Research Article
BibTex RIS Cite

Üzüm çekirdeği tozu ve ununun lipofilik vitamin ve fitosterol içeriklerinin belirlenmesi

Year 2022, Volume: 9 Issue: 4, 1152 - 1156, 18.10.2022
https://doi.org/10.30910/turkjans.1104959

Abstract

Bu çalışmada üzüm çekirdeği tozu ve ununun lipofilik (ADEK) vitaminler, fitosteroller ayrıca besin madde kompozisyonlarının belirlenmesi amaçlanmıştır. Üzüm çekirdeği ve unu (yağı alınmış ve peletlenmiş) öğütüldükten ve toz haline getirildikten sonra analiz edilmiştir. Analiz sonuçlarına göre üzüm çekirdeği tozu ve ununda kuru madde, ham protein, ham yağ, ham selüloz ve ham kül değerleri sırasıyla % 91.48 ve 91.39; 19.11 ve 18.83; 6.80 ve 6.45; 4.43 ve 4.34; 6.71 ve 6.45 olarak belirlenmiştir. Üzüm çekirdeği tozu ve ununun vitamin içeriklerinde sırasıyla D3 vitamini 7.89 ve 7.63 μg/g, α-Tokoferol ise 28.26 ve 11.03 olarak tespit edilmiştir. Ergosterol, stigmasterol ve β-sitosterol gibi fitosterol içerikleri sırayla 2.76 ve 36.03; 2757.76 ve 214.03; 2951.33 ve 1631.10 μg/g olarak belirlenmiştir. Analiz sonuçlarına göre üzüm çekirdeğinin besin madde bileşimleri, lipofilik vitamin (ADEK) ve fitosterol değerlerinin aynı ürünün (çekirdek) farklı kullanımlarına bağlı olarak değişiklik gösterebileceği kanısına varılmıştır.

References

  • Abu Hafsa, S.H., and İbrahim, S.A., 2018. Effect of dietary polyphenol rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. Journal of Animal Physiology and Animal Nutrition, 102:1: 268-275.
  • Adamez, J.D., Samino, E.G., Sanchez, E.V., and Gonzalez-Gomez, D., 2012. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control, 24: 136–141.
  • AOAC. Association of Official Analytical Chemists. Official Method of Analysis. 15th.ed. Washington, DC. USA, 1990.
  • Bauer, J.E., 2007. Responses of dogs to dietary omega-3 fatty acids. Journal of the American Veterinary Medical Association, 231: 1657–1661.
  • Brewer, M.S., 2011. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10: 1541–4337.
  • Clarke, K.E., Hurst, E.A., and Mellanby, R.J., 2021. Vitamin D metabolism and disorders in dogs and cats . Journal of small animal practice, 2021; 62:8.
  • Feng, X., Zhu, H., Chen, B., Zhu, C., Gong, L., Hu, Z., and Zhang, H., 2020. Effects of phytosterols supplementation on growth performance and intestinal microflora of yellow-feather broilers. Poultry Science, 99:6022–6030.
  • Garavaglia, J., Markoski, M.M., Oliveira, A., and Marcadenti, A., 2016. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutrition and Metabolic Insights, 9: 59–64.
  • Glodde, F., Günal, M., Kinsel, M.E., and AbuGhazaleh, A., 2018. Effects of natural antioxidants on the stability of omega-3 fatty acids in dog food. Journal of Veterinary Research, 62: 103-108.
  • Grosu, I.A., Pistol, G.C., Taranu, I., and Marin, D.E., 2019. The Impact of Dietary Grape Seed Meal on Healthy and Aflatoxin B1 Afflicted Microbiota of Pigs after Weaning. Toxins, 2019; 11: 25.
  • Hara, A., and Radin, N.S., 1978. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Analytical Biochemistry, 90 (1): 420-426.
  • Kadri, S., El Ayed, M., Limam, F., Aouani, E., and Mokni, M., 2020. Preventive and curative effects of grape seed powder on stroke usingin vitroandin vivomodels of cerebral ischemia/reperfusion. Biomedicine & Pharmacotherapy, 125 (2020): 1099902.
  • Kadri, S., El Ayed, M., Mabrouk, M., Limam, F., Elkahoui, S., Aouani, E., and Mokni, M., 2019. Characterization, anti-oxidative effect of grape seed powder and in silico affinity profiling of polyphenolic and extra-phenolic compounds for calpain inhibition. Journal of Pharmaceutical and Biomedical Analysis, 164 (5): 365-372.
  • Karaman, S., Karasu, S., Tornuk, F., Toker, O.S., Geçgel, Ü., Sagdic, O., Ozcan, N., and Gül, O., 2015. Recovery Potential of Cold Press By-products Obtained from the Edible Oil Industry: Physicochemical, Bioactive, and Antimicrobial Properties. Journal of Agricultural and Food Chemistry, 63: 2305–2313.
  • Katsanidis, E., and Addis, P.B., 1999. Novel HPLC Analysis of Tocopherols and Cholesterol in Tissue Free Radical. Biology and Medicine, 27: 1137-1140.
  • Kılıç, Ü., and Abdiwali, M.A., 2016. Determination of In Vitro True Digestibilities and Relative Feed Values of Wine Industry Grape Residues as Alternative Feed Source. Journal of the Faculty of Veterinary Medicine, Kafkas University, 22 (6): 895-901.
  • Luo, X., Su, P., and Zhang, W., 2015. Advances in Microalgae-derived phytosterols for functional food and Pharmaceutical Applications. Marine Drugs, 13:4231–4254.
  • MAFF. Energy allowances and feeding systems for ruminants. Her Majesty’s Stationary Office London, 1984. UK.
  • Maier, T., Schieber, A., Kammerer, D.R., and Carle, R., 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry, 112: 551–559.
  • Marin, D.E., Bulgaru, C.V., Anghel, C.A., Pistol, G.C., Dore, M.I., Palade, M.L., and Taranu, I., 2020. Grape Seed Waste Counteracts Aflatoxin B1 Toxicity in Piglet Mesenteric Lymph Nodes. Toxins, 2020: 12; 800.
  • Mc Dowell, LR., Cunha, T.J., 2012. Vitamins in animal nutrition. Comparative aspects to human nutrition. ISBN 9780323139045.
  • Muñoz-Gonzalez, I., Chamorro, S., Perez-Jimenez, J., Lopez-Andres, P., Alvarez-Acero, I., Herrero, A.M., Nardoia, M., Brenes, A., Viveros, A., Arija, I., Rey, A., and Ruiz-Capillas, C., 2019. Phenolic Metabolites in Plasma and Thigh Meat of Chickens Supplemented with Grape Byproducts. Journal of Agricultural and Food Chemistry, 67: 4463−4471.
  • Romero, C., Nardoia, M., Arija, I., Viveros, A., Rey, A.I., Prodanov, M., and Chamorro, S., 2021. Feeding Broiler Chickens with Grape Seed and Skin Meals to Enhance α- and γ-Tocopherol Content and Meat Oxidative Stability. Antioxidants, 2021; 10: 699.
  • Song, L., Qu, D., Zhang, Q., Jiang, J., Zhou, H., Jiang, R., Li, Y., Zhang, Y., and Yan, H., 2017. Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Scientific Reports, 7:41604.
  • Sotiropoulou, E.I., Varelas, V., Liouni, M., and Nerantzis, E.T., Grape Seed Oil: From a Winery Waste to a Value Added Cosmetic Product-a Review. Available online: https://www.researchgate.net/publication/ 312578959 (accessed on 19.03.2022).
  • Tobar, P., Moure, A., Soto, C., Chamy, R., Zúñiga, M.E., 2005. Winery solid residue revalorization into oil and antioxidant with nutraceutical properties by an enzyme assisted process. Water Science and Technology, 51: 47–52.
  • Van Soest, P.J., Robertson, J.B., and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Yang, K., Qing, Y., Yu, Q., Tang, X., Chen, G., Fang, R., and Liu, H., 2021. By-Product Feeds: Current Understanding and Future Perspectives. Agriculture, 11: 207.
  • Zhao YR, Chen YP, Cheng YF, Qu HM, Li J, Wen C, Zhou YM. Effects of dietary phytosterols on growth performance, antioxidant status, and meat quality in Partridge Shank chickens. Poult. Sci. 2019; 98:3715–3721.
Year 2022, Volume: 9 Issue: 4, 1152 - 1156, 18.10.2022
https://doi.org/10.30910/turkjans.1104959

Abstract

References

  • Abu Hafsa, S.H., and İbrahim, S.A., 2018. Effect of dietary polyphenol rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. Journal of Animal Physiology and Animal Nutrition, 102:1: 268-275.
  • Adamez, J.D., Samino, E.G., Sanchez, E.V., and Gonzalez-Gomez, D., 2012. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control, 24: 136–141.
  • AOAC. Association of Official Analytical Chemists. Official Method of Analysis. 15th.ed. Washington, DC. USA, 1990.
  • Bauer, J.E., 2007. Responses of dogs to dietary omega-3 fatty acids. Journal of the American Veterinary Medical Association, 231: 1657–1661.
  • Brewer, M.S., 2011. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10: 1541–4337.
  • Clarke, K.E., Hurst, E.A., and Mellanby, R.J., 2021. Vitamin D metabolism and disorders in dogs and cats . Journal of small animal practice, 2021; 62:8.
  • Feng, X., Zhu, H., Chen, B., Zhu, C., Gong, L., Hu, Z., and Zhang, H., 2020. Effects of phytosterols supplementation on growth performance and intestinal microflora of yellow-feather broilers. Poultry Science, 99:6022–6030.
  • Garavaglia, J., Markoski, M.M., Oliveira, A., and Marcadenti, A., 2016. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutrition and Metabolic Insights, 9: 59–64.
  • Glodde, F., Günal, M., Kinsel, M.E., and AbuGhazaleh, A., 2018. Effects of natural antioxidants on the stability of omega-3 fatty acids in dog food. Journal of Veterinary Research, 62: 103-108.
  • Grosu, I.A., Pistol, G.C., Taranu, I., and Marin, D.E., 2019. The Impact of Dietary Grape Seed Meal on Healthy and Aflatoxin B1 Afflicted Microbiota of Pigs after Weaning. Toxins, 2019; 11: 25.
  • Hara, A., and Radin, N.S., 1978. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Analytical Biochemistry, 90 (1): 420-426.
  • Kadri, S., El Ayed, M., Limam, F., Aouani, E., and Mokni, M., 2020. Preventive and curative effects of grape seed powder on stroke usingin vitroandin vivomodels of cerebral ischemia/reperfusion. Biomedicine & Pharmacotherapy, 125 (2020): 1099902.
  • Kadri, S., El Ayed, M., Mabrouk, M., Limam, F., Elkahoui, S., Aouani, E., and Mokni, M., 2019. Characterization, anti-oxidative effect of grape seed powder and in silico affinity profiling of polyphenolic and extra-phenolic compounds for calpain inhibition. Journal of Pharmaceutical and Biomedical Analysis, 164 (5): 365-372.
  • Karaman, S., Karasu, S., Tornuk, F., Toker, O.S., Geçgel, Ü., Sagdic, O., Ozcan, N., and Gül, O., 2015. Recovery Potential of Cold Press By-products Obtained from the Edible Oil Industry: Physicochemical, Bioactive, and Antimicrobial Properties. Journal of Agricultural and Food Chemistry, 63: 2305–2313.
  • Katsanidis, E., and Addis, P.B., 1999. Novel HPLC Analysis of Tocopherols and Cholesterol in Tissue Free Radical. Biology and Medicine, 27: 1137-1140.
  • Kılıç, Ü., and Abdiwali, M.A., 2016. Determination of In Vitro True Digestibilities and Relative Feed Values of Wine Industry Grape Residues as Alternative Feed Source. Journal of the Faculty of Veterinary Medicine, Kafkas University, 22 (6): 895-901.
  • Luo, X., Su, P., and Zhang, W., 2015. Advances in Microalgae-derived phytosterols for functional food and Pharmaceutical Applications. Marine Drugs, 13:4231–4254.
  • MAFF. Energy allowances and feeding systems for ruminants. Her Majesty’s Stationary Office London, 1984. UK.
  • Maier, T., Schieber, A., Kammerer, D.R., and Carle, R., 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry, 112: 551–559.
  • Marin, D.E., Bulgaru, C.V., Anghel, C.A., Pistol, G.C., Dore, M.I., Palade, M.L., and Taranu, I., 2020. Grape Seed Waste Counteracts Aflatoxin B1 Toxicity in Piglet Mesenteric Lymph Nodes. Toxins, 2020: 12; 800.
  • Mc Dowell, LR., Cunha, T.J., 2012. Vitamins in animal nutrition. Comparative aspects to human nutrition. ISBN 9780323139045.
  • Muñoz-Gonzalez, I., Chamorro, S., Perez-Jimenez, J., Lopez-Andres, P., Alvarez-Acero, I., Herrero, A.M., Nardoia, M., Brenes, A., Viveros, A., Arija, I., Rey, A., and Ruiz-Capillas, C., 2019. Phenolic Metabolites in Plasma and Thigh Meat of Chickens Supplemented with Grape Byproducts. Journal of Agricultural and Food Chemistry, 67: 4463−4471.
  • Romero, C., Nardoia, M., Arija, I., Viveros, A., Rey, A.I., Prodanov, M., and Chamorro, S., 2021. Feeding Broiler Chickens with Grape Seed and Skin Meals to Enhance α- and γ-Tocopherol Content and Meat Oxidative Stability. Antioxidants, 2021; 10: 699.
  • Song, L., Qu, D., Zhang, Q., Jiang, J., Zhou, H., Jiang, R., Li, Y., Zhang, Y., and Yan, H., 2017. Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Scientific Reports, 7:41604.
  • Sotiropoulou, E.I., Varelas, V., Liouni, M., and Nerantzis, E.T., Grape Seed Oil: From a Winery Waste to a Value Added Cosmetic Product-a Review. Available online: https://www.researchgate.net/publication/ 312578959 (accessed on 19.03.2022).
  • Tobar, P., Moure, A., Soto, C., Chamy, R., Zúñiga, M.E., 2005. Winery solid residue revalorization into oil and antioxidant with nutraceutical properties by an enzyme assisted process. Water Science and Technology, 51: 47–52.
  • Van Soest, P.J., Robertson, J.B., and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Yang, K., Qing, Y., Yu, Q., Tang, X., Chen, G., Fang, R., and Liu, H., 2021. By-Product Feeds: Current Understanding and Future Perspectives. Agriculture, 11: 207.
  • Zhao YR, Chen YP, Cheng YF, Qu HM, Li J, Wen C, Zhou YM. Effects of dietary phytosterols on growth performance, antioxidant status, and meat quality in Partridge Shank chickens. Poult. Sci. 2019; 98:3715–3721.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Aslıhan Sur Arslan 0000-0002-3692-5510

Muhittin Zengin 0000-0003-4596-9061

Zehra Gökçe 0000-0001-7855-2700

Publication Date October 18, 2022
Submission Date April 17, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Sur Arslan, A., Zengin, M., & Gökçe, Z. (2022). Üzüm çekirdeği tozu ve ununun lipofilik vitamin ve fitosterol içeriklerinin belirlenmesi. Turkish Journal of Agricultural and Natural Sciences, 9(4), 1152-1156. https://doi.org/10.30910/turkjans.1104959