Faculty, 19, 2022, 318–331.
- [32] S. Aydın, C. Demir Gökışık, Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar, Int J Chem Technol, 3, 2019, 11–16.
- [33] A. Shamaa Anjum, A. Rajasekar, S. Rajeshkumar, Synthesis and characterization of grape seed mediated titanium dioxide nanoparticles: An in vitro study, Plant Cell Biotechnol Mol Biol,
21, 2020, 17–23.
- [34] C.S. Raota, A.F. Cerbaro, M. Salvador, A.P.L. Delamare, S. Echeverrigaray, J. Da Silva Crespo, T.B. Da Silva, M. Giovanela, Green synthesis of silver nanoparticles using an extract of Ives cultivar (Vitis labrusca) pomace: Characterization and application in wastewater disinfection, J Environ Chem Eng, 7, 2019.
- [35] N.H. Arbain, J. Salimon, Synthesis and characterization of ester trimethylolpropane based jatropha curcas oil as biolubricant base stocks, J Sci Technol, 2(2), 2010.
- [36] M.R. Kamli, E.A. Alzahrani, S.M. Albukhari, A. Ahmad, J.S.M. Sabir, M.A. Malik, Combination effect of novel bimetallic Ag-Ni nanoparticles with fluconazole against candida albicans, J Fungi, 8, 2022, 733.
- [37] H.D. Ruan, R.L. Frost, J.T. Kloprogge, L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochim Acta A Mol Biomol Spectrosc, 58, 2002,967–981.
- [38] J.Z. Marinho, R.H.O. Montes, A.P. de Moura, E. Longo, J.A. Varela, R.A.A. Munoz, R.C. Lima, Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors, Mater Res Bull, 49, 2014, 572–576.
- [39] D. Alonso-Domínguez, M. Pico, I. Álvarez-Serrano, M. López, New Fe2O3-Clay@C nanocomposite anodes for li-ion batteries obtained by facile hydrothermal processes, Nanomaterials, 8, 2018, 808.
- [40] H. Gupta, R. Kumar, H.-S. Park, B.-H. Jeon, Photocatalytic efficiency of iron oxide nanoparticles for the degradation of priority pollutant anthracene, Geosystem Engineering, 20, 2017, 21–27