Derleme
BibTex RIS Kaynak Göster

ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER

Yıl 2022, Cilt: 6 Sayı: 2, 629 - 649, 31.10.2022
https://doi.org/10.32328/turkjforsci.1167080

Öz

Odun ve odun kökenli malzemeler mobilya, doğrama ve yapı endüstrilerinde çeşitli makinelerde işlenerek kullanılmaktadır. İşleme mekaniklerine dayalı çeşitli kesme kuvvetleri ortaya çıkmaktadır. Kesme gücü ve güç tüketimi faktörlerinin kesme kuvvetlerine bağlı olduğu belirtilmektedir. Kesiş sürecinin analizinde özellikle kesme kuvvetleri ana çıktı olarak kullanılmakta olup, kesişte etkili faktörlerin daha iyi anlaşılmasında fiziko-mekanik kesiş modelleri oldukça önemlidir. Odun ve odun kökenli malzemelerin fiziksel ve teknolojik özellikleri, makinede işleme koşulları ve kesici aletlerin mekanik durumu işleme mekaniklerini etkileyen faktörler olarak belirtilmektedir. Titreşim, ses, sıcaklık ve işleme kusurları yanında kesme gücü ile yüzey ve yonga kalitesi genellikle göz önünde bulundurulmamaktadır. İşlemede en düşük güç tüketimi ile düzgün yüzeyler elde edilebilmesi bakımından verimli ve ekonomik çalışmalar ile uygun işleme koşullarının belirlenmesi, malzeme ve kesici geometrisi ile işleme mekaniklerine dayandırılmaktadır. Bu araştırmada, odun ve odun kökenli malzemelerin işlenmesinde işleme mekaniklerini etkileyen faktörler tartışılmıştır. Kesme kuvvetleri, kesme gücü ve bunların ölçüm yöntemleri ile kesici ve işleme geometrisi incelenmiştir.

Kaynakça

  • Aguilera, A. & Martin, P. (2001). Machining qualification of solid wood of Fagus silvatica L. and Picea excelsa L.: Cutting forces, power requirements and surface roughness, Holz als Roh-und Werkstoff, 59(6), 483-488.
  • Aguilera, A., Meausoone, P. & Martin, P. (2001). Wood material influence in routing operations: the MDF case. J Holz als roh-und werkstoff, 58(4): 0278-0283.
  • Aknouche, H., Outahyon, A., Nouveau, C., Marchal, R., Zerizer, A. & Butaud, J-C. (2009). Tool wear effect on cutting forces: In routing process of Aleppo pine wood, Journal of Materials Processing Technology, 209(6), 2918-2922.
  • Albert, A. (2010). Understanding CNC routers, Canada FPInnovations Forintek Division, First Edition.
  • Andrade, A. C., Brito, T. R., da Silva, J. R. M., Ferreira, S. C., Junior, A. A. C. & Lima, J. T. (2022). Influence of basic wood density on the specific cutting energy, Research, Society Development, 11(7).
  • Annamalai, S. (2003). An investigation of high-speed machining on CNC routers used for upholstered furniture manufacturing, Department of Industrial Engineering, North Carolina State University, Raleigh.
  • Axelsson, B., Lundberg, Å. & Grönlund, J. (1993). Studies of the main cutting force at and near a cutting edge, Holz als Roh-und Werkstoff, 51(1), 43-48.
  • Bal, B. C. & Dumanoğlu, F. (2019) Surface roughness and processing time of a medium density fiberboard cabinet door processed via CNC router, and the energy consumption of the CNC router, BioResources, 14(4), 9500-9508.
  • Barcík, Š., Kminiak, R., Řehák, T. & Kvietková, M. (2010). The influence of selected factors on energy requirements for plain milling of beech wood, Journal of Forest Science, 56(5), 243-250.
  • Berkel, A. (1972). Wood Machining Technology, Faculty of Forestry of İstanbul University., Vol. 183, İstanbul.
  • Boucher, J., Méausoone, P.-J. & Perrin, L. (2004). Effects of diamond tool edge direction angle on cutting forces and tool wear during milling of medium density fibreboard and particleboard, 2nd International Symposium on Wood Machining, 399-407, Vienna, Austria.
  • Burdurlu, E. & Baykan, İ. (1998). Ağaç işlerinde kesme teorisi ve endüstriyel mobilya üretimi makineleri, Hacettepe Üniversitesi Yayınları, Ankara.
  • Caceres, C. B., Uliana, L. & Hernández, R. E., (2018). Orthogonal cutting study of wood and knots of white spruce, Wood Fiber Science, 50(1), 55-65.
  • Chuchala, D., Orlowski, K. A., Sandak, A., Sandak, J., Pauliny, D. & Barański, J. (2014). The effect of wood provenance and density on cutting forces while sawing Scots pine (Pinus sylvestris L.), BioResources, 9(3), 5349-5361.
  • Coşereanu, C. & Cismaru, I. (2014). Complex ornament machining process on A CNC router, Pro Ligno, 10(1).
  • Costes, J.-P. & Larricq, P. (2002). Towards high cutting speed in wood milling, Annals of Forest Science, 59(8), 857-865.
  • Cristóvão, L. (2013) Machining properties of wood: tool wear, cutting force and tensioning of blades, Doctoral Dissertation, Department of Engineering Sciences and Mathematics, Luleå Tekniska Universitet, Skellefteå, Sweden.
  • Csanády, E. & Magoss, E. (2013). Mechanics of wood machining, Springer Int. Pub., Berlin.
  • Çakıroğlu, E.O., Demir, A., Aydın, İ. & Büyüksarı, Ü. (2022). Prediction of optimum CNC cutting conditions using artificial neural network models for the best wood surface quality, low energy consumption, and time Savings, BioResources, 17(2), 2501-2524.
  • Çakmak, A. (2021). Bazı ağaç türü odunlarının bilgisayarlı freze makinesinde işlenmesinde optimal parametrelerin yapay sinir ağları ile araştırılması, Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Çakmak, A. & Malkoçoğlu, A. (2017). Mobilya Endüstrisinde CNC freze makinelerinde işlemede yaygın olarak kullanılan malzemeler, International Multidisciplinary Congress of Eurasia, Roma/İtalya, 180-191.
  • Çakmak, A. & Malkoçoğlu, A. (2019). Importance of saw blade geometry and technic conditions in machining of wood materials in circular saw machines, Nevşehir Bilim ve Teknoloji Dergisi, 8(2), 114-124.
  • Darmawan, W., Rahayu, I., Nandika, D. & Marchal R. (2011a) Wear characteristics of wood cutting tools caused by extractive and abrasive materials in some tropical woods, Journal of Tropical Forest Science, 23(3), 345-353.
  • Darmawan, W., Gottlöber, C., Oertel, M., Wagenführ, A. & Fischer, R. (2011b). Performance of helical edge milling cutters in planing wood, European Journal of Wood and Wood Products, 69(4), 565-572.
  • Davim, J. P. (2011). Wood machining. Wiley, London.
  • Davis, E. M. (1962) Machining and related characteristics of United States hardwoods, US Dept. of Agriculture.
  • Davis, E. & Nelson, H. (1954). Machining tests of wood with the molder, Forest Products Research Society, Madison, USA.
  • Durkovic, M., Mladenovic, G., Tanovic, L. & Danon, G. (2018). Impact of feed rate, milling depth and tool rake angle in peripheral milling of oak wood on the cutting force, Maderas Ciencia y tecnología, 20(1), 25-34.
  • Eyma, F., Méausoone, P.-J. & Martin, P. (2004). Study of the properties of thirteen tropical wood species to improve the prediction of cutting forces in mode B, Annals of Forest Science, 61(1), 55-64.
  • Eyma, F., Méausoone, P. J., Larricq, P. & Marchal, R. (2005). Utilization of a dynamometric pendulum to estimate cutting forces involved during routing, Annals of Forest Science, 62(5), 441-447.
  • Fekiač, J., Svoreň, J, Gáborík, J. & Němec, M. (2022). Reducing the energy consumption of circular saws in the cutting process of plywood, Coatings, 12(1), 55.
  • Franz, N. C. (1958). An analysis of the wood cutting process, University of Michigan: Ann Arbor, USA.
  • Gawroński, T. (2013). Optimisation of CNC routing operations of wooden furniture parts, The International Journal of Advanced Manufacturing Technology, 67(9), 2259-2267.
  • Gisip, J. (2015). Improvement of wood-based machining operations on a CNC router through extending tool life, Doctoral Dissertation, North Carolina State University in Forest Biomaterials, Raleigh, North Carolina.
  • Goli, G., Fioravanti, M., Marchal, R., Uzielli, L. & Busoni, S. (2010). Up-milling and down-milling wood with different grain orientations–the cutting forces behaviour, European Journal of Wood and Wood Products, 68(4), 385-395.
  • Gonçalves, R. & Néri, A. C. (2005). Orthogonal cutting forces in juvenile and mature Pinus taeda wood, Scientia Agricola, 62(4), 310-318.
  • Gordon, S. & Hillery, M. (2003). A review of the cutting of composite materials, Journal of Materials: Design Applications, 217(1), 5-45.
  • Gornik Bučar, D., Merhar, M. & Gospodarič, B. (2013). Influence of tool wear on the quality of the newly formed surface in the drilling of wood composites, 24th International Scientific Conference, Zagreb.
  • Guedes, T. O., Moreira da Silva, J. R., Hein, P. R. G. & Ferreira, S. C. (2020). Cutting energy required during the mechanical processing of wood species at different drying stages, Maderas Ciencia y tecnología, 22(4), 477-482.
  • Gürgen, A., Çakmak, A., Yildiz, S. & Malkoçoğlu, A. (2022). Optimization of CNC operating parameters to minimize surface roughness of Pinus sylvestris using integrated artificial neural network and genetic algorithm, Maderas Ciencia y tecnología, 24(1), 1-12.
  • Gürleyen, L. & Subaşı, S. (2009). The Compulsions Which the Hard Tree Materials Show Against to The Cutters and Machine in Planning Process, Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 209-219.
  • Helfrick, A. D. & Cooper, W. D. (1990). Modern electronic instrumentation and measurement techniques, Prentice Hall Englewood Cliffs, NJ.
  • Hernández, R. E., Llavé, A. M. & Koubaa, A. (2014). Effects of cutting parameters on cutting forces and surface quality of black spruce cants, European Journal of Wood Products, 72(1): 107-116.
  • İlhan, R., Burdurlu, E. & Baykan, İ. (1990). Ağaç işlerinde kesme teorisi ve mobilya endüstrisi makineleri, Bizim Büro Basımevi, Ankara.
  • Iskra, P. & Hernández, R. E. (2012). Analysis of cutting forces in straight-knife peripheral cutting of wood, Wood and Fiber Science, 44(2), 134-144.
  • Javorek, L., Pasteirovic, M. & Lalik, J. (2013). Relationship between cutting conditions and force/moment parameters during drilling, Pro Ligno, 9(4), 382-389.
  • Kazlauskas, D., Jankauskas, V., Bendikienė, R., Keturakis, G. & Mačėnaitė, L. (2017). Wear of cemented tungsten carbide (WC) router cutters during oak wood milling, Mechanika, 23(3), 469-472.
  • Keturakis, G. & Juodeikienė, I. (2007). Investigation of milled wood surface roughness, Material and Science, 13(1), 47-51.
  • Kistler, G. (2019). Analyzing and Optimizing Cutting Processes: Cutting Force Measurements in Research and Development, Kistler Group Katalogue.
  • Kivimaa, E. (1950). Cutting force in woodworking, Valtion Teknillinen Tutkimuslaitoksen Julkaisuja, Helsinki.
  • Kminiak, R. & Kubš, J. (2016). Cutting power during cross-cutting of selected wood species with a circular saw, BioResources, 11(4), 10528-10539.
  • Kminiak, R., Siklienka, M. & Sustek, J. (2016). Impact of tool wear on the quality of the surface in routing of MDF boards by milling machines with reversible blades, Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58(2), 89.
  • Koch, P. (1964). Wood Machining Processes; A Volume in the Wood Processing Series, The Ronald Press Company, New York.
  • Koch, P. (1972). Utilization of the Southern Pines: Processing, US Department of Agriculture Forest Service, Southern Forest Experiment Station, Asheville.
  • Koleda, P., Barcík, Š., Svoreň, J., Naščák, Ľ. & Dobrík, A. (2019). Influence of cutting wedge treatment on cutting power, machined surface quality, and cutting edge wear when plane milling oak wood, BioResources, 14(4), 9271-9286.
  • Kollmann, F. F. & Côté Jr., W.A. (1968). Principles of wood science and technology, Vol. I. Solid Wood, Springer-Verlag, 592, Berlin.
  • Kollmann, F. F., Kuenzi, E. W. & Stamm, A. J. (2012). Principles of wood science and technology: II wood-based materials, Springer Science & Business Media.
  • Kopač, J. & Šali, S. (2003). Wood: an important material in manufacturing technology, Journal of Materials Processing Technology, 133(1-2), 134-142.
  • Kováč, J. & Mikleš, M. (2010). Research on individual parameters for cutting power of woodcutting process by circular saws, Journal of Forest Science, 56(6), 271-277.
  • Krauss, A., Piernik, M. & Pinkowski, G. (2016). Cutting Power during Milling of Thermally Modified Pine Wood, Drvna Industrija, 67(3), 215-222.
  • Kubš, J., Gaff, M. & Barcík, Š. (2016). Factors affecting the consumption of energy during the milling of thermally modified and unmodified beech wood, BioResources, 11(1), 736-747.
  • Kubš, J., Gasparik, M., Gaff, M., Kaplan, L., Cekovska, H., Jezek, J. & Sticha, V. (2017). Influence of Thermal Treatment on Power Consumption during Plain Milling of Lodgepole Pine (Pinus contorta subsp. murrayana), BioResources, 12(1), 407-418.
  • Kurtoğlu, A. (2001). Odunun işleme özellikleri, Journal of the Faculty of Forestry Istanbul University, 31(2), 179-199.
  • Kurtoğlu, A. (2005). Ağaç işleme tekniği ve makineleri ders notları, İstanbul Orman Fakültesi Yayınları, İstanbul.
  • Lemaster, R. L. & Stewart, J. S. (1994). Wood Machining and tooling research programs research summary, 3rd International Symposium, Wood and Paper Science, North Carolina State University, Raleigh.
  • Li, R., Yao, Q., Xu, W., Li, J. & Wang, X. (2022). Study of Cutting Power and Power Efficiency during Straight-Tooth Cylindrical Milling Process of Particle Boards, Materials, 15(3), 879.
  • Licow, R., Chuchala, D., Deja, M., Orlowski, K. A. & Taube, P. (2020). Effect of pine impregnation and feed speed on sound level and cutting power in wood sawing, Journal of Cleaner Production, 272(1), 1-10.
  • Loredana, M. R., Anne-Marie, B. L. (2015). Research on power consumption for sanding process with abrasive brushes to solid spruce and MDF panels, Procedia Engineering, 100, 1495-1504.
  • Malkoçoğlu, A. & Özdemir, T. (2006). The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey, Journal of Materials Processing Technology, 173(3), 315-320.
  • Mandić, M., Todorović, N., Popadić, R. & Danon, G. (2011). Influence of wood properties and technological parameters of processing on cutting power in milling of thermally modified beechwood, Bulletin of the Faculty of Forestry of Univerzitet u Beogradu, 104, 109-124.
  • Marchal, R., Mothe, F., Denaud, L-E., Thibaut, B. & Bleron, L. (2009). Cutting forces in wood machining–Basics and applications in industrial processes. COST Action E35, 63(2), 2004–2008.
  • McKenzie, W. M. (1961). Fundamental aspects of the wood cutting process, University of Michigan, Michigan.
  • Meausoone, P., Aguilera, A. & Martin, P. (2000). Couple Tool Material method for cutting conditions: A new approach of optimisation, International Symposium on Wood Machining Properties of Wood and Wood Composites, 105-116, Vienna, Austria.
  • Mendoza, B. A. (1989). Power consumption and planing quality of coconut lumber (Cocos nucifera L.) as affected by density and some machining variable, Doctoral Thesis, Philippines University, Los Banos.
  • Mori, M. (1970). An analysis of cutting work in peripheral milling of wood. II. The cutting force, power and energy requirements in up-milling parallel to wood grain, Journal of the Japan Wood Research Society, 16(1), 1-9.
  • Nacar, M. (2012). Elektrik-Elektronik ölçme tekniği, Ofset Matbaacılık, Ankara.
  • Nasir, V. & Cool, J. (2018). A review on wood machining: characterization, optimization, and monitoring of the sawing process, Wood Material Science and Engineering, 15(1) 1-16.
  • Naylor, A., Hackney, P., Perera, N. & Clahr, E. (2012). A predictive model for the cutting force in wood machining developed using mechanical properties, BioResources, 7(3), 2883-2894.
  • Naylor, A. & Hackney P. (2013). A review of wood machining literature with a special focus on sawing, BioResources, 8(2), 3122-3135.
  • Özşahin, Ş. & Singer, H. (2019). Development of an artificial neural network model to minimize power consumption in the milling of heat-treated and untreated wood, Kastamonu University Journal of Forestry Faculty, 19(3), 317-328.
  • Palanikumar, K. & Valarmathi, T. (2016). Experimental investigation and analysis on thrust force in drilling of wood composite medium density fiberboard panels, Experimental Techniques, 40(1), 391-400.
  • Palmqvist, J. (2003). Parallel and normal cutting forces in peripheral milling of wood, Holz als roh-und Werkstoff, 61(6), 409-415.
  • Pastacı, H. (2003) Elektrik ve elektronik ölçmeleri, Nesil Matbaacılık, İstanbul.
  • Porankiewicz, B., Marklund, B., Grönlund, A. & Axelsson, B. (2011). Main and normal cutting forces by machining wood of Pinus sylvestris, BioResources, 6(4), 3687-3713.
  • Porankiewicz, B. (2014). Wood machining investigations: Parameters to consider for thorough experimentation, BioResources, 9(1), 4-7.
  • Racasan, S., Taran, N. & Spirchez, C. (2011). Regarding the cutting power on processing with CNC machine tools, International Conference of Wood Science and Engineering in the Third Millennium-ICWSE, Brasov, Romania, 279-282.
  • Racasan, S. (2018). Study regarding the optimization of milling parameters for a minimal power consumption, Pro Ligno, 14(4): 124-130.
  • Ross, R. J. (2010) Wood handbook: wood as an engineering material, United States Department of Agriculture Forest Service, Vol. 190, Madison, Wisconsin.
  • Salca, E. A. (2015). Optimization of wood milling schedule–A case study, Dimensions, 2000, 160.
  • Sedlecký, M. & Gašparík, M. (2017). Power consumption during edge milling of medium-density fiberboard and edge-glued panel, BioResources, 12(4), 7413-7426.
  • Söğütlü, C. (2010). The Effect of Some Factors on Surface Roughness at Planining Process of Cedar Wood, Journal of Polytechnic, 13(3), 177-181.
  • Stanojevic, D., Mandic, M., Danon, G. & Svrzic, S. (2017). Prediction of the surface roughness of wood for machining, Journal of Forestry Research, 28(6), 1281-1283.
  • Stewart, H. A. (1974). A comparison of factors affecting power for abrasive knife planing of hardwoods, Forest Products Journal, 12(3), 175-182.
  • Stewart, H. A. (1980). Some surfacing defects and problems related to wood moisture content, Wood Fiber Science, 12(3), 175-182.
  • Su, W.-C. & Wang, Y. (2002). Effect of the helix angle of router bits on chip formation and energy consumption during milling of solid wood, Journal of Wood Science, 48(2), 126-131.
  • Svoreň, J., Naščák, Ľ., Barcík, Š., Koleda, P. & Stehlík, Š. (2022). Influence of circular saw blade design on reducing energy consumption of a circular saw in the cutting process, Applied Sciences, 12(3).
  • Tiryaki, S., Malkoçoğlu, A. & Özşahin, Ş. (2016). Artificial neural network modeling to predict optimum power consumption in wood machining, Drewno, 59(196), 109-125.
  • Tiryaki, S., Özşahin, Ş. & Aydın, A. (2017). Employing artificial neural networks for minimizing surface roughness and power consumption in abrasive machining of wood, European Journal of Wood and Wood Products, 75(3), 347-358.
  • Tratar, J., Pusavec, F. & Kopac, J. (2014). Tool wear in terms of vibration effects in milling medium-density fibreboard with an industrial robot, Journal of Mechanical Science and Technology, 28(11), 4421-4429.
  • Triboulot, P., Kremer, P., Martin, P. & Leban, J. M. (1991). Planing of Norway spruce with very varied ring width, Holz als Roh-und Werkstoff, 49(5), 181-184.
  • Tschätsch, H. & Reichelt, A. (2009). Cutting force measurement in machining, Applied Machining Technology, Springer, Berlin, Heidelberg, 353-359.
  • Tumanski, S. (2006). Principles of electrical measurement, RC press, Taylor & Francis Group, New York.
  • Weck, M. & Hennes, N. (1998). Why don't machine tools cut faster?, Manufacturing Engineering, 121(3).
  • Woodson, G. & Koch, P. (1970). Tool forces and chip formation in orthogonal cutting of loblolly pine, U.S. Department of Agriculture Forest Service, 26, New Orleans.
  • Yao, T. X. & Boh, T. K. (2019). Energy reduction by optimizing sharpness angle and feed per knife in wood planing operation, International Journal of Agriculture, 8, 40-47.
  • Zhu, Z., Buck, D., Guo, X., Xiong, X., Xu, W. & Cao, P. (2022). Energy efficiency optimization for machining of wood plastic composite, Machines, 10(2), 104.

FACTORS AFFECTING MECHANICS OF MACHINING IN WOOD AND WOOD-BASED MATERIALS

Yıl 2022, Cilt: 6 Sayı: 2, 629 - 649, 31.10.2022
https://doi.org/10.32328/turkjforsci.1167080

Öz

Wood and wood-based materials are used by being processed in various machines in furniture, joinery and construction industries. Various cutting forces arise based on mechanics of machining. It is stated that the cutting power and power consumption factors depend on the cutting forces. The cutting forces are especially used as the main output in the analysis of the cutting process and physico-mechanical cutting models are very important in understanding the cutting factors. Vibration, noise, temperature and machining defects as well as cutting power, surface and chip quality are usually not considered. Determination of optimal machining conditions with efficient and economical works are based on material, tool geometry and mechanics of machining in terms of obtaining smooth surfaces with the lowest power consumption in machining. In this research, the factors affecting the mechanics of machining in the processing of wood and wood-based materials are discussed. Cutting forces, cutting power and their measurement methods with tool and machining geometry were investigated.g geometry were investigated.

Kaynakça

  • Aguilera, A. & Martin, P. (2001). Machining qualification of solid wood of Fagus silvatica L. and Picea excelsa L.: Cutting forces, power requirements and surface roughness, Holz als Roh-und Werkstoff, 59(6), 483-488.
  • Aguilera, A., Meausoone, P. & Martin, P. (2001). Wood material influence in routing operations: the MDF case. J Holz als roh-und werkstoff, 58(4): 0278-0283.
  • Aknouche, H., Outahyon, A., Nouveau, C., Marchal, R., Zerizer, A. & Butaud, J-C. (2009). Tool wear effect on cutting forces: In routing process of Aleppo pine wood, Journal of Materials Processing Technology, 209(6), 2918-2922.
  • Albert, A. (2010). Understanding CNC routers, Canada FPInnovations Forintek Division, First Edition.
  • Andrade, A. C., Brito, T. R., da Silva, J. R. M., Ferreira, S. C., Junior, A. A. C. & Lima, J. T. (2022). Influence of basic wood density on the specific cutting energy, Research, Society Development, 11(7).
  • Annamalai, S. (2003). An investigation of high-speed machining on CNC routers used for upholstered furniture manufacturing, Department of Industrial Engineering, North Carolina State University, Raleigh.
  • Axelsson, B., Lundberg, Å. & Grönlund, J. (1993). Studies of the main cutting force at and near a cutting edge, Holz als Roh-und Werkstoff, 51(1), 43-48.
  • Bal, B. C. & Dumanoğlu, F. (2019) Surface roughness and processing time of a medium density fiberboard cabinet door processed via CNC router, and the energy consumption of the CNC router, BioResources, 14(4), 9500-9508.
  • Barcík, Š., Kminiak, R., Řehák, T. & Kvietková, M. (2010). The influence of selected factors on energy requirements for plain milling of beech wood, Journal of Forest Science, 56(5), 243-250.
  • Berkel, A. (1972). Wood Machining Technology, Faculty of Forestry of İstanbul University., Vol. 183, İstanbul.
  • Boucher, J., Méausoone, P.-J. & Perrin, L. (2004). Effects of diamond tool edge direction angle on cutting forces and tool wear during milling of medium density fibreboard and particleboard, 2nd International Symposium on Wood Machining, 399-407, Vienna, Austria.
  • Burdurlu, E. & Baykan, İ. (1998). Ağaç işlerinde kesme teorisi ve endüstriyel mobilya üretimi makineleri, Hacettepe Üniversitesi Yayınları, Ankara.
  • Caceres, C. B., Uliana, L. & Hernández, R. E., (2018). Orthogonal cutting study of wood and knots of white spruce, Wood Fiber Science, 50(1), 55-65.
  • Chuchala, D., Orlowski, K. A., Sandak, A., Sandak, J., Pauliny, D. & Barański, J. (2014). The effect of wood provenance and density on cutting forces while sawing Scots pine (Pinus sylvestris L.), BioResources, 9(3), 5349-5361.
  • Coşereanu, C. & Cismaru, I. (2014). Complex ornament machining process on A CNC router, Pro Ligno, 10(1).
  • Costes, J.-P. & Larricq, P. (2002). Towards high cutting speed in wood milling, Annals of Forest Science, 59(8), 857-865.
  • Cristóvão, L. (2013) Machining properties of wood: tool wear, cutting force and tensioning of blades, Doctoral Dissertation, Department of Engineering Sciences and Mathematics, Luleå Tekniska Universitet, Skellefteå, Sweden.
  • Csanády, E. & Magoss, E. (2013). Mechanics of wood machining, Springer Int. Pub., Berlin.
  • Çakıroğlu, E.O., Demir, A., Aydın, İ. & Büyüksarı, Ü. (2022). Prediction of optimum CNC cutting conditions using artificial neural network models for the best wood surface quality, low energy consumption, and time Savings, BioResources, 17(2), 2501-2524.
  • Çakmak, A. (2021). Bazı ağaç türü odunlarının bilgisayarlı freze makinesinde işlenmesinde optimal parametrelerin yapay sinir ağları ile araştırılması, Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Çakmak, A. & Malkoçoğlu, A. (2017). Mobilya Endüstrisinde CNC freze makinelerinde işlemede yaygın olarak kullanılan malzemeler, International Multidisciplinary Congress of Eurasia, Roma/İtalya, 180-191.
  • Çakmak, A. & Malkoçoğlu, A. (2019). Importance of saw blade geometry and technic conditions in machining of wood materials in circular saw machines, Nevşehir Bilim ve Teknoloji Dergisi, 8(2), 114-124.
  • Darmawan, W., Rahayu, I., Nandika, D. & Marchal R. (2011a) Wear characteristics of wood cutting tools caused by extractive and abrasive materials in some tropical woods, Journal of Tropical Forest Science, 23(3), 345-353.
  • Darmawan, W., Gottlöber, C., Oertel, M., Wagenführ, A. & Fischer, R. (2011b). Performance of helical edge milling cutters in planing wood, European Journal of Wood and Wood Products, 69(4), 565-572.
  • Davim, J. P. (2011). Wood machining. Wiley, London.
  • Davis, E. M. (1962) Machining and related characteristics of United States hardwoods, US Dept. of Agriculture.
  • Davis, E. & Nelson, H. (1954). Machining tests of wood with the molder, Forest Products Research Society, Madison, USA.
  • Durkovic, M., Mladenovic, G., Tanovic, L. & Danon, G. (2018). Impact of feed rate, milling depth and tool rake angle in peripheral milling of oak wood on the cutting force, Maderas Ciencia y tecnología, 20(1), 25-34.
  • Eyma, F., Méausoone, P.-J. & Martin, P. (2004). Study of the properties of thirteen tropical wood species to improve the prediction of cutting forces in mode B, Annals of Forest Science, 61(1), 55-64.
  • Eyma, F., Méausoone, P. J., Larricq, P. & Marchal, R. (2005). Utilization of a dynamometric pendulum to estimate cutting forces involved during routing, Annals of Forest Science, 62(5), 441-447.
  • Fekiač, J., Svoreň, J, Gáborík, J. & Němec, M. (2022). Reducing the energy consumption of circular saws in the cutting process of plywood, Coatings, 12(1), 55.
  • Franz, N. C. (1958). An analysis of the wood cutting process, University of Michigan: Ann Arbor, USA.
  • Gawroński, T. (2013). Optimisation of CNC routing operations of wooden furniture parts, The International Journal of Advanced Manufacturing Technology, 67(9), 2259-2267.
  • Gisip, J. (2015). Improvement of wood-based machining operations on a CNC router through extending tool life, Doctoral Dissertation, North Carolina State University in Forest Biomaterials, Raleigh, North Carolina.
  • Goli, G., Fioravanti, M., Marchal, R., Uzielli, L. & Busoni, S. (2010). Up-milling and down-milling wood with different grain orientations–the cutting forces behaviour, European Journal of Wood and Wood Products, 68(4), 385-395.
  • Gonçalves, R. & Néri, A. C. (2005). Orthogonal cutting forces in juvenile and mature Pinus taeda wood, Scientia Agricola, 62(4), 310-318.
  • Gordon, S. & Hillery, M. (2003). A review of the cutting of composite materials, Journal of Materials: Design Applications, 217(1), 5-45.
  • Gornik Bučar, D., Merhar, M. & Gospodarič, B. (2013). Influence of tool wear on the quality of the newly formed surface in the drilling of wood composites, 24th International Scientific Conference, Zagreb.
  • Guedes, T. O., Moreira da Silva, J. R., Hein, P. R. G. & Ferreira, S. C. (2020). Cutting energy required during the mechanical processing of wood species at different drying stages, Maderas Ciencia y tecnología, 22(4), 477-482.
  • Gürgen, A., Çakmak, A., Yildiz, S. & Malkoçoğlu, A. (2022). Optimization of CNC operating parameters to minimize surface roughness of Pinus sylvestris using integrated artificial neural network and genetic algorithm, Maderas Ciencia y tecnología, 24(1), 1-12.
  • Gürleyen, L. & Subaşı, S. (2009). The Compulsions Which the Hard Tree Materials Show Against to The Cutters and Machine in Planning Process, Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 209-219.
  • Helfrick, A. D. & Cooper, W. D. (1990). Modern electronic instrumentation and measurement techniques, Prentice Hall Englewood Cliffs, NJ.
  • Hernández, R. E., Llavé, A. M. & Koubaa, A. (2014). Effects of cutting parameters on cutting forces and surface quality of black spruce cants, European Journal of Wood Products, 72(1): 107-116.
  • İlhan, R., Burdurlu, E. & Baykan, İ. (1990). Ağaç işlerinde kesme teorisi ve mobilya endüstrisi makineleri, Bizim Büro Basımevi, Ankara.
  • Iskra, P. & Hernández, R. E. (2012). Analysis of cutting forces in straight-knife peripheral cutting of wood, Wood and Fiber Science, 44(2), 134-144.
  • Javorek, L., Pasteirovic, M. & Lalik, J. (2013). Relationship between cutting conditions and force/moment parameters during drilling, Pro Ligno, 9(4), 382-389.
  • Kazlauskas, D., Jankauskas, V., Bendikienė, R., Keturakis, G. & Mačėnaitė, L. (2017). Wear of cemented tungsten carbide (WC) router cutters during oak wood milling, Mechanika, 23(3), 469-472.
  • Keturakis, G. & Juodeikienė, I. (2007). Investigation of milled wood surface roughness, Material and Science, 13(1), 47-51.
  • Kistler, G. (2019). Analyzing and Optimizing Cutting Processes: Cutting Force Measurements in Research and Development, Kistler Group Katalogue.
  • Kivimaa, E. (1950). Cutting force in woodworking, Valtion Teknillinen Tutkimuslaitoksen Julkaisuja, Helsinki.
  • Kminiak, R. & Kubš, J. (2016). Cutting power during cross-cutting of selected wood species with a circular saw, BioResources, 11(4), 10528-10539.
  • Kminiak, R., Siklienka, M. & Sustek, J. (2016). Impact of tool wear on the quality of the surface in routing of MDF boards by milling machines with reversible blades, Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58(2), 89.
  • Koch, P. (1964). Wood Machining Processes; A Volume in the Wood Processing Series, The Ronald Press Company, New York.
  • Koch, P. (1972). Utilization of the Southern Pines: Processing, US Department of Agriculture Forest Service, Southern Forest Experiment Station, Asheville.
  • Koleda, P., Barcík, Š., Svoreň, J., Naščák, Ľ. & Dobrík, A. (2019). Influence of cutting wedge treatment on cutting power, machined surface quality, and cutting edge wear when plane milling oak wood, BioResources, 14(4), 9271-9286.
  • Kollmann, F. F. & Côté Jr., W.A. (1968). Principles of wood science and technology, Vol. I. Solid Wood, Springer-Verlag, 592, Berlin.
  • Kollmann, F. F., Kuenzi, E. W. & Stamm, A. J. (2012). Principles of wood science and technology: II wood-based materials, Springer Science & Business Media.
  • Kopač, J. & Šali, S. (2003). Wood: an important material in manufacturing technology, Journal of Materials Processing Technology, 133(1-2), 134-142.
  • Kováč, J. & Mikleš, M. (2010). Research on individual parameters for cutting power of woodcutting process by circular saws, Journal of Forest Science, 56(6), 271-277.
  • Krauss, A., Piernik, M. & Pinkowski, G. (2016). Cutting Power during Milling of Thermally Modified Pine Wood, Drvna Industrija, 67(3), 215-222.
  • Kubš, J., Gaff, M. & Barcík, Š. (2016). Factors affecting the consumption of energy during the milling of thermally modified and unmodified beech wood, BioResources, 11(1), 736-747.
  • Kubš, J., Gasparik, M., Gaff, M., Kaplan, L., Cekovska, H., Jezek, J. & Sticha, V. (2017). Influence of Thermal Treatment on Power Consumption during Plain Milling of Lodgepole Pine (Pinus contorta subsp. murrayana), BioResources, 12(1), 407-418.
  • Kurtoğlu, A. (2001). Odunun işleme özellikleri, Journal of the Faculty of Forestry Istanbul University, 31(2), 179-199.
  • Kurtoğlu, A. (2005). Ağaç işleme tekniği ve makineleri ders notları, İstanbul Orman Fakültesi Yayınları, İstanbul.
  • Lemaster, R. L. & Stewart, J. S. (1994). Wood Machining and tooling research programs research summary, 3rd International Symposium, Wood and Paper Science, North Carolina State University, Raleigh.
  • Li, R., Yao, Q., Xu, W., Li, J. & Wang, X. (2022). Study of Cutting Power and Power Efficiency during Straight-Tooth Cylindrical Milling Process of Particle Boards, Materials, 15(3), 879.
  • Licow, R., Chuchala, D., Deja, M., Orlowski, K. A. & Taube, P. (2020). Effect of pine impregnation and feed speed on sound level and cutting power in wood sawing, Journal of Cleaner Production, 272(1), 1-10.
  • Loredana, M. R., Anne-Marie, B. L. (2015). Research on power consumption for sanding process with abrasive brushes to solid spruce and MDF panels, Procedia Engineering, 100, 1495-1504.
  • Malkoçoğlu, A. & Özdemir, T. (2006). The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey, Journal of Materials Processing Technology, 173(3), 315-320.
  • Mandić, M., Todorović, N., Popadić, R. & Danon, G. (2011). Influence of wood properties and technological parameters of processing on cutting power in milling of thermally modified beechwood, Bulletin of the Faculty of Forestry of Univerzitet u Beogradu, 104, 109-124.
  • Marchal, R., Mothe, F., Denaud, L-E., Thibaut, B. & Bleron, L. (2009). Cutting forces in wood machining–Basics and applications in industrial processes. COST Action E35, 63(2), 2004–2008.
  • McKenzie, W. M. (1961). Fundamental aspects of the wood cutting process, University of Michigan, Michigan.
  • Meausoone, P., Aguilera, A. & Martin, P. (2000). Couple Tool Material method for cutting conditions: A new approach of optimisation, International Symposium on Wood Machining Properties of Wood and Wood Composites, 105-116, Vienna, Austria.
  • Mendoza, B. A. (1989). Power consumption and planing quality of coconut lumber (Cocos nucifera L.) as affected by density and some machining variable, Doctoral Thesis, Philippines University, Los Banos.
  • Mori, M. (1970). An analysis of cutting work in peripheral milling of wood. II. The cutting force, power and energy requirements in up-milling parallel to wood grain, Journal of the Japan Wood Research Society, 16(1), 1-9.
  • Nacar, M. (2012). Elektrik-Elektronik ölçme tekniği, Ofset Matbaacılık, Ankara.
  • Nasir, V. & Cool, J. (2018). A review on wood machining: characterization, optimization, and monitoring of the sawing process, Wood Material Science and Engineering, 15(1) 1-16.
  • Naylor, A., Hackney, P., Perera, N. & Clahr, E. (2012). A predictive model for the cutting force in wood machining developed using mechanical properties, BioResources, 7(3), 2883-2894.
  • Naylor, A. & Hackney P. (2013). A review of wood machining literature with a special focus on sawing, BioResources, 8(2), 3122-3135.
  • Özşahin, Ş. & Singer, H. (2019). Development of an artificial neural network model to minimize power consumption in the milling of heat-treated and untreated wood, Kastamonu University Journal of Forestry Faculty, 19(3), 317-328.
  • Palanikumar, K. & Valarmathi, T. (2016). Experimental investigation and analysis on thrust force in drilling of wood composite medium density fiberboard panels, Experimental Techniques, 40(1), 391-400.
  • Palmqvist, J. (2003). Parallel and normal cutting forces in peripheral milling of wood, Holz als roh-und Werkstoff, 61(6), 409-415.
  • Pastacı, H. (2003) Elektrik ve elektronik ölçmeleri, Nesil Matbaacılık, İstanbul.
  • Porankiewicz, B., Marklund, B., Grönlund, A. & Axelsson, B. (2011). Main and normal cutting forces by machining wood of Pinus sylvestris, BioResources, 6(4), 3687-3713.
  • Porankiewicz, B. (2014). Wood machining investigations: Parameters to consider for thorough experimentation, BioResources, 9(1), 4-7.
  • Racasan, S., Taran, N. & Spirchez, C. (2011). Regarding the cutting power on processing with CNC machine tools, International Conference of Wood Science and Engineering in the Third Millennium-ICWSE, Brasov, Romania, 279-282.
  • Racasan, S. (2018). Study regarding the optimization of milling parameters for a minimal power consumption, Pro Ligno, 14(4): 124-130.
  • Ross, R. J. (2010) Wood handbook: wood as an engineering material, United States Department of Agriculture Forest Service, Vol. 190, Madison, Wisconsin.
  • Salca, E. A. (2015). Optimization of wood milling schedule–A case study, Dimensions, 2000, 160.
  • Sedlecký, M. & Gašparík, M. (2017). Power consumption during edge milling of medium-density fiberboard and edge-glued panel, BioResources, 12(4), 7413-7426.
  • Söğütlü, C. (2010). The Effect of Some Factors on Surface Roughness at Planining Process of Cedar Wood, Journal of Polytechnic, 13(3), 177-181.
  • Stanojevic, D., Mandic, M., Danon, G. & Svrzic, S. (2017). Prediction of the surface roughness of wood for machining, Journal of Forestry Research, 28(6), 1281-1283.
  • Stewart, H. A. (1974). A comparison of factors affecting power for abrasive knife planing of hardwoods, Forest Products Journal, 12(3), 175-182.
  • Stewart, H. A. (1980). Some surfacing defects and problems related to wood moisture content, Wood Fiber Science, 12(3), 175-182.
  • Su, W.-C. & Wang, Y. (2002). Effect of the helix angle of router bits on chip formation and energy consumption during milling of solid wood, Journal of Wood Science, 48(2), 126-131.
  • Svoreň, J., Naščák, Ľ., Barcík, Š., Koleda, P. & Stehlík, Š. (2022). Influence of circular saw blade design on reducing energy consumption of a circular saw in the cutting process, Applied Sciences, 12(3).
  • Tiryaki, S., Malkoçoğlu, A. & Özşahin, Ş. (2016). Artificial neural network modeling to predict optimum power consumption in wood machining, Drewno, 59(196), 109-125.
  • Tiryaki, S., Özşahin, Ş. & Aydın, A. (2017). Employing artificial neural networks for minimizing surface roughness and power consumption in abrasive machining of wood, European Journal of Wood and Wood Products, 75(3), 347-358.
  • Tratar, J., Pusavec, F. & Kopac, J. (2014). Tool wear in terms of vibration effects in milling medium-density fibreboard with an industrial robot, Journal of Mechanical Science and Technology, 28(11), 4421-4429.
  • Triboulot, P., Kremer, P., Martin, P. & Leban, J. M. (1991). Planing of Norway spruce with very varied ring width, Holz als Roh-und Werkstoff, 49(5), 181-184.
  • Tschätsch, H. & Reichelt, A. (2009). Cutting force measurement in machining, Applied Machining Technology, Springer, Berlin, Heidelberg, 353-359.
  • Tumanski, S. (2006). Principles of electrical measurement, RC press, Taylor & Francis Group, New York.
  • Weck, M. & Hennes, N. (1998). Why don't machine tools cut faster?, Manufacturing Engineering, 121(3).
  • Woodson, G. & Koch, P. (1970). Tool forces and chip formation in orthogonal cutting of loblolly pine, U.S. Department of Agriculture Forest Service, 26, New Orleans.
  • Yao, T. X. & Boh, T. K. (2019). Energy reduction by optimizing sharpness angle and feed per knife in wood planing operation, International Journal of Agriculture, 8, 40-47.
  • Zhu, Z., Buck, D., Guo, X., Xiong, X., Xu, W. & Cao, P. (2022). Energy efficiency optimization for machining of wood plastic composite, Machines, 10(2), 104.
Toplam 106 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kereste, Hamur ve Kağıt
Bölüm Derleme
Yazarlar

Ali Cakmak 0000-0002-0827-022X

Yayımlanma Tarihi 31 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 2

Kaynak Göster

APA Cakmak, A. (2022). ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER. Turkish Journal of Forest Science, 6(2), 629-649. https://doi.org/10.32328/turkjforsci.1167080
AMA Cakmak A. ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER. Turk J For Sci. Ekim 2022;6(2):629-649. doi:10.32328/turkjforsci.1167080
Chicago Cakmak, Ali. “ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER”. Turkish Journal of Forest Science 6, sy. 2 (Ekim 2022): 629-49. https://doi.org/10.32328/turkjforsci.1167080.
EndNote Cakmak A (01 Ekim 2022) ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER. Turkish Journal of Forest Science 6 2 629–649.
IEEE A. Cakmak, “ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER”, Turk J For Sci, c. 6, sy. 2, ss. 629–649, 2022, doi: 10.32328/turkjforsci.1167080.
ISNAD Cakmak, Ali. “ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER”. Turkish Journal of Forest Science 6/2 (Ekim 2022), 629-649. https://doi.org/10.32328/turkjforsci.1167080.
JAMA Cakmak A. ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER. Turk J For Sci. 2022;6:629–649.
MLA Cakmak, Ali. “ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER”. Turkish Journal of Forest Science, c. 6, sy. 2, 2022, ss. 629-4, doi:10.32328/turkjforsci.1167080.
Vancouver Cakmak A. ODUN VE ODUN KÖKENLİ MALZEMELERDE İŞLEME MEKANİKLERİNİ ETKİLEYEN FAKTÖRLER. Turk J For Sci. 2022;6(2):629-4.