Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz Stresi Koşullarında Havuçta (Daucus carota L.) Eksojen Silikon Dioksit Uygulamaları

Yıl 2021, Cilt: 8 Sayı: 4, 1094 - 1102, 24.10.2021
https://doi.org/10.30910/turkjans.957578

Öz

Bu çalışmada, tuz stresi koşullarında (150, 200 mM NaCl) havuç tohumlarının çimlenme parametreleri üzerine dışarıdan silikon dioksit uygulamalarının (0.5, 1, 1.5 mM SiO2) etkileri araştırılmıştır. Bu amaçla çimlenme yüzdesi (ÇY), ortalama çimlenme süresi (OÇS), çimlenme oranı katsayısı (ÇOK), çimlenme hız indeksi (ÇHI), çimlenme indeksi (ÇI), fide güç indeksi (FGI), yaprak sayısı, sürgün ve kök uzunluğu (mm) ve bitki taze ağırlığı (g) belirlenmiştir. Tuz stresine duyarlı sarı havucun çimlenme parametreleri 150 mM NaCl uygulamasından olumsuz etkilenmiş, sürgün ve kök uzunlukları %80 oranında azalmıştır. Özellikle SiO2 uygulamaları bu çeşit için çimlenme parametrelerini olumlu etkilemiştir. 150 mM NaCl uygulamasında 0,5 mM SiO2 ile muamele edilen tohumların çimlenmesi yaklaşık iki kat (%23) artmış ve kontrol grubunda çimlenmenin gerçekleşmediği 200 mM NaCl'de %15 çimlenme elde edilmiştir. Siyah havuç çeşidi tuz stresini tolere etmesine rağmen, silikon dioksit uygulamalarının çimlenme ve gelişme üzerinde teşvik edici bir etkisi olmuştur. Siyah havuç tohumlarında özellikle 1.5 mM SiO2 uygulamasının çimlenme parametrelerine olumlu etki yaptığı belirlenmiştir. 150 mM NaCl'de 1.5 mM SiO2 ile muamele edilen tohumlarda çimlenme yüzdesi %93'e, 200 mM NaCl konsantrasyonunda ise %86'ya çıkarak kontrol grubuna göre daha yüksek değerlere ulaşmıştır. Sonuçlar, uygun SiO2 konsantrasyonları ile ön işlemin çimlenme performansını önemli ölçüde iyileştirdiğini ve tuz stresine toleransı desteklediğini göstermiştir.

Kaynakça

  • Al-aghabary, K., Zhu Z. and Shi Q. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12): 2101-2115.
  • Ali, L. G., Nulit, R., Ibrahim, M. H. and Yien, C. Y. S. 2021. Potassium nitrate and silicon dioxide priming improve germination, seedling growth and protective enzymes of rice var. FARO44 under drought. Journal of Plant Nutrition, 1-14.
  • Alves, R. D. C., Nicolau, M. C. M., Checchio, M. V., Sousa Junior, G. D. S., Oliveira, F. D. A. D., Prado, R. M. and Gratão, P. L. 2020. Salt stress alleviation by seed priming with silicon in lettuce seedlings: an approach based on enhancing antioxidant responses. Bragantia, (AHEAD).
  • Baki, A.A. and Anderson, J. D. 1973. Vigour determination in soybean by multiple criteria. Crop Sci 13:630-633 Bano, S., Ashraf, M. and Akram, N. A. 2014. Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). Journal of Plant Interactions, 9(1): 324-329.
  • Benech Arnold, R. L., Fenner, M. and Edwards, P. J. 1991. Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytologist, 118(2): 339-347.
  • Bolton, A. and Simon, P. 2019. Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience, 54(1): 38-44.
  • Chung, Y. S., Kim, K. S., Hamayun, M. and Kim, Y. 2020. Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10: 1725.
  • Ellis, R. H. and Roberts, E. H. 1981. The Quantification of Ageing and Survival in Orthodox Seeds. Seed Science and Technology, 9: 373-409.
  • Esechie, H. A. 1994. Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172(3): 194-199.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H. and van Genuchten, M. T. 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231: 106022.
  • Gosh, P., Dash, P. K., Rituraj, S. and Mannan, M. A. 2014. Effect of salinity on germination, growth and yield of radish (Raphanus sativus L.) varieties. International Journal of Biosciences, 5(1): 37-48.
  • Gou, T., Chen, X., Han, R., Liu, J., Zhu, Y. and Gong, H. 2020. Silicon can improve seed germination and ameliorate oxidative damage of bud seedlings in cucumber under salt stress. Acta Physiologiae Plantarum, 42(1): 1-11.
  • Guntzer, F., Keller, C. and Meunier, J. D. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1): 201-213.
  • Haghighi, M., Afifipour, Z. and Mozafarian, M. 2012. The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Vegetable Crops Research Bulletin, 76: 119.
  • Hubbard, M., Germida, J. and Vujanovic, V. 2012. Fungal endophytes improve wheat seed germination under heat and drought stress. Botany, 90(2): 137-149.
  • ISTA 1985. International Rules for Seed Testing. Seed Science Technology 13.
  • Jahan, I., Hossain, M. M. and Karim, M. R. 2019. Effect of salinity stress on plant growth and root yield of carrot. Progressive Agriculture, 30(3): 263-274.
  • Khan, W. U. D., Aziz, T., Waraich, E. A. and Khalid, M. 2015. Silicon application improves germination and vegetative growth in maize grown under salt stress. Pakistan Journal of Agricultural Sciences, 52(4): 937-944.
  • Kotowski, F. 1926. Temperature relations to germination of vegetable seed. Proceedings of the American Society for Horticultural Science, 23: 176-184.
  • Lee, S. K., Sohn, E. Y., Hamayun, M., Yoon, J. Y. and Lee, I. J. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry systems, 80(3): 333-340.
  • Liang, Y., Chen, Q., Liu, Q., Zhang, W. and Ding R. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of saltstressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160: 1157-1164.
  • Ma, J. F. and Yamaji, N. 2008. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19): 3049-3057.
  • Murillo‐Amador, B., Yamada, S., Yamaguchi, T., Rueda‐Puente, E., Ávila‐Serrano, N., García‐Hernández, J. L., ... and Nieto‐Garibay, A. 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 193(6): 413-421.
  • Nasircilar A.G., Ulukapi K. and Kurt Z. 2019. Determination of Salt Tolerance Levels of Carrot (Daucus carota L.) Cultivars and Effects of Salicylic Acid Application on Germination Parameters in Saline Conditions, 1th International Congress of the Turkish Journal of Agriculture-Food Science and Technology, Antalya, vol.1, pp.145-152.
  • Shannon, M. and Grieve, C. 1998. Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78(1-4): 5-38. Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H. and Gong, H. 2014. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 78: 27-36.
  • Sivritepe, H. Ö. 2012. Tohum Gücünün Değerlendirilmesi. Alatarım Dergisi, 11(2): 33-44. Soylemezoglu, G., Demir, K., Inal, A. and Gunes, A. 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 123: 240-246.
  • Sun, Y., Xu, J., Miao, X., Lin, X., Liu, W. and Ren, H. 2021. Effects of exogenous silicon on maize seed germination and seedling growth. Scientific Reports, 11(1): 1-13.
  • Zhang, X. H., Zhou, D., Cui, J. J., Ma, H. L., Lang, D. Y., Wu, X. L., ... and Li, M. 2015. Effect of silicon on seed germination and the physiological characteristics of Glycyrrhizauralensis under different levels of salinity. The Journal of Horticultural Science and Biotechnology, 90(4): 439-443.
  • Zia, Z., Bakhat, H. F., Saqib, Z. A., Shah, G. M., Fahad, S., Ashraf, M. R., ... and Shahid, M. 2017. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety, 144: 11-18.

Exogenous Silicon Dioxide Treatment in Carrot (Daucus carota L.) Under Salt Stress Conditions

Yıl 2021, Cilt: 8 Sayı: 4, 1094 - 1102, 24.10.2021
https://doi.org/10.30910/turkjans.957578

Öz

In this study, the effects of exogenous silicon dioxide applications (0.5, 1, 1.5 mM SiO2) on the germination parameters of carrot seeds were investigated under salt stress conditions (150, 200 mM NaCl). For this purpose, germination percentage (GP), mean germination time (MGT), germination rate coefficient (CVG), germination rate index (GRI), germination index (GI), seedling viability index (SVI), leaf number, shoot and root lengths (mm) and plant fresh weight (g) were determined.
Germination parameters of yellow carrot, sensitive to salt stress, were adversely affected by 150 mM NaCl application and shoot and root lengths were reduced by 80%. Especially SiO2 applications had a positive effect on germination parameters for the cultivar. In 150 mM NaCl application, the germination of the seeds treated with 0.5 mM SiO2 increased approximately two times (23%), and 15% germination was obtained in 200 mM NaCl, which did not germinate in the control. Although the black carrot cultivar tolerated salt stress, silicon dioxide treatments had a stimulating effect on germination and development. It was determined that especially 1.5 mM SiO2 application in black carrot seeds had a positive effect on germination parameters. Germination percentage increased to 93% in seeds treated with 1.5 mM SiO2 in 150 mM NaCl, and 86% at 200 mM NaCl concentration, reaching higher values compared to the control group. The results showed that pre-treatment with appropriate silicon concentrations significantly improved germination performance and promoted tolerance to the salt stress.

Kaynakça

  • Al-aghabary, K., Zhu Z. and Shi Q. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12): 2101-2115.
  • Ali, L. G., Nulit, R., Ibrahim, M. H. and Yien, C. Y. S. 2021. Potassium nitrate and silicon dioxide priming improve germination, seedling growth and protective enzymes of rice var. FARO44 under drought. Journal of Plant Nutrition, 1-14.
  • Alves, R. D. C., Nicolau, M. C. M., Checchio, M. V., Sousa Junior, G. D. S., Oliveira, F. D. A. D., Prado, R. M. and Gratão, P. L. 2020. Salt stress alleviation by seed priming with silicon in lettuce seedlings: an approach based on enhancing antioxidant responses. Bragantia, (AHEAD).
  • Baki, A.A. and Anderson, J. D. 1973. Vigour determination in soybean by multiple criteria. Crop Sci 13:630-633 Bano, S., Ashraf, M. and Akram, N. A. 2014. Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). Journal of Plant Interactions, 9(1): 324-329.
  • Benech Arnold, R. L., Fenner, M. and Edwards, P. J. 1991. Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytologist, 118(2): 339-347.
  • Bolton, A. and Simon, P. 2019. Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience, 54(1): 38-44.
  • Chung, Y. S., Kim, K. S., Hamayun, M. and Kim, Y. 2020. Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10: 1725.
  • Ellis, R. H. and Roberts, E. H. 1981. The Quantification of Ageing and Survival in Orthodox Seeds. Seed Science and Technology, 9: 373-409.
  • Esechie, H. A. 1994. Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172(3): 194-199.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H. and van Genuchten, M. T. 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231: 106022.
  • Gosh, P., Dash, P. K., Rituraj, S. and Mannan, M. A. 2014. Effect of salinity on germination, growth and yield of radish (Raphanus sativus L.) varieties. International Journal of Biosciences, 5(1): 37-48.
  • Gou, T., Chen, X., Han, R., Liu, J., Zhu, Y. and Gong, H. 2020. Silicon can improve seed germination and ameliorate oxidative damage of bud seedlings in cucumber under salt stress. Acta Physiologiae Plantarum, 42(1): 1-11.
  • Guntzer, F., Keller, C. and Meunier, J. D. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1): 201-213.
  • Haghighi, M., Afifipour, Z. and Mozafarian, M. 2012. The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Vegetable Crops Research Bulletin, 76: 119.
  • Hubbard, M., Germida, J. and Vujanovic, V. 2012. Fungal endophytes improve wheat seed germination under heat and drought stress. Botany, 90(2): 137-149.
  • ISTA 1985. International Rules for Seed Testing. Seed Science Technology 13.
  • Jahan, I., Hossain, M. M. and Karim, M. R. 2019. Effect of salinity stress on plant growth and root yield of carrot. Progressive Agriculture, 30(3): 263-274.
  • Khan, W. U. D., Aziz, T., Waraich, E. A. and Khalid, M. 2015. Silicon application improves germination and vegetative growth in maize grown under salt stress. Pakistan Journal of Agricultural Sciences, 52(4): 937-944.
  • Kotowski, F. 1926. Temperature relations to germination of vegetable seed. Proceedings of the American Society for Horticultural Science, 23: 176-184.
  • Lee, S. K., Sohn, E. Y., Hamayun, M., Yoon, J. Y. and Lee, I. J. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry systems, 80(3): 333-340.
  • Liang, Y., Chen, Q., Liu, Q., Zhang, W. and Ding R. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of saltstressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160: 1157-1164.
  • Ma, J. F. and Yamaji, N. 2008. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19): 3049-3057.
  • Murillo‐Amador, B., Yamada, S., Yamaguchi, T., Rueda‐Puente, E., Ávila‐Serrano, N., García‐Hernández, J. L., ... and Nieto‐Garibay, A. 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 193(6): 413-421.
  • Nasircilar A.G., Ulukapi K. and Kurt Z. 2019. Determination of Salt Tolerance Levels of Carrot (Daucus carota L.) Cultivars and Effects of Salicylic Acid Application on Germination Parameters in Saline Conditions, 1th International Congress of the Turkish Journal of Agriculture-Food Science and Technology, Antalya, vol.1, pp.145-152.
  • Shannon, M. and Grieve, C. 1998. Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78(1-4): 5-38. Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H. and Gong, H. 2014. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 78: 27-36.
  • Sivritepe, H. Ö. 2012. Tohum Gücünün Değerlendirilmesi. Alatarım Dergisi, 11(2): 33-44. Soylemezoglu, G., Demir, K., Inal, A. and Gunes, A. 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 123: 240-246.
  • Sun, Y., Xu, J., Miao, X., Lin, X., Liu, W. and Ren, H. 2021. Effects of exogenous silicon on maize seed germination and seedling growth. Scientific Reports, 11(1): 1-13.
  • Zhang, X. H., Zhou, D., Cui, J. J., Ma, H. L., Lang, D. Y., Wu, X. L., ... and Li, M. 2015. Effect of silicon on seed germination and the physiological characteristics of Glycyrrhizauralensis under different levels of salinity. The Journal of Horticultural Science and Biotechnology, 90(4): 439-443.
  • Zia, Z., Bakhat, H. F., Saqib, Z. A., Shah, G. M., Fahad, S., Ashraf, M. R., ... and Shahid, M. 2017. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety, 144: 11-18.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Ayşe Gül Nasırcılar 0000-0002-2602-804X

Kamile Ulukapı 0000-0001-8184-8967

Hatice Üstüner 0000-0002-1439-8502

Yayımlanma Tarihi 24 Ekim 2021
Gönderilme Tarihi 25 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Nasırcılar, A. G., Ulukapı, K., & Üstüner, H. (2021). Exogenous Silicon Dioxide Treatment in Carrot (Daucus carota L.) Under Salt Stress Conditions. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(4), 1094-1102. https://doi.org/10.30910/turkjans.957578